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CHAPTER

ONE

INTRODUCTION

QMCPACK is an open-source, high-performance electronic structure code that implements numerous Quantum Monte
Carlo (QMC) algorithms. Its main applications are electronic structure calculations of molecular, periodic 2D, and pe-
riodic 3D solid-state systems. Real-space variational Monte Carlo (VMC), diffusion Monte Carlo (DMC), and a num-
ber of other advanced QMC algorithms are implemented. A full set of orbital-space auxiliary-field QMC (AFQMC)
methods is also implemented. By directly solving the Schrodinger equation, QMC methods offer greater accuracy
than methods such as density functional theory but at a trade-off of much greater computational expense. Distinct
from many other correlated many-body methods, QMC methods are readily applicable to both isolated molecular
systems and to bulk (periodic) systems including metals and insulators. The few systematic errors in these methods
are increasingly testable allowing for greater confidence in predictions and convergence to e.g. chemically accurate
results in some cases.

QMCPACK is written in C++ and is designed with the modularity afforded by object-oriented programming. High par-
allel and computational efficiencies are achievable on the largest supercomputers. Because of the modular architecture,
the addition of new wavefunctions, algorithms, and observables is relatively straightforward. For parallelization, QM-
CPACK uses a fully hybrid (OpenMP,CUDA)/MPI approach to optimize memory usage and to take advantage of the
growing number of cores per SMP node or graphical processing units (GPUs) and accelerators. Finally, QMCPACK
uses standard file formats for input and output in XML and HDF5 to facilitate data exchange.

This manual currently serves as an introduction to the essential features of QMCPACK and as a guide to installing and
running it. Over time this manual will be expanded to include a fuller introduction to QMC methods in general and to
include more of the specialized features in QMCPACK.

Besides studying this manual we recommend reading a recent review of QMCPACK developments [[KAB+20]] as
well as the QMCPACK citation paper [[KBB+18]].

1.1 Quickstart and a first QMCPACK calculation

In case you are keen to get started, this section describes how to quickly build and run a first QMCPACK calculation
on a standard UNIX or Linux-like system. The build system usually works without much fuss on these systems. If
C++, MPI, BLAS/LAPACK, FFTW, HDF5, and CMake are already installed, QMCPACK can be built and run within
five minutes. For supercomputers, cross-compilation systems, and some computer clusters, the build system might
require hints on the locations of libraries and which versions to use, typical of any code; see Obtaining, installing,
and validating QMCPACK. Installation instructions for common workstations and supercomputers includes complete
examples of installations for common workstations and supercomputers that you can reuse.

To build QMCPACK:

1. Download the latest QMCPACK distribution from http://www.qmcpack.org.

2. Untar the archive (e.g., tar xvf qmcpack_v1.3.tar.gz).

3. Check the instructions in the README file.

3
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4. Run CMake in a suitable build directory to configure QMCPACK for your system: cd qmcpack/build;
cmake ..

5. If CMake is unable to find all needed libraries, see Obtaining, installing, and validating QMCPACK for instruc-
tions and specific build instructions for common systems.

6. Build QMCPACK: make or make -j 16; use the latter for a faster parallel build on a system using, for
example, 16 processes.

7. The QMCPACK executable is usually bin/qmcpack. If you build the complex version it is bin/
qmcpack_complex.

QMCPACK is distributed with examples illustrating different capabilities. Most of the examples are designed to run
quickly with modest resources. We’ll run a short diffusion Monte Carlo calculation of a water molecule:

1. Go to the appropriate example directory: cd ../examples/molecules/H2O.

2. (Optional) Put the QMCPACK binary on your path: export
PATH=\$PATH:location-of-qmcpack/build/bin

3. Run QMCPACK: ../../../build/bin/qmcpack simple-H2O.xml or qmcpack simple-H2O.
xml if you followed the step above.

4. The run will output to the screen and generate a number of files:

$ls H2O*
H2O.HF.wfs.xml H2O.s001.scalar.dat H2O.s002.cont.xml
H2O.s002.qmc.xml H2O.s002.stat.h5 H2O.s001.qmc.xml
H2O.s001.stat.h5 H2O.s002.dmc.dat H2O.s002.scalar.dat

5. Partially summarized results are in the standard text files with the suffixes scalar.dat and dmc.dat. They are
viewable with any standard editor.

If you have Python and matplotlib installed, you can use the analysis utility to produce statistics and plots of the data.
See Analyzing QMCPACK data for information on analyzing QMCPACK data.

export PATH=$PATH:location-of-qmcpack/nexus/bin
export PYTHONPATH=$PYTHONPATH:location-of-qmcpack/nexus/library
qmca H2O.s002.scalar.dat # For statistical analysis of the DMC data
qmca -t -q e H2O.s002.scalar.dat # Graphical plot of DMC energy

The last command will produce a graph as per Fig. 1.1. This shows the average energy of the DMC walkers at each
timestep. In a real simulation we would have to check equilibration, convergence with walker population, time step,
etc.

Congratulations, you have completed a DMC calculation with QMCPACK!

1.2 Authors and History

Development of QMCPACK was started in the late 2000s by Jeongnim Kim while in the group of Professor David
Ceperley at the University of Illinois at Urbana-Champaign, with later contributions being made at Oak Ridge Na-
tional Laboratory (ORNL). Over the years, many others have contributed, including students and researchers in the
groups of Professor David Ceperley and Professor Richard M. Martin, and increasingly staff and postdocs at Lawrence
Livermore National Laboratory, Sandia National Laboratories, Argonne National Laboratory, and ORNL.

Additional developers, contributors, and advisors include Anouar Benali, Mark A. Berrill, David M. Ceperley, Simone
Chiesa, Raymond C. III Clay, Bryan Clark, Kris T. Delaney, Kenneth P. Esler, Paul R. C. Kent, Jaron T. Krogel, Ying
Wai Li, Ye Luo, Jeremy McMinis, Miguel A. Morales, William D. Parker, Nichols A. Romero, Luke Shulenburger,
Norman M. Tubman, and Jordan E. Vincent. See the authors of [[KAB+20]] and [[KBB+18]].
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Fig. 1.1: Trace of walker energies produced by the qmca tool for a simple water molecule example.

If you should be added to these lists, please let us know.

Development of QMCPACK has been supported financially by several grants, including the following:

• “Center for Predictive Simulation of Functional Materials”, supported by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational
Materials Sciences Program.

• The Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of
Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosys-
tem, including software, applications, and hardware technology, to support the nation’s exascale computing
imperative.

• “Network for ab initio many-body methods: development, education and training” supported through the Pre-
dictive Theory and Modeling for Materials and Chemical Science program by the U.S. Department of Energy
Office of Science, Basic Energy Sciences.

• “QMC Endstation,” supported by Accelerating Delivery of Petascale Computing Environment at the DOE Lead-
ership Computing Facility at ORNL.

• PetaApps, supported by the US National Science Foundation.

• Materials Computation Center (MCC), supported by the US National Science Foundation.

1.2. Authors and History 5
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1.3 Support and Contacting the Developers

Questions about installing, applying, or extending QMCPACK can be posted on the QMCPACK Google group at
https://groups.google.com/forum/#!forum/qmcpack. You may also email any of the developers, but we recommend
checking the group first. Particular attention is given to any problem reports. Technical questions can also be posted
on the QMCPACK GitHub repository https://github.com/QMCPACK/qmcpack/issues.

1.4 Performance

QMCPACK implements modern Monte Carlo (MC) algorithms, is highly parallel, and is written using very efficient
code for high per-CPU or on-node performance. In particular, the code is highly vectorizable, giving high performance
on modern central processing units (CPUs) and GPUs. We believe QMCPACK delivers performance either comparable
to or better than other QMC codes when similar calculations are run, particularly for the most common QMC methods
and for large systems. If you find a calculation where this is not the case, or you simply find performance slower
than expected, please post on the Google group or contact one of the developers. These reports are valuable. If your
calculation is sufficiently mainstream we will optimize QMCPACK to improve the performance.

1.5 Open Source License

QMCPACK is distributed under the University of Illinois at Urbana-Champaign/National Center for Supercomputing
Applications (UIUC/NCSA) Open Source License.

University of Illinois/NCSA Open Source License

Copyright (c) 2003, University of Illinois Board of Trustees.
All rights reserved.

Developed by:
Jeongnim Kim
Condensed Matter Physics,
National Center for Supercomputing Applications, University of Illinois
Materials computation Center, University of Illinois
http://www.mcc.uiuc.edu/qmc/

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
``Software''), to deal with the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimers in
the documentation and/or other materials provided with the
distribution.

* Neither the names of the NCSA, the MCC, the University of Illinois,
nor the names of its contributors may be used to endorse or promote
products derived from this Software without specific prior written
permission.

(continues on next page)
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(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS WITH THE SOFTWARE.

Copyright is generally believed to remain with the authors of the individual sections of code. See the various notations
in the source code as well as the code history.

1.6 Contributing to QMCPACK

QMCPACK is fully open source, and we welcome contributions. If you are planning a development, early discussions
are encouraged. Please post on the QMCPACK Google group, on the QMCPACK GitHub repository, or contact one
of the developers. We can tell you whether anyone else is working on a similar feature or whether any related work
has been done in the past. Credit for your contribution can be obtained, for example, through citation of a paper or by
becoming one of the authors on the next version of the standard QMCPACK reference citation.

See Development Guide for details about developing for QMCPACK, including instructions on how to work with
GitHub, the style guide, and examples about the code architecture.

Contributions are made under the same license as QMCPACK, the UIUC/NCSA open source license. If this is prob-
lematic, please discuss with a developer.

Please note the following guidelines for contributions:

• Additions should be fully synchronized with the latest release version and the latest develop branch on GitHub.
Merging of code developed on older versions is error prone.

• Code should be cleanly formatted, commented, portable, and accessible to other programmers. That is, if you
need to use any clever tricks, add a comment to note this, why the trick is needed, how it works, etc. Although
we appreciate high performance, ease of maintenance and accessibility are also considerations.

• Comment your code. You are not only writing it for the compiler for also for other humans! (We know this is a
repeat of the previous point, but it is important enough to repeat.)

• Write a brief description of the method, algorithms, and inputs and outputs suitable for inclusion in this manual.

• Develop tests that exercise the functionality that can be used for validation and for examples. Where is it
practical to write them, we prefer unit tests and fully deterministic tests ahead of stochastic tests. Stochastic
tests naturally fail on occasion, which is a property that does not scale to hundreds of tests. We can help with
this and tests integration into the test system.

1.6. Contributing to QMCPACK 7
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1.7 QMCPACK Roadmap

A general outline of the QMCPACK roadmap is given in the following sections. Suggestions for improvements from
current and potential users are very welcome, particularly those that would facilitate new uses or new users. For
example, if an interface to a particular quantum chemical or density functional code, or an improved tutorial would be
helpful, these would be given strong consideration.

1.7.1 Code

We will continue to improve the accessibility and usability of QMCPACK through combinations of more convenient
input parameters, improved workflow, integration with more quantum chemical and density functional codes, and a
wider range of examples. Suggestions are very welcome, both from new users of QMC and from those experienced
with other QMC codes.

A main development focus is the creation of a single performance portable version of the code. All features will
consequently be available on all platforms, including accelerators (GPUs) from NVIDIA, AMD, and Intel. These
new implementations are currently referred to as the batched code. As the initial batched implementation is matured,
observables and other functionality will be prioritized based on feedback received.

1.7.2 Documentation and examples

This manual describes the core features of QMCPACK that are required for routine research calculations and standard
QMC workflows, i.e., the VMC and DMC methods, auxiliary field QMC, how to obtain and optimize trial wavefunc-
tions, and simple observables. This covers at least 95% of use cases, and nearly all production research calculations.

Because of its history as an academically developed research code, QMCPACK also contains a variety of additional
QMC methods, trial wavefunction forms, potentials, etc., that, although far from critical, might be very useful for
specialized calculations or particular material or chemical systems. If you are interested in these please ask - generally
the features are immature, but we might have historical inputs available. New descriptions will be added over time
but can also be prioritized and added on request (e.g., if a specialized Jastrow factor would help or a historical Jastrow
form is needed for benchmarking).

8 Chapter 1. Introduction



CHAPTER

TWO

FEATURES OF QMCPACK

Note that besides direct use, most features are also available via Nexus, an advanced workflow tool to automate all as-
pects of QMC calculation from initial DFT calculations through to final analysis. Use of Nexus is highly recommended
for research calculations due to the greater ease of use and increased reproducibility.

2.1 Real-space Monte Carlo

The following list contains the main production-level features of QMCPACK for real-space Monte Carlo. If you do
not see a specific feature that you are interested in, check the remainder of this manual or ask if that specific feature
can be made available.

• Variational Monte Carlo (VMC).

• Diffusion Monte Carlo (DMC).

• Reptation Monte Carlo.

• Single and multideterminant Slater Jastrow wavefunctions.

• Wavefunction updates using optimized multideterminant algorithm of Clark et al.

• Backflow wavefunctions.

• One, two, and three-body Jastrow factors.

• Excited state calculations via flexible occupancy assignment of Slater determinants.

• All electron and nonlocal pseudopotential calculations.

• Casula T-moves for variational evaluation of nonlocal pseudopotentials (non-size-consistent and size-consistent
variants).

• Spin-orbit coupling from relativistic pseudopotentials following the approach of Melton, Bennett, and Mitas.

• Support for twist boundary conditions and calculations on metals.

• Wavefunction optimization using the “linear method” of Umrigar and coworkers, with an arbitrary mix of vari-
ance and energy in the objective function.

• Blocked, low memory adaptive shift optimizer of Zhao and Neuscamman.

• Gaussian, Slater, plane-wave, and real-space spline basis sets for orbitals.

• Interface and conversion utilities for plane-wave wavefunctions from Quantum ESPRESSO (Plane-Wave Self-
Consistent Field package [PWSCF]).

• Interface and conversion utilities for Gaussian-basis wavefunctions from GAMESS, PySCF, and QP2. Many
more are supported via the molden format and molden2qmc.

9
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• Easy extension and interfacing to other electronic structure codes via standardized XML and HDF5 inputs.

• MPI parallelism, with scaling to millions of cores.

• Fully threaded using OpenMP.

• Highly efficient vectorized CPU code tailored for modern architectures. [[MLC+17]]

• GPU (NVIDIA CUDA) implementation (limited functionality - see Supported GPU features for real space
QMC).

• Analysis tools for minimal environments (Perl only) through to Python-based environments with graphs pro-
duced via matplotlib (included with Nexus).

2.2 Auxiliary-Field Quantum Monte Carlo

The orbital-space Auxiliary-Field Quantum Monte Carlo (AFQMC) method is now also available in QMCPACK. The
main input data are the matrix elements of the Hamiltonian in a given single particle basis set, which must be produced
from mean-field calculations such as Hartree-Fock or density functional theory. A partial list of the current capabilities
of the code follows. For a detailed description of the available features, see Auxiliary-Field Quantum Monte Carlo.

• Phaseless AFQMC algorithm of Zhang et al. [[ZK03]].

• Very efficient GPU implementation for most features.

• “Hybrid” and “local energy” propagation schemes.

• Hamiltonian matrix elements from (1) Molpro’s FCIDUMP format (which can be produced by Molpro, PySCF,
and VASP) and (2) internal HDF5 format produced by PySCF (see AFQMC section below).

• AFQMC calculations with RHF (closed-shell doubly occupied), ROHF (open-shell doubly occupied), and UHF
(spin polarized broken symmetry) symmetry.

• Single and multideterminant trial wavefunctions. Multideterminant expansions with either orthogonal or
nonorthogonal determinants.

• Fast update scheme for orthogonal multideterminant expansions.

• Distributed propagation algorithms for large systems. Enables calculations where data structures do not fit on a
single node.

• Complex implementation for PBC calculations with complex integrals.

• Sparse representation of large matrices for reduced memory usage.

• Mixed and back-propagated estimators.

• Specialized implementation for solids with k-point symmetry (e.g. primitive unit cells with k-points).

2.3 Supported GPU features for real space QMC

The “legacy” GPU implementation for real space QMC uses NVIDIA CUDA and achieves very good speedup on
NVIDIA GPUs. However, only a very limited subset of features is available. As detailed in QMCPACK Roadmap,
a new full-featured GPU implementation is currently being made that is both high performing and portable to other
GPU architectures. The existing implementation supports multiple GPUs per node, with MPI tasks assigned in a
round-robin order to the GPUs. Currently, for large runs, 1 MPI task should be used per GPU per node. For smaller
calculations, use of multiple MPI tasks per GPU might yield improved performance.

Supported GPU features:

10 Chapter 2. Features of QMCPACK
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• VMC, wavefunction optimization, DMC.

• Periodic and open boundary conditions. Mixed boundary conditions are not supported.

• Wavefunctions:

1. Single Slater determinants with 3D B-spline orbitals. Twist-averaged boundary conditions and complex
wavefunctions are fully supported. Gaussian type orbitals are not supported.

2. Hybrid mixed basis representation in which orbitals are represented as 1D splines times spherical harmon-
ics in spherical regions (muffin tins) around atoms and 3D B-splines in the interstitial region.

3. One-body and two-body Jastrow functions represented as 1D B-splines. Three-body Jastrow functions are
not supported.

• Semilocal (nonlocal and local) pseudopotentials, Coulomb interaction (electron-electron, electron-ion), and
model periodic Coulomb (MPC) interaction.

2.4 Sharing of spline data across multiple GPUs

Sharing of GPU spline data enables distribution of the data across multiple GPUs on a given computational node. For
example, on a two-GPU-per-node system, each GPU would have half of the orbitals. This allows use of larger overall
spline tables than would fit in the memory of individual GPUs and potentially up to the total GPU memory on a node.
To obtain high performance, large electron counts or a high-performing CPU-GPU interconnect is required.

To use this feature, the following needs to be done:

• The CUDA Multi-Process Service (MPS) needs to be used (e.g., on OLCF Summit/SummitDev use “-alloc_flags
gpumps” for bsub). If MPI is not detected, sharing will be disabled.

• CUDA_VISIBLE_DEVICES needs to be properly set to control each rank’s visible CUDA devices (e.g., on
OLCF Summit/SummitDev create a resource set containing all GPUs with the respective number of ranks with
“jsrun –task-per-rs Ngpus -g Ngpus”).

• In the determinant set definition of the <wavefunction> section, the “gpusharing” parameter needs to be set (i.e.,
<determinantset gpusharing=“yes”>). See 3D B-splines orbitals.

2.4. Sharing of spline data across multiple GPUs 11



QMCPACK Manual

12 Chapter 2. Features of QMCPACK



CHAPTER

THREE

OBTAINING, INSTALLING, AND VALIDATING QMCPACK

This section describes how to obtain, build, and validate QMCPACK. This process is designed to be as simple as
possible and should be no harder than building a modern plane-wave density functional theory code such as Quantum
ESPRESSO, QBox, or VASP. Parallel builds enable a complete compilation in under 2 minutes on a fast multicore
system. If you are unfamiliar with building codes we suggest working with your system administrator to install
QMCPACK.

3.1 Installation steps

To install QMCPACK, follow the steps below. Full details of each step are given in the referenced sections.

1. Download the source code from Obtaining the latest release version or Obtaining the latest development version.

2. Verify that you have the required compilers, libraries, and tools installed (Prerequisites).

3. If you will use Quantum ESPRESSO, download and patch it. The patch adds the pw2qmcpack utility (Installing
and patching Quantum ESPRESSO).

4. Run the cmake configure step and build with make (Building with CMake and Quick build instructions (try
first)). Examples for common systems are given in Installation instructions for common workstations and
supercomputers. To activate workflow tests for Quantum ESPRESSO, RMG, or PYSCF, be sure to specify
QE_BIN, RMG_BIN, or ensure that the python modules are available when cmake is run.

5. Run the tests to verify QMCPACK (Testing and validation of QMCPACK).

Hints for high performance are in How to build the fastest executable version of QMCPACK. Troubleshooting sugges-
tions are in Troubleshooting the installation.

Note that there are two different QMCPACK executables that can be produced: the general one, which is the default,
and the “complex” version, which supports periodic calculations at arbitrary twist angles and k-points. This second
version is enabled via a cmake configuration parameter (see Configuration Options). The general version supports
only wavefunctions that can be made real. If you run a calculation that needs the complex version, QMCPACK will
stop and inform you.

13
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3.2 Obtaining the latest release version

Major releases of QMCPACK are distributed from http://www.qmcpack.org. Because these versions undergo the most
testing, we encourage using them for all production calculations unless there are specific reasons not to do so.

Releases are usually compressed tar files that indicate the version number, date, and often the source code revision
control number corresponding to the release. To obtain the latest release:

• Download the latest QMCPACK distribution from http://www.qmcpack.org.

• Untar the archive (e.g., tar xvf qmcpack_v1.3.tar.gz).

Releases can also be obtained from the ‘master’ branch of the QMCPACK git repository, similar to obtaining the
development version (Obtaining the latest development version).

3.3 Obtaining the latest development version

The most recent development version of QMCPACK can be obtained anonymously via

git clone https://github.com/QMCPACK/qmcpack.git

Once checked out, updates can be made via the standard git pull.

The ‘develop’ branch of the git repository contains the day-to-day development source with the latest updates, bug
fixes, etc. This version might be useful for updates to the build system to support new machines, for support of the
latest versions of Quantum ESPRESSO, or for updates to the documentation. Note that the development version
might not be fully consistent with the online documentation. We attempt to keep the development version fully
working. However, please be sure to run tests and compare with previous release versions before using for any serious
calculations. We try to keep bugs out, but occasionally they crawl in! Reports of any breakages are appreciated.

3.4 Prerequisites

The following items are required to build QMCPACK. For workstations, these are available via the standard package
manager. On shared supercomputers this software is usually installed by default and is often accessed via a modules
environment—check your system documentation.

Use of the latest versions of all compilers and libraries is strongly encouraged but not absolutely essential. Gen-
erally, newer versions are faster; see How to build the fastest executable version of QMCPACK for performance
suggestions. Versions of compilers over two years old are unsupported and untested by the developers although they
may still work.

• C/C++ compilers such as GNU, Clang, Intel, and IBM XL. C++ compilers are required to support the C++ 17
standard. Use of recent (“current year version”) compilers is strongly encouraged.

• An MPI library such as OpenMPI (http://open-mpi.org) or a vendor-optimized MPI.

• BLAS/LAPACK, numerical, and linear algebra libraries. Use platform-optimized libraries where available, such
as Intel MKL. ATLAS or other optimized open source libraries can also be used (http://math-atlas.sourceforge.
net).

• CMake, build utility (http://www.cmake.org).

• Libxml2, XML parser (http://xmlsoft.org).

• HDF5, portable I/O library (http://www.hdfgroup.org/HDF5/). Good performance at large scale requires parallel
version >= 1.10.
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• BOOST, peer-reviewed portable C++ source libraries (http://www.boost.org). Minimum version is 1.61.0.

• FFTW, FFT library (http://www.fftw.org/).

To build the GPU accelerated version of QMCPACK, an installation of NVIDIA CUDA development tools is required.
Ensure that this is compatible with the C and C++ compiler versions you plan to use. Supported versions are included
in the NVIDIA release notes.

Many of the utilities provided with QMCPACK require Python (v3). The numpy and matplotlib libraries are required
for full functionality.

3.5 C++ 17 standard library

The C++ standard consists of language features—which are implemented in the compiler—and library fea-
tures—which are implemented in the standard library. GCC includes its own standard library and headers, but many
compilers do not and instead reuse those from an existing GCC install. Depending on setup and installation, some of
these compilers might not default to using a GCC with C++ 17 headers (e.g., GCC 4.8 is common as a base system
compiler, but its standard library only supports C++ 11).

The symptom of having header files that do not support the C++ 17 standard is usually compile errors involving
standard include header files. Look for the GCC library version, which should be present in the path to the include file
in the error message, and ensure that it is 8.1 or greater. To avoid these errors occurring at compile time, QMCPACK
tests for a C++ 17 standard library during configuration and will halt with an error if one is not found.

At sites that use modules, it is often sufficient to simply load a newer GCC.

3.5.1 Intel compiler

The Intel compiler version must be 19 or newer due to use of C++17 and bugs and limitations in earlier versions.

If a newer GCC is needed, the -cxxlib option can be used to point to a different GCC installation. (Alternately, the
-gcc-name or -gxx-name options can be used.) Be sure to pass this flag to the C compiler in addition to the C++
compiler. This is necessary because CMake extracts some library paths from the C compiler, and those paths usually
also contain to the C++ library. The symptom of this problem is C++ 17 standard library functions not found at link
time.

3.6 Building with CMake

The build system for QMCPACK is based on CMake. It will autoconfigure based on the detected compilers and
libraries. The most recent version of CMake has the best detection for the greatest variety of systems. The minimum
required version of CMake is 3.15.0. Most computer installations have a sufficiently recent CMake, though it might
not be the default.

If no appropriate version CMake is available, building it from source is straightforward. Download a version from
https://cmake.org/download/ and unpack the files. Run ./bootstrap from the CMake directory, and then run
make when that finishes. The resulting CMake executable will be in the directory. The executable can be run directly
from that location.

Previously, QMCPACK made extensive use of toolchains, but the build system has since been updated to eliminate the
use of toolchain files for most cases. The build system is verified to work with GNU, Intel, and IBM XLC compilers.
Specific compile options can be specified either through specific environment or CMake variables. When the libraries
are installed in standard locations (e.g., /usr, /usr/local), there is no need to set environment or CMake variables for the
packages.
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3.6.1 Quick build instructions (try first)

If you are feeling lucky and are on a standard UNIX-like system such as a Linux workstation, the following might
quickly give a working QMCPACK:

The safest quick build option is to specify the C and C++ compilers through their MPI wrappers. Here we use Intel
MPI and Intel compilers. Move to the build directory, run CMake, and make

cd build
cmake -DCMAKE_C_COMPILER=mpiicc -DCMAKE_CXX_COMPILER=mpiicpc ..
make -j 8

You can increase the “8” to the number of cores on your system for faster builds. Substitute mpicc and mpicxx or
other wrapped compiler names to suit your system. For example, with OpenMPI use

cd build
cmake -DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx ..
make -j 8

If you are feeling particularly lucky, you can skip the compiler specification:

cd build
cmake ..
make -j 8

The complexities of modern computer hardware and software systems are such that you should check that the autocon-
figuration system has made good choices and picked optimized libraries and compiler settings before doing significant
production. That is, check the following details. We give examples for a number of common systems in Installation
instructions for common workstations and supercomputers.

3.6.2 Environment variables

A number of environment variables affect the build. In particular they can control the default paths for libraries, the
default compilers, etc. The list of environment variables is given below:

CXX C++ compiler
CC C Compiler
MKL_ROOT Path for MKL
HDF5_ROOT Path for HDF5
BOOST_ROOT Path for Boost
FFTW_HOME Path for FFTW

3.6.3 Configuration Options

In addition to reading the environment variables, CMake provides a number of optional variables that can be set to
control the build and configure steps. When passed to CMake, these variables will take precedent over the environment
and default variables. To set them, add -D FLAG=VALUE to the configure line between the CMake command and the
path to the source directory.

• Key QMCPACK build options

QMC_CUDA Enable legacy CUDA code path for NVIDIA GPU acceleration
→˓(1:yes, 0:no)
QMC_COMPLEX Build the complex (general twist/k-point) version (1:yes,
→˓0:no)

(continues on next page)
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(continued from previous page)

QMC_MIXED_PRECISION Build the mixed precision (mixing double/float) version
(1:yes (QMC_CUDA=1 default), 0:no (QMC_CUDA=0 default)).
Mixed precision calculations can be signifiantly faster but

→˓should be
carefully checked validated against full double precision

→˓runs,
particularly for large electron counts.

ENABLE_CUDA ON/OFF(default). Enable CUDA code path for NVIDIA GPU
→˓acceleration.

Production quality for AFQMC. Pre-production quality for
→˓real-space.

Use CMAKE_CUDA_ARCHITECTURES, default 70, to set the actual
→˓GPU architecture.
ENABLE_OFFLOAD ON/OFF(default). Enable OpenMP target offload for GPU
→˓acceleration.
ENABLE_TIMERS ON(default)/OFF. Enable fine-grained timers. Timers are on
→˓by default but at level coarse

to avoid potential slowdown in tiny systems.
For systems beyond tiny sizes (100+ electrons) there is no

→˓risk.

• General build options

CMAKE_BUILD_TYPE A variable which controls the type of build
(defaults to Release). Possible values are:
None (Do not set debug/optmize flags, use
CMAKE_C_FLAGS or CMAKE_CXX_FLAGS)
Debug (create a debug build)
Release (create a release/optimized build)
RelWithDebInfo (create a release/optimized build with debug

→˓info)
MinSizeRel (create an executable optimized for size)

CMAKE_SYSTEM_NAME Set value to CrayLinuxEnvironment when cross-compiling in
→˓Cray Programming Environment.
CMAKE_C_COMPILER Set the C compiler
CMAKE_CXX_COMPILER Set the C++ compiler
CMAKE_C_FLAGS Set the C flags. Note: to prevent default

debug/release flags from being used, set the CMAKE_BUILD_
→˓TYPE=None

Also supported: CMAKE_C_FLAGS_DEBUG,
CMAKE_C_FLAGS_RELEASE, and CMAKE_C_FLAGS_RELWITHDEBINFO

CMAKE_CXX_FLAGS Set the C++ flags. Note: to prevent default
debug/release flags from being used, set the CMAKE_BUILD_

→˓TYPE=None
Also supported: CMAKE_CXX_FLAGS_DEBUG,
CMAKE_CXX_FLAGS_RELEASE, and CMAKE_CXX_FLAGS_RELWITHDEBINFO

CMAKE_INSTALL_PREFIX Set the install location (if using the optional install step)
INSTALL_NEXUS Install Nexus alongside QMCPACK (if using the optional
→˓install step)

• Additional QMCPACK build options

QE_BIN Location of Quantum ESPRESSO binaries including pw2qmcpack.
→˓x
RMG_BIN Location of RMG binary (rmg-cpu)
QMC_DATA Specify data directory for QMCPACK performance and
→˓integration tests

(continues on next page)
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(continued from previous page)

QMC_INCLUDE Add extra include paths
QMC_EXTRA_LIBS Add extra link libraries
QMC_BUILD_STATIC ON/OFF(default). Add -static flags to build
QMC_SYMLINK_TEST_FILES Set to zero to require test files to be copied. Avoids
→˓space

saving default use of symbolic links for test files. Useful
if the build is on a separate filesystem from the source,

→˓as
required on some HPC systems.

• BLAS/LAPACK related

BLA_VENDOR If set, checks only the specified vendor, if not set checks
→˓all the possibilities.

See full list at https://cmake.org/cmake/help/latest/module/
→˓FindLAPACK.html
MKL_ROOT Path to MKL libraries. Only necessary when auto-detection
→˓fails or overriding is desired.

• Scalar and vector math functions

::

QMC_MATH_VENDOR Select a vendor optimized library for scalar and vector math functions.
Providers are GENERIC INTEL_VML IBM_MASS AMD_LIBM

• libxml2 related

LIBXML2_INCLUDE_DIR Include directory for libxml2

LIBXML2_LIBRARY Libxml2 library

• HDF5 related

HDF5_PREFER_PARALLEL TRUE(default for MPI build)/FALSE, enables/disable parallel
→˓HDF5 library searching.
ENABLE_PHDF5 ON(default for parallel HDF5 library)/OFF, enables/disable
→˓parallel collective I/O.

• FFTW related

FFTW_INCLUDE_DIRS Specify include directories for FFTW
FFTW_LIBRARY_DIRS Specify library directories for FFTW

• CTest related

MPIEXEC_EXECUTABLE Specify the mpi wrapper, e.g. srun, aprun, mpirun, etc.
MPIEXEC_NUMPROC_FLAG Specify the number of mpi processes flag,

e.g. "-n", "-np", etc.
MPIEXEC_PREFLAGS Flags to pass to MPIEXEC_EXECUTABLE directly before the
→˓executable to run.

• Sanitizers Developer Options

ENABLE_SANITIZER link with the GNU or Clang sanitizer library for asan, ubsan,
→˓tsan or msan (default=none)

Clang address sanitizer library asan
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Clang address sanitizer library ubsan

Clang thread sanitizer library tsan

Clang thread sanitizer library msan

See Sanitizer Libraries for more information.

3.6.4 Notes for OpenMP target offload to accelerators (experimental)

QMCPACK is currently being updated to support OpenMP target offload and obtain performance portability across
GPUs from different vendors. This is currently an experimental feature and is not suitable for production. Addi-
tional implementation in QMCPACK as well as improvements in open-source and vendor compilers is required for
production status to be reached. The following compilers have been verified:

• LLVM Clang 11. Support NVIDIA GPUs.

-D ENABLE_OFFLOAD=ON -D USE_OBJECT_TARGET=ON

Clang and its downstream compilers support two extra options

OFFLOAD_TARGET for the offload target. default nvptx64-nvidia-cuda.
OFFLOAD_ARCH for the target architecture (sm_80, gfx906, ...) if not using the
→˓compiler default.

• AMD AOMP Clang 11.8. Support AMD GPUs.

-D ENABLE_OFFLOAD=ON -D OFFLOAD_TARGET=amdgcn-amd-amdhsa -D OFFLOAD_ARCH=gfx906

• Intel oneAPI beta08. Support Intel GPUs.

-D ENABLE_OFFLOAD=ON -D OFFLOAD_TARGET=spir64

• HPE Cray 11. It is derived from Clang and supports NVIDIA and AMD GPUs.

-D ENABLE_OFFLOAD=ON -D OFFLOAD_TARGET=nvptx64-nvidia-cuda -D OFFLOAD_ARCH=sm_80

OpenMP offload features can be used together with vendor specific code paths to maximize QMCPACK performance.
Some new CUDA functionality has been implemented to improve efficiency on NVIDIA GPUs in conjunction with
the Offload code paths: For example, using Clang 11 on Summit.

-D ENABLE_OFFLOAD=ON -D USE_OBJECT_TARGET=ON -D ENABLE_CUDA=ON -D CMAKE_CUDA_
→˓ARCHITECTURES=70 -D CMAKE_CUDA_HOST_COMPILER=`which gcc`

3.6.5 Installation from CMake

Installation is optional. The QMCPACK executable can be run from the bin directory in the build location. If the
install step is desired, run the make install command to install the QMCPACK executable, the converter, and
some additional executables. Also installed is the qmcpack.settings file that records options used to compile
QMCPACK. Specify the CMAKE_INSTALL_PREFIX CMake variable during configuration to set the install location.
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3.6.6 Role of QMC_DATA

QMCPACK includes a variety of optional performance and integration tests that use research quality wavefunctions
to obtain meaningful performance and to more thoroughly test the code. The necessarily large input files are stored
in the location pointed to by QMC_DATA (e.g., scratch or long-lived project space on a supercomputer). These
multi-gigabyte files are not included in the source code distribution to minimize size. The tests are activated if
CMake detects the files when configured. See tests/performance/NiO/README, tests/solids/NiO_afqmc/README,
tests/performance/C-graphite/README, and tests/performance/C-molecule/README for details of the current tests
and input files and to download them.

Currently the files must be downloaded via https://anl.box.com/s/yxz1ic4kxtdtgpva5hcmlom9ixfl3v3c.

The layout of current complete set of files is given below. If a file is missing, the appropriate performance test is
skipped.

QMC_DATA/C-graphite/lda.pwscf.h5
QMC_DATA/C-molecule/C12-e48-pp.h5
QMC_DATA/C-molecule/C12-e72-ae.h5
QMC_DATA/C-molecule/C18-e108-ae.h5
QMC_DATA/C-molecule/C18-e72-pp.h5
QMC_DATA/C-molecule/C24-e144-ae.h5
QMC_DATA/C-molecule/C24-e96-pp.h5
QMC_DATA/C-molecule/C30-e120-pp.h5
QMC_DATA/C-molecule/C30-e180-ae.h5
QMC_DATA/C-molecule/C60-e240-pp.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S1.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S2.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S4.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S8.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S16.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S32.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S64.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S128.h5
QMC_DATA/NiO/NiO-fcc-supertwist111-supershift000-S256.h5
QMC_DATA/NiO/NiO_afm_fcidump.h5
QMC_DATA/NiO/NiO_afm_wfn.dat
QMC_DATA/NiO/NiO_nm_choldump.h5

3.6.7 Configure and build using CMake and make

To configure and build QMCPACK, move to build directory, run CMake, and make

cd build
cmake ..
make -j 8

As you will have gathered, CMake encourages “out of source” builds, where all the files for a specific build configu-
ration reside in their own directory separate from the source files. This allows multiple builds to be created from the
same source files, which is very useful when the file system is shared between different systems. You can also build
versions with different settings (e.g., QMC_COMPLEX) and different compiler settings. The build directory does
not have to be called build—use something descriptive such as build_machinename or build_complex. The “..” in the
CMake line refers to the directory containing CMakeLists.txt. Update the “..” for other build directory locations.
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3.6.8 Example configure and build

• Set the environments (the examples below assume bash, Intel compilers, and MKL library)

export CXX=icpc
export CC=icc
export MKL_ROOT=/usr/local/intel/mkl/10.0.3.020
export HDF5_ROOT=/usr/local
export BOOST_ROOT=/usr/local/boost
export FFTW_HOME=/usr/local/fftw

• Move to build directory, run CMake, and make

cd build
cmake -D CMAKE_BUILD_TYPE=Release ..
make -j 8

3.6.9 Build scripts

We recommended creating a helper script that contains the configure line for CMake. This is particularly useful when
avoiding environment variables, packages are installed in custom locations, or the configure line is long or complex.
In this case it is also recommended to add “rm -rf CMake*” before the configure line to remove existing CMake
configure files to ensure a fresh configure each time the script is called. Deleting all the files in the build directory
is also acceptable. If you do so we recommend adding some sanity checks in case the script is run from the wrong
directory (e.g., checking for the existence of some QMCPACK files).

Some build script examples for different systems are given in the config directory. For example, on Cray systems these
scripts might load the appropriate modules to set the appropriate programming environment, specific library versions,
etc.

An example script build.sh is given below. It is much more complex than usually needed for comprehensiveness:

export CXX=mpic++
export CC=mpicc
export HDF5_ROOT=/opt/hdf5
export BOOST_ROOT=/opt/boost

rm -rf CMake*

cmake \
-D CMAKE_BUILD_TYPE=Debug \
-D LIBXML2_INCLUDE_DIR=/usr/include/libxml2 \
-D LIBXML2_LIBRARY=/usr/lib/x86_64-linux-gnu/libxml2.so \
-D FFTW_INCLUDE_DIRS=/usr/include \
-D FFTW_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu \
-D QMC_DATA=/projects/QMCPACK/qmc-data \
..
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3.6.10 Using vendor-optimized numerical libraries (e.g., Intel MKL)

Although QMC does not make extensive use of linear algebra, use of vendor-optimized libraries is strongly recom-
mended for highest performance. BLAS routines are used in the Slater determinant update, the VMC wavefunction
optimizer, and to apply orbital coefficients in local basis calculations. Vectorized math functions are also beneficial
(e.g., for the phase factor computation in solid-state calculations). CMake is generally successful in finding these
libraries, but specific combinations can require additional hints, as described in the following:

Using Intel MKL with non-Intel compilers

To use Intel MKL with, e.g. an MPICH wrapped gcc:

cmake \
-DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx \
-DMKL_ROOT=YOUR_INTEL_MKL_ROOT_DIRECTORY \
..

MKL_ROOT is only necessary when MKL is not auto-detected successfully or a particular MKL installation is desired.
YOUR_INTEL_MKL_ROOT_DIRECTORY is the directory containing the MKL bin, examples, and lib directories
(etc.) and is often /opt/intel/mkl.

Serial or multithreaded library

Vendors might provide both serial and multithreaded versions of their libraries. Using the right version is critical to
QMCPACK performance. QMCPACK makes calls from both inside and outside threaded regions. When being called
from outside an OpenMP parallel region, the multithreaded version is preferred for the possibility of using all the
available cores. When being called from every thread inside an OpenMP parallel region, the serial version is preferred
for not oversubscribing the cores. Fortunately, nowadays the multithreaded versions of many vendor libraries (MKL,
ESSL) are OpenMP aware. They use only one thread when being called inside an OpenMP parallel region. This
behavior meets exactly both QMCPACK needs and thus is preferred. If the multithreaded version does not provide
this feature of dynamically adjusting the number of threads, the serial version is preferred. In addition, thread safety
is required no matter which version is used.

3.6.11 Cross compiling

Cross compiling is often difficult but is required on supercomputers with distinct host and compute processor genera-
tions or architectures. QMCPACK tried to do its best with CMake to facilitate cross compiling.

• On a machine using a Cray programming environment, we rely on compiler wrap-
pers provided by Cray to correctly set architecture-specific flags. Please also add
-DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment to cmake. The CMake configure log should
indicate that a Cray machine was detected.

• If not on a Cray machine, by default we assume building for the host architecture (e.g., -xHost is added for the
Intel compiler and -march=native is added for GNU/Clang compilers).

• If -x/-ax or -march is specified by the user in CMAKE_C_FLAGS and CMAKE_CXX_FLAGS, we respect the
user’s intention and do not add any architecture-specific flags.

The general strategy for cross compiling should therefore be to manually set CMAKE_C_FLAGS and
CMAKE_CXX_FLAGS for the target architecture. Using make VERBOSE=1 is a useful way to check the final
compilation options. If on a Cray machine, selection of the appropriate programming environment should be suffi-
cient.
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3.7 Installation instructions for common workstations and super-
computers

This section describes how to build QMCPACK on various common systems including multiple Linux distributions,
Apple OS X, and various supercomputers. The examples should serve as good starting points for building QMCPACK
on similar machines. For example, the software environment on modern Crays is very consistent. Note that updates
to operating systems and system software might require small modifications to these recipes. See How to build the
fastest executable version of QMCPACK for key points to check to obtain highest performance and Troubleshooting
the installation for troubleshooting hints.

3.7.1 Installing on Ubuntu Linux or other apt-get–based distributions

The following is designed to obtain a working QMCPACK build on, for example, a student laptop, starting from a
basic Linux installation with none of the developer tools installed. Fortunately, all the required packages are available
in the default repositories making for a quick installation. Note that for convenience we use a generic BLAS. For
production, a platform-optimized BLAS should be used.

sudo apt-get install cmake g++ openmpi-bin libopenmpi-dev libboost-dev
sudo apt-get install libatlas-base-dev liblapack-dev libhdf5-dev libxml2-dev fftw3-dev
export CXX=mpiCC
cd build
cmake ..
make -j 8
ls -l bin/qmcpack

For qmca and other tools to function, we install some Python libraries:

sudo apt-get install python-numpy python-matplotlib

3.7.2 Installing on CentOS Linux or other yum-based distributions

The following is designed to obtain a working QMCPACK build on, for example, a student laptop, starting from a
basic Linux installation with none of the developer tools installed. CentOS 7 (Red Hat compatible) is using gcc 4.8.2.
The installation is complicated only by the need to install another repository to obtain HDF5 packages that are not
available by default. Note that for convenience we use a generic BLAS. For production, a platform-optimized BLAS
should be used.

sudo yum install make cmake gcc gcc-c++ openmpi openmpi-devel fftw fftw-devel \
boost boost-devel libxml2 libxml2-devel

sudo yum install blas-devel lapack-devel atlas-devel
module load mpi

To set up repoforge as a source for the HDF5 package, go to http://repoforge.org/use. Install the appropriate up-to-date
release package for your operating system. By default, CentOS Firefox will offer to run the installer. The CentOS 6.5
settings were still usable for HDF5 on CentOS 7 in 2016, but use CentOS 7 versions when they become available.

sudo yum install hdf5 hdf5-devel

To build QMCPACK:

module load mpi/openmpi-x86_64
which mpirun

(continues on next page)
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(continued from previous page)

# Sanity check; should print something like /usr/lib64/openmpi/bin/mpirun
export CXX=mpiCC
cd build
cmake ..
make -j 8
ls -l bin/qmcpack

3.7.3 Installing on Mac OS X using Macports

These instructions assume a fresh installation of macports and use the gcc 10.2 compiler.

Follow the Macports install instructions at https://www.macports.org/.

• Install Xcode and the Xcode Command Line Tools.

• Agree to Xcode license in Terminal: sudo xcodebuild -license.

• Install MacPorts for your version of OS X.

We recommend to make sure macports is updated:

sudo port -v selfupdate # Required for macports first run, recommended in general
sudo port upgrade outdated # Recommended

Install the required tools. For thoroughness we include the current full set of python dependencies. Some of the tests
will be skipped if not all are available.

sudo port install gcc10
sudo port select gcc mp-gcc10
sudo port install openmpi-devel-gcc10
sudo port select --set mpi openmpi-devel-gcc10-fortran

sudo port install fftw-3 +gcc10
sudo port install libxml2
sudo port install cmake
sudo port install boost +gcc10
sudo port install hdf5 +gcc10

sudo port install python38
sudo port select --set python python38
sudo port select --set python3 python38
sudo port install py38-numpy +gcc10
sudo port select --set cython cython38
sudo port install py38-scipy +gcc10
sudo port install py38-h5py +gcc10
sudo port install py38-pandas
sudo port install py38-lxml
sudo port install py38-matplotlib #For graphical plots with qmca

QMCPACK build:

cd build
cmake -DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpiCXX ..
make -j 6 # Adjust for available core count
ls -l bin/qmcpack

Run the deterministic tests:
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ctest -R deterministic

This recipe was verified on October 26, 2020, on a Mac running OS X 10.15.7 “Catalina” with macports 2.6.3.

3.7.4 Installing on Mac OS X using Homebrew (brew)

Homebrew is a package manager for OS X that provides a convenient route to install all the QMCPACK dependencies.
The following recipe will install the latest available versions of each package. This was successfully tested under OS
X 10.15.7 “Catalina” on October 26, 2020.

1. Install Homebrew from http://brew.sh/:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

2. Install the prerequisites:

brew install gcc # 10.2.0 when tested
brew install openmpi
brew install cmake
brew install fftw
brew install boost
brew install hdf5
export OMPI_CC=gcc-10
export OMPI_CXX=g++-10

3. Configure and build QMCPACK:

cmake -DCMAKE_C_COMPILER=/usr/local/bin/mpicc \
-DCMAKE_CXX_COMPILER=/usr/local/bin/mpicxx ..

make -j 6 # Adjust for available core count
ls -l bin/qmcpack

4. Run the deterministic tests

ctest -R deterministic

3.7.5 Installing on ALCF Theta, Cray XC40

Theta is a 9.65 petaflops system manufactured by Cray with 3,624 compute nodes. Each node features a second-
generation Intel Xeon Phi 7230 processor and 192 GB DDR4 RAM.

export CRAYPE_LINK_TYPE=dynamic
module load cmake/3.16.2
module unload cray-libsci
module load cray-hdf5-parallel
module load gcc # Make C++ 14 standard library available to the Intel compiler
export BOOST_ROOT=/soft/libraries/boost/1.64.0/intel
cmake -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment ..
make -j 24
ls -l bin/qmcpack

3.7. Installation instructions for common workstations and supercomputers 25

http://brew.sh/


QMCPACK Manual

3.7.6 Installing on ORNL OLCF Summit

Summit is an IBM system at the ORNL OLCF built with IBM Power System AC922 nodes. They have two IBM
Power 9 processors and six NVIDIA Volta V100 accelerators.

Building QMCPACK

Note that these build instructions are preliminary as the software environment is subject to change. As of December
2018, the IBM XL compiler does not support C++14, so we currently use the gnu compiler.

For ease of reproducibility we provide build scripts for Summit.

cd qmcpack
./config/build_olcf_summit.sh
ls bin

Building Quantum ESPRESSO

We provide a build script for the v6.4.1 release of Quantum ESPRESSO (QE). The following can be used to build a
CPU version of QE on Summit, placing the script in the external_codes/quantum_espresso directory.

cd external_codes/quantum_espresso
./build_qe_olcf_summit.sh

Note that performance is not yet optimized although vendor libraries are used. Alternatively, the wavefunction files
can be generated on another system and the converted HDF5 files copied over.

3.7.7 Installing on NERSC Cori, Haswell Partition, Cray XC40

Cori is a Cray XC40 that includes 16-core Intel “Haswell” nodes installed at NERSC. In the following example, the
source code is cloned in $HOME/qmc/git_QMCPACK and QMCPACK is built in the scratch space.

mkdir $HOME/qmc
mkdir $HOME/qmc/git_QMCPACK
cd $HOME/qmc_git_QMCPACK
git clone https://github.com/QMCPACK/qmcpack.git
cd qmcpack
git checkout v3.7.0 # Edit for desired version
export CRAYPE_LINK_TYPE=dynamic
module unload cray-libsci
module load boost/1.70.0
module load cray-hdf5-parallel
module load cmake/3.14.4
module load gcc/8.3.0 # Make C++ 14 standard library available to the Intel compiler
cd $SCRATCH
mkdir build_cori_hsw
cd build_cori_hsw
cmake -DQMC_SYMLINK_TEST_FILES=0 -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment $HOME/qmc/
→˓git_QMCPACK/qmcpack/
nice make -j 8
ls -l bin/qmcpack

When the preceding was tested on June 15, 2020, the following module and software versions were present:
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build_cori_hsw> module list
Currently Loaded Modulefiles:
1) modules/3.2.11.4 13) xpmem/2.2.20-7.0.1.1_4.8__
→˓g0475745.ari
2) nsg/1.2.0 14) job/2.2.4-7.0.1.1_3.34__
→˓g36b56f4.ari
3) altd/2.0 15) dvs/2.12_2.2.156-7.0.1.1_8.6__
→˓g5aab709e
4) darshan/3.1.7 16) alps/6.6.57-7.0.1.1_5.10__
→˓g1b735148.ari
5) intel/19.0.3.199 17) rca/2.2.20-7.0.1.1_4.42__
→˓g8e3fb5b.ari
6) craype-network-aries 18) atp/2.1.3
7) craype/2.6.2 19) PrgEnv-intel/6.0.5
8) udreg/2.3.2-7.0.1.1_3.29__g8175d3d.ari 20) craype-haswell
9) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari 21) cray-mpich/7.7.10
10) pmi/5.0.14 22) craype-hugepages2M
11) dmapp/7.1.1-7.0.1.1_4.43__g38cf134.ari 23) gcc/8.3.0
12) gni-headers/5.0.12.0-7.0.1.1_6.27__g3b1768f.ari 24) cmake/3.14.4

The following slurm job file can be used to run the tests:

#!/bin/bash
#SBATCH --qos=debug
#SBATCH --time=00:10:00
#SBATCH --nodes=1
#SBATCH --tasks-per-node=32
#SBATCH --constraint=haswell
echo --- Start `date`
echo --- Working directory: `pwd`
ctest -VV -R deterministic
echo --- End `date`

3.7.8 Installing on NERSC Cori, Xeon Phi KNL partition, Cray XC40

Cori is a Cray XC40 that includes Intel Xeon Phi Knight’s Landing (KNL) nodes. The following build
recipe ensures that the code generation is appropriate for the KNL nodes. The source is assumed to be in
$HOME/qmc/git_QMCPACK/qmcpack as per the Haswell example.

export CRAYPE_LINK_TYPE=dynamic
module swap craype-haswell craype-mic-knl # Only difference between Haswell and KNL
→˓recipes
module unload cray-libsci
module load boost/1.70.0
module load cray-hdf5-parallel
module load cmake/3.14.4
module load gcc/8.3.0 # Make C++ 14 standard library available to the Intel compiler
cd $SCRATCH
mkdir build_cori_knl
cd build_cori_knl
cmake -DQMC_SYMLINK_TEST_FILES=0 -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment $HOME/qmc/
→˓git_QMCPACK/qmcpack/
nice make -j 8
ls -l bin/qmcpack

When the preceding was tested on June 15, 2020, the following module and software versions were present:
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build_cori_knl> module list
Currently Loaded Modulefiles:
1) modules/3.2.11.4 13) xpmem/2.2.20-7.0.1.1_4.8__

→˓g0475745.ari
2) nsg/1.2.0 14) job/2.2.4-7.0.1.1_3.34__

→˓g36b56f4.ari
3) altd/2.0 15) dvs/2.12_2.2.156-7.0.1.1_8.

→˓6__g5aab709e
4) darshan/3.1.7 16) alps/6.6.57-7.0.1.1_5.10__

→˓g1b735148.ari
5) intel/19.0.3.199 17) rca/2.2.20-7.0.1.1_4.42__

→˓g8e3fb5b.ari
6) craype-network-aries 18) atp/2.1.3
7) craype/2.6.2 19) PrgEnv-intel/6.0.5
8) udreg/2.3.2-7.0.1.1_3.29__g8175d3d.ari 20) craype-mic-knl
9) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari 21) cray-mpich/7.7.10

10) pmi/5.0.14 22) craype-hugepages2M
11) dmapp/7.1.1-7.0.1.1_4.43__g38cf134.ari 23) gcc/8.3.0
12) gni-headers/5.0.12.0-7.0.1.1_6.27__g3b1768f.ari 24) cmake/3.14.4

3.7.9 Installing on systems with ARMv8-based processors

The following build recipe was verified using the ‘Arm Compiler for HPC’ on the ANL JLSE Comanche system with
Cavium ThunderX2 processors on November 6, 2018.

# load armclang compiler
module load Generic-AArch64/RHEL/7/arm-hpc-compiler/18.4
# load Arm performance libraries
module load ThunderX2CN99/RHEL/7/arm-hpc-compiler-18.4/armpl/18.4.0
# define path to pre-installed packages
export HDF5_ROOT=</path/to/hdf5/install/>
export BOOST_ROOT=</path/to/boost/install> # header-only, no need to build

Then using the following command:

mkdir build_armclang
cd build_armclang
cmake -DCMAKE_C_COMPILER=armclang -DCMAKE_CXX_COMPILER=armclang++ -DQMC_MPI=0 \

-DLAPACK_LIBRARIES="-L$ARMPL_DIR/lib -larmpl_mp" \
-DFFTW_INCLUDE_DIR="$ARMPL_DIR/include" \
-DFFTW_LIBRARIES="$ARMPL_DIR/lib/libarmpl_mp.a" \
..

make -j 56

Note that armclang is recognized as an ‘unknown’ compiler by CMake v3.13* and below. In this case, we need to
force it as clang to apply necessary flags. To do so, pass the following additionals option to CMake:

-DCMAKE_C_COMPILER_ID=Clang -DCMAKE_CXX_COMPILER_ID=Clang \
-DCMAKE_CXX_COMPILER_VERSION=5.0 -DCMAKE_CXX_STANDARD_COMPUTED_DEFAULT=98 \
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3.7.10 Installing on Windows

Install the Windows Subsystem for Linux and Bash on Windows. Open a bash shell and follow the install directions
for Ubuntu in Installing on Ubuntu Linux or other apt-get–based distributions.

3.8 Installing via Spack

Spack is a package manager for scientific software. One of the primary goals of Spack is to reduce the barrier
for users to install scientific software. Spack is intended to work on everything from laptop computers to high-end
supercomputers. More information about Spack can be found at https://spack.readthedocs.io/en/latest. The major
advantage of installation with Spack is that all dependencies are automatically built, potentially including all the
compilers and libraries, and different versions of QMCPACK can easily coexist with each other. The QMCPACK
Spack package also knows how to automatically build and patch QE. In principle, QMCPACK can be installed with a
single Spack command.

3.8.1 Known limitations

The QMCPACK Spack package inherits the limitations of the underlying Spack infrastructure and its dependencies.
The main limitation is that installation can fail when building a dependency such as HDF5, MPICH, etc. For spack
install qmcpack to succeed, it is very important to leverage preinstalled packages on your computer or su-
percomputer. The other frequently encountered challenge is that the compiler configuration is nonintuitive. This is
especially the case with the Intel compiler. If you encounter any difficulties, we recommend testing the Spack compiler
configuration on a simpler package, e.g. HDF5.

Here are some additional limitations that new users should be aware of:

• CUDA support in Spack still has some limitations. It will not catch the most recent compiler-CUDA conflicts.

• The Intel compiler must find a recent and compatible GCC compiler in its path or one must be explicitly set
with the -gcc-name and -gxx-name flags in your compilers.yaml.

• Cross-compilation is non-intuitive. If the host OS and target OS are the same, but only the processors differ,
you will just need to add the target=<target CPU>. However, if the host OS is different from the target
OS and you will need to add os=<target OS>. If both the OS and CPU differ between host and target, you
will need to set the arch=<platform string>. For more information, see: https://spack.readthedocs.io/
en/latest/basic_usage.html?highlight=cross%20compilation#architecture-specifiers

3.8.2 Setting up the Spack environment

Begin by cloning Spack from GitHub and configuring your shell as described at https://spack.readthedocs.io/en/latest/
getting_started.html.

The goal of the next several steps is to set up the Spack environment for building. First, we highly recommend
limiting the number of build jobs to a reasonable value for your machine. This can be accomplished by modifying
your ~/.spack/config.yaml file as follows:

config:
build_jobs: 16

Make sure any existing compilers are properly detected. For many architectures, compilers are properly detected with
no additional effort.
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your-laptop> spack compilers
==> Available compilers
-- gcc sierra-x86_64 --------------------------------------------
gcc@7.2.0 gcc@6.4.0 gcc@5.5.0 gcc@4.9.4 gcc@4.8.5 gcc@4.7.4 gcc@4.6.4

However, if your compiler is not automatically detected, it is straightforward to add one:

your-laptop> spack compiler add <path-to-compiler>

The Intel (“classic”) compiler and other commercial compilers may require extra environment variables to work prop-
erly. If you have an module environment set-up by your system administrators, it is recommended that you set the
module name in ~/.spack/linux/compilers.yaml. Here is an example for the Intel compiler:

- compiler:
environment:{}
extra_rpaths: []
flags: {}
modules:
- intel/18.0.3
operating_system: ubuntu14.04
paths:
cc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/icc
cxx: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/icpc
f77: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/ifort
fc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/ifort
spec: intel@18.0.3
target: x86_64

If a module is not available, you will have to set-up the environment variables manually:

- compiler:
environment:
set:

INTEL_LICENSE_FILE: server@national-lab.doe.gov
extra_rpaths:
['/soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/compiler/

→˓lib/intel64',
'/soft/apps/packages/gcc/gcc-6.2.0/lib64']
flags:
cflags: -gcc-name=/soft/apps/packages/gcc/gcc-6.2.0/bin/gcc
fflags: -gcc-name=/soft/apps/packages/gcc/gcc-6.2.0/bin/gcc
cxxflags: -gxx-name=/soft/apps/packages/gcc/gcc-6.2.0/bin/g++

modules: []
operating_system: ubuntu14.04
paths:
cc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/icc
cxx: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/icpc
f77: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/ifort
fc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/linux/bin/

→˓intel64/ifort

(continues on next page)
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(continued from previous page)

spec: intel@18.0.3
target: x86_64

This last step is the most troublesome. Pre-installed packages are not automatically detected. If vendor optimized
libraries are already installed, you will need to manually add them to your ~/.spack/packages.yaml. For
example, this works on Mac OS X for the Intel MKL package.

your-laptop> cat \~/.spack/packages.yaml
packages:

intel-mkl:
paths:

intel-mkl@2018.0.128: /opt/intel/compilers_and_libraries_2018.0.104/mac/mkl
buildable: False

Some trial-and-error might be involved to set the directories correctly. If you do not include enough of the tree path,
Spack will not be able to register the package in its database. More information about system packages can be found
at http://spack.readthedocs.io/en/latest/getting_started.html#system-packages.

Beginning with QMCPACK v3.9.0, Python 3.x is required. However, installing Python with a compiler besides GCC
is tricky. We recommend leveraging your local Python installation by adding an entry in ~/.spack/packages.
yaml:

packages:
python:

modules:
python@3.7.4: anaconda3/2019.10

Or if a module is not available

packages:
python:

paths:
python@3.7.4: /nfs/gce/software/custom/linux-ubuntu18.04-x86_64/anaconda3/

→˓2019.10/bin/python
buildable: False

3.8.3 Building QMCPACK

The QMCPACK Spack package has a number of variants to support different compile time options and different
versions of the application. A full list can be displayed by typing:

your laptop> spack info qmcpack
CMakePackage: qmcpack

Description:
QMCPACK, is a modern high-performance open-source Quantum Monte Carlo
(QMC) simulation code.

Homepage: http://www.qmcpack.org/

Tags:
ecp ecp-apps

Preferred version:

(continues on next page)
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3.11.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.11.0

Safe versions:
develop [git] https://github.com/QMCPACK/qmcpack.git
3.11.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.11.0
3.10.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.10.0
3.9.2 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.9.2
3.9.1 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.9.1
3.9.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.9.0
3.8.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.8.0
3.7.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.7.0
3.6.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.6.0
3.5.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.5.0
3.4.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.4.0
3.3.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.3.0
3.2.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.2.0
3.1.1 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.1.1
3.1.0 [git] https://github.com/QMCPACK/qmcpack.git at tag v3.1.0

Variants:
Name [Default] Allowed values Description
==================== ==================== =============================

afqmc [off] on, off Install with AFQMC support.
NOTE that if used in
combination with CUDA, only
AFQMC will have CUDA.

build_type [Release] Debug, Release, The build type to build
RelWithDebInfo

complex [off] on, off Build the complex (general
twist/k-point) version

cuda [off] on, off Build with CUDA
cuda_arch [none] none, 53, 20, 62, CUDA architecture

60, 61, 50, 75, 70,
72, 32, 52, 30, 35

da [off] on, off Install with support for basic
data analysis tools

gui [off] on, off Install with Matplotlib (long
installation time)

mixed [off] on, off Build the mixed precision
(mixture of single and double
precision) version for gpu and
cpu

mpi [on] on, off Build with MPI support
phdf5 [on] on, off Build with parallel collective

I/O
ppconvert [off] on, off Install with pseudopotential

converter.
qe [on] on, off Install with patched Quantum

Espresso 6.4.0
timers [off] on, off Build with support for timers

Installation Phases:
cmake build install

Build Dependencies:
blas boost cmake cuda fftw-api hdf5 lapack libxml2 mpi python

(continues on next page)
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Link Dependencies:
blas boost cuda fftw-api hdf5 lapack libxml2 mpi python

Run Dependencies:
py-matplotlib py-numpy quantum-espresso

Virtual Packages:
None

For example, to install the complex-valued version of QMCPACK in mixed-precision use:

your-laptop> spack install qmcpack+mixed+complex%gcc@7.2.0 ^intel-mkl

where

%gcc@7.2.0

specifies the compiler version to be used and

^intel-mkl

specifies that the Intel MKL should be used as the BLAS and LAPACK provider. The ^ symbol indicates the the
package to the right of the symbol should be used to fulfill the dependency needed by the installation.

It is also possible to run the QMCPACK regression tests as part of the installation process, for example:

your-laptop> spack install --test=root qmcpack+mixed+complex%gcc@7.2.0 ^intel-mkl

will run the unit and deterministic tests. The current behavior of the QMCPACK Spack package is to complete the
install as long as all the unit tests pass. If the deterministic tests fail, a warning is issued at the command prompt.

For CUDA, you will need to specify and extra cuda_arch parameter otherwise, it will default to cuda_arch=61.

your-laptop> spack install qmcpack+cuda%intel@18.0.3 cuda_arch=61 ^intel-mkl

Due to limitations in the Spack CUDA package, if your compiler and CUDA combination conflict, you will need to
set a specific version of CUDA that is compatible with your compiler on the command line. For example,

your-laptop> spack install qmcpack+cuda%intel@18.0.3 cuda_arch=61 ^cuda@10.0.130 ^
→˓intel-mkl

3.8.4 Loading QMCPACK into your environment

If you already have modules set-up in your environment, the Spack modules will be detected automatically. Otherwise,
Spack will not automatically find the additional packages. A few additional steps are needed. Please see the main
Spack documentation for additional details: https://spack.readthedocs.io/en/latest/module_file_support.html.
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3.8.5 Dependencies that need to be compiled with GCC

Failing to compile a QMCPACK dependency is the most common reason that a Spack build fails. We recommend that
you compile the following dependencies with GCC:

For MPI, using MPICH as the provider, try:

your-laptop> spack install qmcpack%intel@18.0.3 ^boost%gcc ^pkgconf%gcc ^perl%gcc ^
→˓libpciaccess%gcc ^cmake%gcc ^findutils%gcc ^m4%gcc

For serial,

your-laptop> spack install qmcpack~mpi%intel@18.0.3 ^boost%gcc ^pkgconf%gcc ^perl%gcc
→˓^cmake%gcc

3.8.6 Installing QMCPACK with Spack on Linux

Spack works robustly on the standard flavors of Linux (Ubuntu, CentOS, Ubuntu, etc.) using GCC, Clang, NVHPC,
and Intel compilers.

3.8.7 Installing QMCPACK with Spack on Mac OS X

Spack works on Mac OS X but requires installation of a few packages using Homebrew. You will need to install at
minimum the GCC compilers, CMake, and pkg-config. The Intel compiler for Mac on OS X is not well supported by
Spack packages and will most likely lead to a compile time failure in one of QMCPACK’s dependencies.

3.8.8 Installing QMCPACK with Spack on Cray Supercomputers

Spack now works with the Cray environment. To leverage the installed Cray environment, both a compilers.
yaml and packages.yaml file should be provided by the supercomputing facility. Additionally, Spack packages
compiled by the facility can be reused by chaining Spack installations https://spack.readthedocs.io/en/latest/chain.
html.

3.8.9 Installing Quantum-ESPRESSO with Spack

More information about the QE Spack package can be obtained directly from Spack

spack info quantum-espresso

There are many variants available for QE, most, but not all, are compatible with QMCPACK patch. Here is a mini-
malistic example of the Spack installation command that needs to be invoked:

your-laptop> spack install quantum-espresso+qmcpack~patch@6.7%gcc hdf5=parallel

The ~ decorator means deactivate the patch variant. This refers not to the QMCPACK patch, but to the upstream
patching that is present for some versions of QE. These upstream QE patches fix specific critical autoconf/configure
fixes. Unfortunately, some of these QE upstream patches are incompatible with the QMCPACK patch. Note that the
Spack package will prevent you from installing incompatible variants and will emit an error message explaining the
nature of the incompatibility.

A serial (no MPI) installation is also available, but the Spack installation command is non-intuitive for Spack new-
comers:
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your-laptop> spack install quantum-espresso+qmcpack~patch~mpi~scalapack@6.7%gcc
→˓hdf5=serial

QE Spack package is well tested with GCC and Intel compilers, but will not work with the NVHPC compiler or in a
cross-compile environment.

3.8.10 Reporting Bugs

Bugs with the QMCPACK Spack package should be filed at the main GitHub Spack repo https://github.com/spack/
spack/issues.

In the GitHub issue, include @naromero77 to get the attention of our developer.

3.9 Testing and validation of QMCPACK

We strongly encourage running the included tests each time QMCPACK is built. A range of unit and integration
tests ensure that the code behaves as expected and that results are consistent with known-good mean-field, quantum
chemical, and historical QMC results.

The tests include the following:

• Unit tests: to check fundamental behavior. These should always pass.

• Stochastic integration tests: to check computed results from the Monte Carlo methods. These might fail statisti-
cally, but rarely because of the use of three sigma level statistics. These tests are further split into “short” tests,
which have just sufficient length to have valid statistics, and “long” tests, to check behavior to higher statistical
accuracy.

• Converter tests: to check conversion of trial wavefunctions from codes such as QE and GAMESS to QMC-
PACK’s formats. These should always pass.

• Workflow tests: in the case of QE, we test the entire cycle of DFT calculation, trial wavefunction conversion,
and a subsequent VMC run.

• Performance: to help performance monitoring. Only the timing of these runs is relevant.

The test types are differentiated by prefixes in their names, for example,
short-LiH_dimer_ae_vmc_hf_noj_16-1 indicates a short VMC test for the LiH dime.

QMCPACK also includes tests for developmental features and features that are unsupported on certain platforms. To
indicate these, tests that are unstable are labeled with the CTest label “unstable.” For example, they are unreliable,
unsupported, or known to fail from partial implementation or bugs.

When installing QMCPACK you should run at least the unit tests:

ctest -R unit

These tests take only a few seconds to run. All should pass. A failure here could indicate a major problem with the
installation.

A wider range of deterministic integration tests are being developed. The goal is to test much more of QMCPACK
than the unit tests do and to do so in a manner that is reproducible across platforms. All of these should eventually
pass 100% reliably and quickly. At present, some fail on some platforms and for certain build types.

ctest -R deterministic -LE unstable
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If time allows, the “short” stochastic tests should also be run. The short tests take a few minutes each on a 16-core
machine—about 1 hour total depending on the platform. You can run these tests using the following command in the
build directory:

ctest -R short -LE unstable # Run the tests with "short" in their name.
# Exclude any known unstable tests.

The output should be similar to the following:

Test project build_gcc
Start 1: short-LiH_dimer_ae-vmc_hf_noj-16-1

1/44 Test #1: short-LiH_dimer_ae-vmc_hf_noj-16-1 .............. Passed 11.20 sec
Start 2: short-LiH_dimer_ae-vmc_hf_noj-16-1-kinetic

2/44 Test #2: short-LiH_dimer_ae-vmc_hf_noj-16-1-kinetic ...... Passed 0.13 sec
..
42/44 Test #42: short-monoO_1x1x1_pp-vmc_sdj-1-16 ............... Passed 10.02 sec

Start 43: short-monoO_1x1x1_pp-vmc_sdj-1-16-totenergy
43/44 Test #43: short-monoO_1x1x1_pp-vmc_sdj-1-16-totenergy ..... Passed 0.08 sec

Start 44: short-monoO_1x1x1_pp-vmc_sdj-1-16-samples
44/44 Test #44: short-monoO_1x1x1_pp-vmc_sdj-1-16-samples ....... Passed 0.08 sec

100% tests passed, 0 tests failed out of 44

Total Test time (real) = 167.14 sec

Note that the number of tests run varies between the standard, complex, and GPU compilations. These tests should
pass with three sigma reliability. That is, they should nearly always pass, and when rerunning a failed test it should
usually pass. Overly frequent failures suggest a problem that should be addressed before any scientific production.

The full set of tests consist of significantly longer versions of the short tests, as well as tests of the conversion utilities.
The runs require several hours each for improved statistics and a much more stringent test of the code. To run all the
tests, simply run CTest in the build directory:

ctest -LE unstable # Run all the stable tests. This will take several hours.

You can also run verbose tests, which direct the QMCPACK output to the standard output:

ctest -V -R short # Verbose short tests

The test system includes specific tests for the complex version of the code.

The input data files for the tests are located in the tests directory. The system-level test directories are grouped into
heg, molecules, and solids, with particular physical systems under each (for example molecules/H4_ae1

). Under each physical system directory there might be tests for multiple QMC methods or parameter variations. The
numerical comparisons and test definitions are in the CMakeLists.txt file in each physical system directory.

If all the QMC tests fail it is likely that the appropriate mpiexec (or mpirun, aprun, srun, jsrun) is not being called or
found. If the QMC runs appear to work but all the other tests fail, it is possible that Python is not working on your
system. We suggest checking some of the test console output in build/Testing/Temporary/LastTest.log
or the output files under build/tests/.

Note that because most of the tests are very small, consisting of only a few electrons, the performance is not repre-
sentative of larger calculations. For example, although the calculations might fit in cache, there will be essentially no
vectorization because of the small electron counts. These tests should therefore not be used for any benchmarking
or performance analysis. Example runs that can be used for testing performance are described in Performance tests.

1 The suffix “ae” is short for “all-electron,” and “pp” is short for “pseudopotential.”
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3.9.1 Deterministic and unit tests

QMCPACK has a set of deterministic tests, predominantly unit tests. All of these tests can be run with the following
command (in the build directory):

ctest -R deterministic -LE unstable

These tests should always pass. Failure could indicate a major problem with the compiler, compiler settings, or a
linked library that would give incorrect results.

The output should look similar to the following:

Test project qmcpack/build
Start 1: unit_test_numerics

1/11 Test #1: unit_test_numerics ............... Passed 0.06 sec
Start 2: unit_test_utilities

2/11 Test #2: unit_test_utilities .............. Passed 0.02 sec
Start 3: unit_test_einspline

...
10/11 Test #10: unit_test_hamiltonian ............ Passed 1.88 sec

Start 11: unit_test_drivers
11/11 Test #11: unit_test_drivers ................ Passed 0.01 sec

100% tests passed, 0 tests failed out of 11

Label Time Summary:
unit = 2.20 sec

Total Test time (real) = 2.31 sec

Individual unit test executables can be found in build/tests/bin. The source for the unit tests is located in the
tests directory under each directory in src (e.g. src/QMCWavefunctions/tests).

See Unit Testing for more details about unit tests.

3.9.2 Integration tests with Quantum ESPRESSO

As described in Installing and patching Quantum ESPRESSO, it is possible to test entire workflows of trial wavefunc-
tion generation, conversion, and eventual QMC calculation. A patched QE must be installed so that the pw2qmcpack
converter is available.

By adding -D QE_BIN=your_QE_binary_path in the CMake command line when building your QMCPACK,
tests named with the “qe-” prefix will be included in the test set of your build. If CMake finds pw2qmcpack.x and pw.x
in the same location on the PATH, these tests will also be activated. You can test the whole pw > pw2qmcpack >
qmcpack workflow by

ctest -R qe

This provides a very solid test of the entire QMC toolchain for plane wave–generated wavefunctions.
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3.9.3 Performance tests

Performance tests representative of real research runs are included in the tests/performance directory. They can be used
for benchmarking, comparing machine performance, or assessing optimizations. This is in contrast to the majority of
the conventional integration tests in which the particle counts are too small to be representative. Care is still needed to
remove initialization, I/O, and compute a representative performance measure.

The CTest integration is sufficient to run the benchmarks and measure relative performance from version to version
of QMCPACK and to assess proposed code changes. Performance tests are prefixed with “performance.” To obtain
the highest performance on a particular platform, you must run the benchmarks in a standalone manner and tune
thread counts, placement, walker count (etc.). This is essential to fairly compare different machines. Check with the
developers if you are unsure of what is a fair change.

For the largest problem sizes, the initialization of spline orbitals might take a large portion of overall runtime. When
QMCPACK is run at scale, the initialization is fast because it is fully parallelized. However, the performance tests
usually run on a single node. Consider running QMCPACK once with save_coefs="yes" XML input tag added
to the line of ‘determinantset’ to save the converted spline coefficients to the disk and load them for later runs in the
same folder. See 3D B-splines orbitals for more information.

The delayed update algorithm in Single determinant wavefunctions significantly changes the performance character-
istics of QMCPACK. A parameter scan of the maximal number of delays specific to every architecture and problem
size is required to achieve the best performance.

NiO performance tests

Follow the instructions in tests/performance/NiO/README to enable and run the NiO tests.

The NiO tests are for bulk supercells of varying size. The QMC runs consist of short blocks of (1) VMC without
drift (2) VMC with drift term included, and (3) DMC with constant population. The tests use spline wavefunc-
tions that must be downloaded as described in the README file because of their large size. You will need to set
-DQMC_DATA=YOUR_DATA_FOLDER when running CMake as described in the README file.

Two sets of wavefunction are tested: spline orbitals with one- and two-body Jastrow functions and a more complex
form with an additional three-body Jastrow function. The Jastrows are the same for each run and are not reoptimized,
as might be done for research purposes. Runs in the hundreds of electrons up to low thousands of electrons are
representative of research runs performed in 2017. The largest runs target future machines and require very large
memory.

Table 3.1: System sizes and names for NiO performance tests. GPU
performance tests are named similarly but have different walker counts.

Performance test name Historical name Atoms Electrons Electrons/spin
performance-NiO-cpu-a32-e384 S8 32 384 192
performance-NiO-cpu-a64-e768 S16 64 768 384
performance-NiO-cpu-a128-e1536 S32 128 1536 768
performance-NiO-cpu-a256-e3072 S64 256 3072 1536
performance-NiO-cpu-a512-e6144 S128 512 6144 3072
performance-NiO-cpu-a1024-e12288 S256 1024 12288 6144
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3.9.4 Troubleshooting tests

CTest reports briefly pass or fail of tests in printout and also collects all the standard outputs to help investigating how
tests fail. If the CTest execution is completed, look at Testing/Temporary/LastTest.log. If you manually
stop the testing (ctrl+c), look at Testing/Temporary/LastTest.log.tmp. You can locate the failing tests by
searching for the key word “Fail.”

3.9.5 Slow testing with OpenMPI

OpenMPI has a default binding policy that makes all the threads run on a single core during testing when there are two
or fewer MPI ranks. This significantly increases testing time. If you are authorized to change the default setting, you
can just add “hwloc_base_binding_policy=none” in /etc/openmpi/openmpi-mca-params.conf.

3.10 Automated testing of QMCPACK

The QMCPACK developers run automatic tests of QMCPACK on several different computer systems, many on a con-
tinuous basis. See the reports at https://cdash.qmcpack.org/CDash/index.php?project=QMCPACK. The combinations
that are currently tested can be seen on CDash and are also listed in https://github.com/QMCPACK/qmcpack/blob/
develop/README.md. They include GCC, Clang, Intel, and PGI compilers in combinations with various library
versions and different MPI implementations. NVIDIA GPUs are also tested.

3.11 Building ppconvert, a pseudopotential format converter

QMCPACK includes a utility—ppconvert—to convert between different pseudopotential formats. Examples include
effective core potential formats (in Gaussians), the UPF format used by QE, and the XML format used by QMCPACK
itself. The utility also enables the atomic orbitals to be recomputed via a numerical density functional calculation if
they need to be reconstructed for use in an electronic structure calculation. Use of ppconvert is an expert feature and
discouraged for casual use: a poor choice of orbitals for the creation of projectors in UPF can introduce severe errors
and inaccuracies.

3.12 Installing and patching Quantum ESPRESSO

For trial wavefunctions obtained in a plane-wave basis, we mainly support QE. Note that ABINIT and QBox were
supported historically and could be reactivated.

QE stores wavefunctions in a nonstandard internal “save” format. To convert these to a conventional HDF5 format file
we have developed a converter—pw2qmcpack—which is an add-on to the QE distribution.

To simplify the process of patching QE we have developed a script that will automatically download and patch the
source code. The patches are specific to each version. For example, to download and patch QE v6.3:

cd external_codes/quantum_espresso
./download_and_patch_qe6.3.sh

After running the patch, you must configure QE with the HDF5 capability enabled in either way:

• If your system already has HDF5 installed with Fortran, use the -{}-with-hdf5 configuration option.

cd qe-6.3
./configure --with-hdf5=/opt/local # Specify HDF5 base directory

3.10. Automated testing of QMCPACK 39

https://cdash.qmcpack.org/CDash/index.php?project=QMCPACK
https://github.com/QMCPACK/qmcpack/blob/develop/README.md
https://github.com/QMCPACK/qmcpack/blob/develop/README.md


QMCPACK Manual

Fig. 3.1: Example test results for QMCPACK showing data for a workstation (Intel, GCC, both CPU and GPU builds)
and for two ORNL supercomputers. In this example, four errors were found. This dashboard is accessible at https:
//cdash.qmcpack.org
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Check the end of the configure output if HDF5 libraries are found properly. If not, either install a complete
library or use the other scheme. If using a parallel HDF5 library, be sure to use the same MPI with QE as
used to build the parallel HDF5 library.

Currently, HDF5 support in QE itself is preliminary. To enable use of pw2qmcpack but use the old non-
HDF5 I/O within QE, replace -D__HDF5 with {-D__HDF5_C} in make.inc.

• If your system has HDF5 with C only, manually edit make.inc by adding -D__HDF5_C and
-DH5_USE_16_API in DFLAGS and provide include and library path in IFLAGS and HDF5_LIB.

The complete process is described in external_codes/quantum_espresso/README.

The tests involving pw.x and pw2qmcpack.x have been integrated into the test suite of QMCPACK. By adding -D
QE_BIN=your_QE_binary_path in the CMake command line when building your QMCPACK, tests named
with the “qe-” prefix will be included in the test set of your build. You can test the whole pw > pw2qmcpack >
qmcpack workflow by

ctest -R qe

See Integration tests with Quantum ESPRESSO and the testing section for more details.

3.13 How to build the fastest executable version of QMCPACK

To build the fastest version of QMCPACK we recommend the following:

• Use the latest C++ compilers available for your system. Substantial gains have been made optimizing C++ in
recent years.

• Use a vendor-optimized BLAS library such as Intel MKL and AMD AOCL. Although QMC does not make
extensive use of linear algebra, it is used in the VMC wavefunction optimizer to apply the orbital coefficients in
local basis calculations and in the Slater determinant update.

• Use a vector math library such as Intel VML. For periodic calculations, the calculation of the structure factor
and Ewald potential benefit from vectorized evaluation of sin and cos. Currently we only autodetect Intel VML,
as provided with MKL, but support for MASSV and AMD LibM is included via #defines. See, for example,
src/Numerics/e2iphi.h. For large supercells, this optimization can gain 10% in performance.

Note that greater speedups of QMC calculations can usually be obtained by carefully choosing the required statistics
for each investigation. That is, do not compute smaller error bars than necessary.

3.14 Troubleshooting the installation

Some tips to help troubleshoot installations of QMCPACK:

• First, build QMCPACK on a workstation you control or on any system with a simple and up-to-date set of
development tools. You can compare the results of CMake and QMCPACK on this system with any more
difficult systems you encounter.

• Use up-to-date development software, particularly a recent CMake.

• Verify that the compilers and libraries you expect are being configured. It is common to have multiple versions
installed. The configure system will stop at the first version it finds, which might not be the most recent. If this
occurs, directly specify the appropriate directories and files (Configuration Options). For example,

cmake -DCMAKE_C_COMPILER=/full/path/to/mpicc -DCMAKE_CXX_COMPILER=/full/path/to/
→˓mpicxx ..
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• To monitor the compiler and linker settings, use a verbose build, make VERBOSE=1. If an individual source
file fails to compile you can experiment by hand using the output of the verbose build to reconstruct the full
compilation line.

If you still have problems please post to the QMCPACK Google group with full details, or contact a developer.
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FOUR

RUNNING QMCPACK

QMCPACK requires at least one xml input file, and is invoked via:

qmcpack [command line options] <XML input file(s)>

4.1 Command line options

QMCPACK offers several command line options that affect how calculations are performed. If the flag is absent, then
the corresponding option is disabled:

• --dryrun Validate the input file without performing the simulation. This is a good way to ensure that QMC-
PACK will do what you think it will.

• --enable-timers=none|coarse|medium|fine Control the timer granularity when the build option
ENABLE_TIMERS is enabled.

• help Print version information as well as a list of optional command-line arguments.

• noprint Do not print extra information on Jastrow or pseudopotential. If this flag is not present, QMCPACK
will create several .dat files that contain information about pseudopotentials (one file per PP) and Jastrow
factors (one per Jastrow factor). These file might be useful for visual inspection of the Jastrow, for example.

• --verbosity=low|high|debug Control the output verbosity. The default low verbosity is concise and,
for example, does not include all electron or atomic positions for large systems to reduce output size. Use “high”
to see this information and more details of initialization, allocations, QMC method settings, etc.

• version Print version information and optional arguments. Same as help.

4.2 Input files

The input is one or more XML file(s), documented in Input file overview.
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4.3 Output files

QMCPACK generates multiple files documented in Output Overview.

4.4 Stopping a running simulation

As detailed in Input file overview, QMCPACK will cleanly stop execution at the end of the current block if it finds a
file named project_id.STOP, where project_id is the name of the project given in the input XML. You can
also set the max_seconds parameter to establish an overall time limit.

4.5 Running in parallel with MPI

QMCPACK is fully parallelized with MPI. When performing an ensemble job, all the MPI ranks are first equally
divided into groups that perform individual QMC calculations. Within one calculation, all the walkers are fully dis-
tributed across all the MPI ranks in the group. Since MPI requires distributed memory, there must be at least one MPI
per node. To maximize the efficiency, more facts should be taken into account. When using MPI+threads on compute
nodes with more than one NUMA domain (e.g., AMD Interlagos CPU on Titan or a node with multiple CPU sockets),
it is recommended to place as many MPI ranks as the number of NUMA domains if the memory is sufficient (e.g., one
MPI task per socket). On clusters with more than one GPU per node (NVIDIA Tesla K80), it is necessary to use the
same number of MPI ranks as the number of GPUs per node to let each MPI rank take one GPU.

4.6 Using OpenMP threads

Modern processors integrate multiple identical cores even with hardware threads on a single die to increase the total
performance and maintain a reasonable power draw. QMCPACK takes advantage of this compute capability by using
threads and the OpenMP programming model as well as threaded linear algebra libraries. By default, QMCPACK
is always built with OpenMP enabled. When launching calculations, users should instruct QMCPACK to create the
right number of threads per MPI rank by specifying environment variable OMP_NUM_THREADS. Assuming one
MPI rank per socket, the number of threads should typically be the number of cores on that socket. Even in the GPU-
accelerated version, using threads significantly reduces the time spent on the calculations performed by the CPU.

4.6.1 Nested OpenMP threads

Nested threading is an advanced feature requiring experienced users to finely tune runtime parameters to reach the best
performance.

For small-to-medium problem sizes, using one thread per walker or for multiple walkers is most efficient. This is the
default in QMCPACK and achieves the shortest time to solution.

For large problems of at least 1,000 electrons, use of nested OpenMP threading can be enabled to reduce the time
to solution further, although at some loss of efficiency. In this scheme multiple threads are used in the computations
of each walker. This capability is implemented for some of the key computational kernels: the 3D spline orbital
evaluation, certain portions of the distance tables, and implicitly the BLAS calls in the determinant update. Use of the
batched nonlocal pseudopotential evaluation is also recommended.

Nested threading is enabled by setting OMP_NUM_THREADS=AA,BB, OMP_MAX_ACTIVE_LEVELS=2 and
OMP_NESTED=TRUE where the additional BB is the number of second-level threads. Choosing the thread affin-
ity is critical to the performance. QMCPACK provides a tool qmc-check-affinity (source file src/QMCTools/check-
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affinity.cpp for details), which might help users investigate the affinity. Knowledge of how the operating system logical
CPU cores (/prco/cpuinfo) are bound to the hardware is also needed.

For example, on Blue Gene/Q with a Clang compiler, the best way to fully use the 16 cores each with 4 hardware
threads is

OMP_NESTED=TRUE
OMP_NUM_THREADS=16,4
MAX_ACTIVE_LEVELS=2
OMP_PLACES=threads
OMP_PROC_BIND=spread,close

On Intel Xeon Phi KNL with an Intel compiler, to use 64 cores without using hardware threads:

OMP_NESTED=TRUE
OMP_WAIT_POLICY=ACTIVE
OMP_NUM_THREADS=16,4
MAX_ACTIVE_LEVELS=2
OMP_PLACES=cores
OMP_PROC_BIND=spread,close
KMP_HOT_TEAMS_MODE=1
KMP_HOT_TEAMS_MAX_LEVEL=2

Most multithreaded BLAS/LAPACK libraries do not spawn threads by default when being called from an OpenMP
parallel region. See the explanation in Serial or multithreaded library. This results in the use of only a single thread in
each second-level thread team for BLAS/LAPACK operations. Some vendor libraries like MKL support using multiple
threads when being called from an OpenMP parallel region. One way to enable this feature is using environment
variables to override the default behavior. However, this forces all the calls to the library to use the same number of
threads. As a result, small function calls are penalized with heavy overhead and heavy function calls are slow for not
being able to use more threads. Instead, QMCPACK uses the library APIs to turn on nested threading only at selected
performance critical calls. In the case of using a serial library, QMCPACK implements nested threading to distribute
the workload wherever necessary. Users do not need to control the threading behavior of the library.

4.6.2 Performance considerations

As walkers are the basic units of workload in QMC algorithms, they are loosely coupled and distributed across all
the threads. For this reason, the best strategy to run QMCPACK efficiently is to feed enough walkers to the available
threads.

In a VMC calculation, the code automatically raises the actual number of walkers per MPI rank to the number of
available threads if the user-specified number of walkers is smaller, see “walkers/mpi=XXX” in the VMC output.

In DMC, for typical small to mid-sized calculations choose the total number of walkers to be a significant multiple of
the total number of threads (MPI tasks * threads per task). This will ensure a good load balance. e.g., for a calculation
on a few nodes with a total 512 threads, using 5120 walkers may keep the load imbalance around 10%. For the very
largest calculations, the target number of walkers should be chosen to be slightly smaller than a multiple of the total
number of available threads across all the MPI ranks. This will reduce occurrences worse-case load imbalance e.g.
where one thread has two walkers while all the others have one.

To achieve better performance, a mixed-precision version (experimental) has been developed in the CPU code. The
mixed-precision CPU code uses a mixed of single precision (SP) and double precision (DP) operations, while the
default code use DP exclusively. This mixed precision version is more aggressive than the GPU CUDA version in
using single precision (SP) operations. The Current implementation uses SP on most calculations, except for matrix
inversions and reductions where double precision is required to retain high accuracy. All the constant spline data in
wavefunction, pseudopotentials, and Coulomb potentials are initialized in double precision and later stored in single
precision. The mixed-precision code is as accurate as the double-precision code up to a certain system size, and
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may have double the throughput. Cross checking and verification of accuracy is always required but is particularly
important above approximately 1,500 electrons.

4.6.3 Memory considerations

When using threads, some memory objects are shared by all the threads. Usually these memory objects are read only
when the walkers are evolving, for instance the ionic distance table and wavefunction coefficients. If a wavefunction
is represented by B-splines, the whole table is shared by all the threads. It usually takes a large chunk of memory
when a large primitive cell was used in the simulation. Its actual size is reported as “MEMORY increase XXX MB
BsplineSetReader” in the output file. See details about how to reduce it in 3D B-splines orbitals.

The other memory objects that are distinct for each walker during random walks need to be associated with individual
walkers and cannot be shared. This part of memory grows linearly as the number of walkers per MPI rank. Those ob-
jects include wavefunction values (Slater determinants) at given electronic configurations and electron-related distance
tables (electron-electron distance table). Those matrices dominate the 𝑁2 scaling of the memory usage per walker.

4.7 Running on GPU machines

The GPU version for the NVIDIA CUDA platform is fully incorporated into the main source code. Commonly used
functionalities for solid-state and molecular systems using B-spline single-particle orbitals are supported. Use of
Gaussian basis sets, three-body Jastrow functions, and many observables are not yet supported. A detailed description
of the GPU implementation can be found in [[EKCS12]].

The current GPU implementation assumes one MPI process per GPU. To use nodes with multiple GPUs, use multiple
MPI processes per node. Vectorization is achieved over walkers, that is, all walkers are propagated in parallel. In
each GPU kernel, loops over electrons, atomic cores, or orbitals are further vectorized to exploit an additional level of
parallelism and to allow coalesced memory access.

4.7.1 Performance considerations

To run with high performance on GPUs it is crucial to perform some benchmarking runs: the optimum configuration is
system size, walker count, and GPU model dependent. The GPU implementation vectorizes operations over multiple
walkers, so generally the more walkers that are placed on a GPU, the higher the performance that will be obtained.
Performance also increases with electron count, up until the memory on the GPU is exhausted. A good strategy is
to perform a short series of VMC runs with walker count increasing in multiples of two. For systems with 100s of
electrons, typically 128–256 walkers per GPU use a sufficient number of GPU threads to operate the GPU efficiently
and to hide memory-access latency. For smaller systems, thousands of walkers might be required. For QMC algorithms
where the number of walkers is fixed such as VMC, choosing a walker count the is a multiple of the number of
streaming multiprocessors can be most efficient. For variable population DMC runs, this exact match is not possible.

To achieve better performance, the current GPU implementation uses single-precision operations for most of the
calculations. Double precision is used in matrix inversions and the Coulomb interaction to retain high accuracy. The
mixed-precision GPU code is as accurate as the double-precision CPU code up to a certain system size. Cross checking
and verification of accuracy are encouraged for systems with more than approximately 1,500 electrons. For typical
calculations on smaller electron counts, the statistical error bars are much larger then the error introduced by mixed
precision.
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4.7.2 Memory considerations

In the GPU implementation, each walker has a buffer in the GPU’s global memory to store temporary data associated
with the wavefunctions. Therefore, the amount of memory available on a GPU limits the number of walkers and
eventually the system size that it can process. Additionally, for calculations using B-splines, this data is stored on the
GPU in a shared read-only buffer. Often the size of the B-spline data limits the calculations that can be run on the
GPU.

If the GPU memory is exhausted, first try reducing the number of walkers per GPU. Coarsening the grids of the
B-splines representation (by decreasing the value of the mesh factor in the input file) can also lower the memory
usage, at the expense (risk) of obtaining inaccurate results. Proceed with caution if this option has to be consid-
ered. It is also possible to distribute the B-spline coefficients table between the host and GPU memory, see option
Spline_Size_Limit_MB in 3D B-splines orbitals.
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FIVE

UNITS USED IN QMCPACK

Internally, QMCPACK uses atomic units throughout. Unless stated, all inputs and outputs are also in atomic units. For
convenience the analysis tools offer conversions to eV, Ry, Angstrom, Bohr, etc.
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CHAPTER

SIX

INPUT FILE OVERVIEW

This chapter introduces XML as it is used in the QMCPACK input file. The focus is on the XML file format itself and
the general structure of the input file rather than an exhaustive discussion of all keywords and structure elements.

QMCPACK uses XML to represent structured data in its input file. Instead of text blocks like

begin project
id = vmc
series = 0

end project

begin vmc
move = pbyp
blocks = 200
steps = 10
timestep = 0.4

end vmc

QMCPACK input looks like

<project id="vmc" series="0">
</project>

<qmc method="vmc" move="pbyp">
<parameter name="blocks" > 200 </parameter>
<parameter name="steps" > 10 </parameter>
<parameter name="timestep"> 0.4 </parameter>

</qmc>

XML elements start with <element_name>, end with </element_name>}, and can be nested within each other
to denote substructure (the trial wavefunction is composed of a Slater determinant and a Jastrow factor, which are each
further composed of ...). id and series are attributes of the <project/> element. XML attributes are generally
used to represent simple values, like names, integers, or real values. Similar functionality is also commonly provided
by <parameter/> elements like those previously shown.

The overall structure of the input file reflects different aspects of the QMC simulation: the simulation cell, particles,
trial wavefunction, Hamiltonian, and QMC run parameters. A condensed version of the actual input file is shown as
follows:

<?xml version="1.0"?>
<simulation>

<project id="vmc" series="0">
...

</project>

(continues on next page)
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(continued from previous page)

<qmcsystem>

<simulationcell>
...

</simulationcell>

<particleset name="e">
...

</particleset>

<particleset name="ion0">
...

</particleset>

<wavefunction name="psi0" ... >
...
<determinantset>

<slaterdeterminant>
..

</slaterdeterminant>
</determinantset>
<jastrow type="One-Body" ... >

...
</jastrow>
<jastrow type="Two-Body" ... >

...
</jastrow>

</wavefunction>

<hamiltonian name="h0" ... >
<pairpot type="coulomb" name="ElecElec" ... />
<pairpot type="coulomb" name="IonIon" ... />
<pairpot type="pseudo" name="PseudoPot" ... >

...
</pairpot>

</hamiltonian>

</qmcsystem>

<qmc method="vmc" move="pbyp">
<parameter name="warmupSteps"> 20 </parameter>
<parameter name="blocks" > 200 </parameter>
<parameter name="steps" > 10 </parameter>
<parameter name="timestep" > 0.4 </parameter>

</qmc>

</simulation>

The omitted portions ... are more fine-grained inputs such as the axes of the simulation cell, the number of up and
down electrons, positions of atomic species, external orbital files, starting Jastrow parameters, and external pseudopo-
tential files.
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6.1 Project

The <project> tag uses the id and series attributes. The value of id is the first part of the prefix for output file
names.

Output file names also contain the series number, starting at the value given by the series tag. After every <qmc>
section, the series value will increment, giving each section a unique prefix.

For the input file shown previously, the output files will start with vmc.s000, for example, vmc.s000.scalar.
dat. If there were another <qmc> section in the input file, the corresponding output files would use the prefix
vmc.s001.

<project> tag accepts additional control parameters <parameters/>. Batched drivers check against
max_seconds and make efforts to stop the execution cleanly at the end of a block before reaching the maximum
time. Classic drivers can also take the now-deprecated maxcpusecs parameter for the same effect in the per driver
XML section.

In addition, a file named id plus .STOP, in this case vmc.STOP, stops QMCPACK execution on the fly cleanly once
being found in the working directory.

6.2 Random number initialization

The random number generator state is initialized from the random element using the seed attribute:

<random seed="1000"/>

If the random element is not present, or the seed value is negative, the seed will be generated from the current time.

To initialize the many independent random number generators (one per thread and MPI process), the seed value is
used (modulo 1024) as a starting index into a list of prime numbers. Entries in this offset list of prime numbers are
then used as the seed for the random generator on each thread and process.

If checkpointing is enabled, the random number state is written to an HDF file at the end of each block (suffix: .
random.h5). This file will be read if the mcwalkerset tag is present to perform a restart. For more information,
see the checkpoint element in the QMC methods Quantum Monte Carlo Methods and Checkpoint and restart files
on checkpoint and restart files.
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SEVEN

SPECIFYING THE SYSTEM TO BE SIMULATED

7.1 Specifying the Simulation Cell

The simulationcell block specifies the geometry of the cell, how the boundary conditions should be handled,
and how ewald summation should be broken up.

simulationcell Element:

Parent elements: qmcsystem
Child elements: None

Attribute:

parameter
name

datatype values default description

lattice 9 floats any
float

Must be spec-
ified

Specification of lattice vectors.

bconds string “p” or
“n”

“n n n “ Boundary conditions for each axis.

vacuum float ≥ 1.0 1.0 Vacuum scale.
LR_dim_cutofffloat float 15 Ewald breakup distance.
LR_tol float float 3e-4 Tolerance in Ha for Ewald ion-ion energy

per atom.

An example of a block is given below:

<simulationcell>
<parameter name="lattice">

3.8 0.0 0.0
0.0 3.8 0.0
0.0 0.0 3.8

</parameter>
<parameter name="bconds">

p p p
</parameter>
<parameter name="LR_dim_cutoff"> 20 </parameter>

</simulationcell>

Here, a cubic cell 3.8 bohr on a side will be used. This simulation will use periodic boundary conditions, and the
maximum 𝑘 vector will be 20/𝑟𝑤𝑖𝑔𝑛𝑒𝑟−𝑠𝑒𝑖𝑡𝑧 of the cell.
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7.1.1 Lattice

The cell is specified using 3 lattice vectors.

7.1.2 Boundary conditions

QMCPACK offers the capability to use a mixture of open and periodic boundary conditions. The parameter expects
a single string of three characters separated by spaces, e.g. “p p p” for purely periodic boundary conditions. These
characters control the behavior of the 𝑥, 𝑦, and 𝑧, axes, respectively. Non periodic directions must be placed after the
periodic ones. Examples of valid include:

“p p p” Periodic boundary conditions. Corresponds to a 3D crystal.

“p p n” Slab geometry. Corresponds to a 2D crystal.

“p n n” Wire geometry. Corresponds to a 1D crystal.

“n n n” Open boundary conditions. Corresponds to an isolated molecule in a vacuum.

7.1.3 Vacuum

The vacuum option allows adding a vacuum region in slab or wire boundary conditions (bconds= p p n or
bconds= p n n, respectively). The main use is to save memory with spline or plane-wave basis trial wavefunc-
tions, because no basis functions are required inside the vacuum region. For example, a large vacuum region can be
added above and below a graphene sheet without having to generate the trial wavefunction in such a large box or to
have as many splines as would otherwise be required. Note that the trial wavefunction must still be generated in a
large enough box to sufficiently reduce periodic interactions in the underlying electronic structure calculation.

With the vacuum option, the box used for Ewald summation increases along the axis labeled by a factor of vacuum.
Note that all the particles remain in the original box without altering their positions. i.e. Bond lengths are not changed
by this option. The default value is 1, no change to the specified axes.

An example of a simulationcell block using is given below. The size of the box along the z-axis increases from
12 to 18 by the vacuum scale of 1.5.

<simulationcell>
<parameter name="lattice">

3.8 0.0 0.0
0.0 3.8 0.0
0.0 0.0 12.0

</parameter>
<parameter name="bconds">

p p n
</parameter>
<parameter name="vacuum"> 1.5 </parameter>
<parameter name="LR_dim_cutoff"> 20 </parameter>

</simulationcell>

56 Chapter 7. Specifying the system to be simulated



QMCPACK Manual

7.1.4 LR_dim_cutoff

When using periodic boundary conditions direct calculation of the Coulomb energy is not well behaved. As a result,
QMCPACK uses an optimized Ewald summation technique to compute the Coulomb interaction. [[NC95]]

In the Ewald summation, the energy is broken into short- and long-ranged terms. The short-ranged term is computed
directly in real space, while the long-ranged term is computed in reciprocal space. controls where the short-ranged
term ends and the long-ranged term begins. The real-space cutoff, reciprocal-space cutoff, and are related via:

LR_dim_cutoff = 𝑟𝑐 × 𝑘𝑐

where 𝑟𝑐 is the Wigner-Seitz radius, and 𝑘𝑐 is the length of the maximum 𝑘-vector used in the long-ranged term.
Larger values of increase the accuracy of the evaluation. A value of 15 tends to be conservative.

7.2 Specifying the particle set

The particleset blocks specify the particles in the QMC simulations: their types, attributes (mass, charge, va-
lence), and positions.

7.2.1 Input specification

particleset element:

Parent elements simulation
Child elements group, attrib

Attribute:

Name Datatype Values De-
fault

Description

name/id Text Any e Name of particle set
size𝑜 Integer Any 0 Number of particles in set
random𝑜 Text Yes/no No Randomize starting posi-

tions
randomsrc/randomsrc𝑜Text particleset.

name
None Particle set to randomize

spinor𝑜 Text Yes/no No particleset treated as
spinor

7.2.2 Detailed attribute description

Required particleset attributes

• name/id

Unique name for the particle set. Default is “e” for electrons. “i” or “ion0” is typically used for ions. For
special cases where an empty particle set is needed, the special name “empty” can be used to bypass the
zero-size error check.
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Optional particleset attributes

• size

Number of particles in set.

Group element:

Parent elements particleset
Child elements parameter, attrib

Attribute:

Name Datatype Values Default Description
name Text Any e Name of particle set
size𝑜 Integer Any 0 Number of particles in set
mass𝑜 Real Any 1 Mass of particles in set
unit𝑜 Text au/amu au Units for mass of particles

Parameters:

Name Datatype Values Default Description
charge Real Any 0 Charge of particles in set
valence Real Any 0 Valence charge of particles in set
atomicnumber Integer Any 0 Atomic number of particles in set

attrib element:

Parent elements particleset, group

Attribute:

Name Datatype Values De-
fault

Description

name String Any None Name of attrib
datatype String IntArray, realArray, posArray, stringAr-

ray
None Type of data in at-

trib
size𝑜 String Any None Size of data in attrib

• random

Randomize starting positions of particles. Each component of each particle’s position is randomized
independently in the range of the simulation cell in that component’s direction.

• randomsrc/random_source
Specify source particle set around which to randomize the initial positions of this particle set.

• spinor

Sets an internal flag that the particleset (usually for electrons) is a spinor object. This is used in the
wavefunction builders and QMC drivers to determiane if spin sampling will be used
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Required name attributes

• name/id
Unique name for the particle set group. Typically, element symbols are used for ions and “u” or “d” for spin-up
and spin-down electron groups, respectively.

Optional group attributes

• mass

Mass of particles in set.

• unit

Units for mass of particles in set (au[𝑚𝑒 = 1] or amu[ 1
12𝑚12C = 1]).

7.2.3 Example use cases

Particleset elements for ions and electrons randomizing electron start positions.

<particleset name="i" size="2">
<group name="Li">
<parameter name="charge">3.000000</parameter>
<parameter name="valence">3.000000</parameter>
<parameter name="atomicnumber">3.000000</parameter>

</group>
<group name="H">
<parameter name="charge">1.000000</parameter>
<parameter name="valence">1.000000</parameter>
<parameter name="atomicnumber">1.000000</parameter>

</group>
<attrib name="position" datatype="posArray" condition="1">
0.0 0.0 0.0
0.5 0.5 0.5
</attrib>
<attrib name="ionid" datatype="stringArray">

Li H
</attrib>

</particleset>
<particleset name="e" random="yes" randomsrc="i">

<group name="u" size="2">
<parameter name="charge">-1</parameter>

</group>
<group name="d" size="2">
<parameter name="charge">-1</parameter>

</group>
</particleset>

Particleset elements for ions and electrons specifying electron start positions.

<particleset name="e">
<group name="u" size="4">
<parameter name="charge">-1</parameter>
<attrib name="position" datatype="posArray">

2.9151687332e-01 -6.5123272502e-01 -1.2188463918e-01
5.8423636048e-01 4.2730406357e-01 -4.5964306231e-03
3.5228575807e-01 -3.5027014639e-01 5.2644808295e-01

(continues on next page)
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-5.1686250912e-01 -1.6648002292e+00 6.5837023441e-01
</attrib>

</group>
<group name="d" size="4">
<parameter name="charge">-1</parameter>
<attrib name="position" datatype="posArray">

3.1443445436e-01 6.5068682609e-01 -4.0983449009e-02
-3.8686061749e-01 -9.3744432997e-02 -6.0456005388e-01

2.4978241724e-02 -3.2862514649e-02 -7.2266047173e-01
-4.0352404772e-01 1.1927734805e+00 5.5610824921e-01

</attrib>
</group>

</particleset>
<particleset name="ion0" size="3">

<group name="O">
<parameter name="charge">6</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">8</parameter>

</group>
<group name="H">
<parameter name="charge">1</parameter>
<parameter name="valence">1</parameter>
<parameter name="atomicnumber">1</parameter>

</group>
<attrib name="position" datatype="posArray">
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
0.0000000000e+00 -1.4308249289e+00 1.1078707576e+00
0.0000000000e+00 1.4308249289e+00 1.1078707576e+00

</attrib>
<attrib name="ionid" datatype="stringArray">
O H H

</attrib>
</particleset>

Particleset elements for ions specifying positions by ion type.

<particleset name="ion0">
<group name="O" size="1">
<parameter name="charge">6</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">8</parameter>
<attrib name="position" datatype="posArray">

0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
</attrib>

</group>
<group name="H" size="2">
<parameter name="charge">1</parameter>
<parameter name="valence">1</parameter>
<parameter name="atomicnumber">1</parameter>
<attrib name="position" datatype="posArray">

0.0000000000e+00 -1.4308249289e+00 1.1078707576e+00
0.0000000000e+00 1.4308249289e+00 1.1078707576e+00

</attrib>
</group>

</particleset>
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CHAPTER

EIGHT

TRIAL WAVEFUNCTION SPECIFICATION

8.1 Introduction

This section describes the input blocks associated with the specification of the trial wavefunction in a QMCPACK
calculation. These sections are contained within the <wavefunction> ... </wavefunction> xml blocks. Users
are expected to rely on converters to generate the input blocks described in this section. The converters and
the workflows are designed such that input blocks require minimum modifications from users. Unless the workflow
requires modification of wavefunction blocks (e.g., setting the cutoff in a multideterminant calculation), only expert
users should directly alter them.

The trial wavefunction in QMCPACK has a general product form:

Ψ𝑇 (�⃗�) =
∏︁
𝑘

Θ𝑘(�⃗�), (8.1)

where each Θ𝑘(�⃗�) is a function of the electron coordinates (and possibly ionic coordinates and variational parame-
ters). For problems involving electrons, the overall trial wavefunction must be antisymmetric with respect to electron
exchange, so at least one of the functions in the product must be antisymmetric. Notice that, although QMCPACK
allows for the construction of arbitrary trial wavefunctions based on the functions implemented in the code (e.g., slater
determinants, jastrow functions), the user must make sure that a correct wavefunction is used for the problem at hand.
From here on, we assume a standard trial wavefunction for an electronic structure problem

𝑃𝑠𝑖𝑇 (�⃗�) = A(�⃗�)
∏︁
𝑘

J𝑘(�⃗�), (8.2)

where A(�⃗�) is one of the antisymmetric functions: (1) slater determinant, (2) multislater determinant, or (3) pfaffian
and J𝑘 is any of the Jastrow functions (described in Jastrow Factors). The antisymmetric functions are built from a set
of single particle orbitals (SPO) (sposet). QMCPACK implements four different types of sposet, described in
the following section. Each sposet is designed for a different type of calculation, so their definition and generation
varies accordingly.

Listing 8.1: wavefunction XML element skeleton.

<wavefunction>
<sposet_collection ...>
<sposet ...>

...
</sposet>

</sposet_collection>
<determinantset>
<slaterdeterminant ...>

...
</slaterdeterminant>

(continues on next page)
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<backflow>
...

</backflow>
</determinantset>
<jastrow ...>
</jastrow>

</wavefunction>

8.2 Single-particle orbitals

A single particle orbital set (SPOSet) is a set of orbitals evaluated at a single electron real-space position. A typical
Slater determinant is calculated from a N-by-N matrix constructed from N orbitals at the positions of N electrons.
QMCPACK supports a range of SPOSet types:

• 3D B-splines orbitals

• Linear combination of atomic orbitals (LCAO) with Gaussian and/or Slater-type basis sets

• Hybrid orbital representation

• Plane-wave basis sets

8.2.1 sposet_collection input style

Listing 8.2: SPO XML element framework.

<!-- build a sposet collection of type bspline. /-->
<sposet_collection type="bspline" ...>

<sposet name="spo-up" ... /sposet>
...

</sposet_collection>

The sposet_collection element forms the container for sposet and a few other tags. The contents and at-
tributes in a sposet_collection node and sposet node depend on the type being used. The name of each
sposet must be unique. It is used for look-up by Single determinant wavefunctions and Multideterminant wavefunc-
tions.

sposet_collection element:

Parent elements wavefunction
Child elements sposet

attribute:

Name Datatype Values Default Description
type Text See below ‘’ ‘’ Type of sposet

type Type of sposet. Accepted values are ‘spline’ (‘bspline’ or ‘einspline’), ‘MolecularOrbital’, ‘pw’, ‘heg’,
‘composite’.

If QMCPACK printout contains !!!!!!! Deprecated input style: creating SPO set inside determinantset. Support for
this usage will soon be removed. SPO sets should be built outside., users need to update the input XML by moving
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all the SPOSet construction related details out of determinantset. This revised specification keeps the basis set
details separate from information about the determinants.

Listing 8.3: Deprecated input style.

<determinantset type="einspline" href="pwscf.pwscf.h5" tilematrix="2 0 0 0 1 0 0 0 1"
→˓source="ion0" meshfactor="1.0" precision="double">

<slaterdeterminant>
<determinant id="updet" size="8">

<occupation mode="ground" spindataset="0"/>
</determinant>
<determinant id="downdet" size="8">

<occupation mode="ground" spindataset="0"/>
</determinant>

</slaterdeterminant>
</determinantset>

After updating the input style.

Listing 8.4: Updated input style.

<!-- all the attributes are moved from determinantset.-->
<sposet_collection type="einspline" href="pwscf.pwscf.h5" tilematrix="2 0 0 0 1 0 0 0
→˓1" source="ion0" meshfactor="1.0" precision="double">
<!-- all the attributes and contents are moved from determinant. Change 'id' tag

→˓to 'name' tag.
Need only one sposet for unpolarized calculation.-->

<sposet name="spo-ud" size="8">
<occupation mode="ground" spindataset="0"/>

</sposet>
</sposet_collection>
<determinantset>

<slaterdeterminant>
<!-- build two determinants from the same sposet named 'spo-ud'. One for each

→˓spin.-->
<determinant sposet="spo-ud"/>
<determinant sposet="spo-ud"/>

</slaterdeterminant>
</determinantset>

In the case of multi-determinants, all the attributes of determinantset need to be moved to
sposet_collection and existing sposet xml nodes need to be moved under sposet_collection. If
there is a basisset node, it needs to be moved under sposet_collection as well.

8.2.2 3D B-splines orbitals

In this section we describe the use of spline basis sets to expand the sposet. Spline basis sets are designed to work
seamlessly with plane wave DFT codes (e.g.,Quantum ESPRESSO as a trial wavefunction generator). Codes that
utilize regular real space grids as a basis can also be seamlessly interfaced.

In QMC algorithms, all the SPOs {𝜑(�⃗�)} need to be updated every time a single electron moves. Evaluating SPOs
takes a very large portion of computation time. In principle, PW basis set can be used to express SPOs directly in
QMC, as in DFT. But it introduces an unfavorable scaling because the basis set size increases linearly as the system
size. For this reason, it is efficient to use a localized basis with compact support and a good transferability from the
plane wave basis.

In particular, 3D tricubic B-splines provide a basis in which only 64 elements are nonzero at any given point in
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[[AlfeG04]]. The 1D cubic B-spline is given by

𝑓(𝑥) =

𝑖+2∑︁
𝑖′=𝑖−1

𝑏𝑖
′,3(𝑥) 𝑝𝑖′ , (8.3)

where 𝑏𝑖(𝑥) is the piecewise cubic polynomial basis functions and 𝑖 = floor(∆−1𝑥) is the index of the first grid point
≤ 𝑥. Constructing a tensor product in each Cartesian direction, we can represent a 3D orbital as

𝜑𝑛(𝑥, 𝑦, 𝑧) =

𝑖+2∑︁
𝑖′=𝑖−1

𝑏𝑖
′,3
𝑥 (𝑥)

𝑗+2∑︁
𝑗′=𝑗−1

𝑏𝑗
′,3
𝑦 (𝑦)

𝑘+2∑︁
𝑘′=𝑘−1

𝑏𝑘
′,3
𝑧 (𝑧) 𝑝𝑖′,𝑗′,𝑘′,𝑛. (8.4)

This allows the rapid evaluation of each orbital in constant time unlike with a plane wave basis set where the cost
increases with system size. Furthermore, this basis is systematically improvable with a single spacing parameter so
that accuracy is not compromised compared with the plane wave basis.

The use of 3D tricubic B-splines greatly improves computational efficiency. The gain in computation time compared
to an equivalent plane wave basis set becomes increasingly large as the system size grows. On the downside, this
computational efficiency comes at the expense of increased memory use, which is easily overcome, however, by the
large aggregate memory available per node through OpenMP/MPI hybrid QMC.

The input xml block for the spline SPOs is given in Spline SPO XML element. A list of options is given in Table 8.2.2.

Listing 8.5: Spline SPO XML element

<sposet_collection type="bspline" source="i" href="pwscf.h5"
tilematrix="1 1 3 1 2 -1 -2 1 0" gpu="yes" meshfactor="0.8"
twist="0 0 0" precision="double">

<sposet name="spo-up" size="208">
<occupation mode="ground" spindataset="0"/>

</sposet>
<!-- spin polarized case needs two sposets /-->
<sposet name="spo-dn" size="208">
<occupation mode="ground" spindataset="1"/>

</sposet>
</sposet_collection>

sposet_collection element:

Parent elements wavefunction
Child elements sposet

attribute:
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Name Datatype Values Default Description
type Text Bspline Type of sposet
href Text Path to hdf5 file from pw2qmcpack.x.
tilematrix 9 integers Tiling matrix used to expand supercell.
twistnum Integer Index of the super twist.
twist 3 floats Super twist.
meshfactor Float ≤ 1.0 Grid spacing ratio.
precision Text Single/double Precision of spline coefficients
gpu Text Yes/no GPU switch.
gpusharing Text Yes/no No Share B-spline table across GPUs.
Spline_Size_Limit_MB Integer Limit B-spline table size on GPU.
check_orb_norm Text Yes/no Yes Check norms of orbitals from h5 file.
save_coefs Text Yes/no No Save the spline coefficients to h5 file.
source Text Any Ion0 Particle set with atomic positions.
skip_checks Text Yes/no No skips checks for ion information in h5

Table 3 Options for the sposet_collection xml-block associated with B-spline single particle orbital sets.

Additional information:

• precision Only effective on CPU versions without mixed precision, “single” is always imposed with mixed
precision. Using single precision not only saves memory use but also speeds up the B-spline evaluation.
We recommend using single precision since we saw little chance of really compromising the accuracy of
calculation.

• meshfactor The ratio of actual grid spacing of B-splines used in QMC calculation with respect to the original
one calculated from h5. A smaller meshfactor saves memory use but reduces accuracy. The effects are
similar to reducing plane wave cutoff in DFT calculations. Use with caution!

• twistnum We recommend not using it in the input because the ordering of orbitals depends on how they are
being stored in the h5 file. twistnum gets ignored if twist exists in the input. If positive, it is the index.
If negative, the super twist is referred by twist. This input parameter is kept only for keeping old input
files working.

• twist The twist angle. If neither twist nor twistnum is provided, Take Gamma point, (0, 0, 0).

• save_coefs If yes, dump the real-space B-spline coefficient table into an h5 file on the disk. When the orbital
transformation from k space to B-spline requires more than the available amount of scratch memory on the
compute nodes, users can perform this step on fat nodes and transfer back the h5 file for QMC calculations.

• gpusharing If enabled, spline data is shared across multiple GPUs on a given computational node. For example,
on a two-GPU-per-node system, each GPU would have half of the orbitals. This enables larger overall
spline tables than would normally fit in the memory of individual GPUs to be used, potentially up to the
total GPU memory on a node. To obtain high performance, large electron counts or a high-performing
CPU-GPU interconnect is required. To use this feature, the following needs to be done:

– The CUDA Multi-Process Service (MPS) needs to be used (e.g., on Summit use “-alloc_flags gpumps”
for bsub). If MPS is not detected, sharing will be disabled.

– CUDA_VISIBLE_DEVICES needs to be properly set to control each rank’s visible CUDA devices
(e.g., on OLCF Summit one needs to create a resource set containing all GPUs with the respective
number of ranks with “jsrun –task-per-rs Ngpus -g Ngpus”).

• Spline_Size_Limit_MB Allows distribution of the B-spline coefficient table between the host and GPU mem-
ory. The compute kernels access host memory via zero-copy. Although the performance penalty intro-
duced by it is significant, it allows large calculations to go through.

8.2. Single-particle orbitals 65



QMCPACK Manual

• skip_checks When converting the wave function from convertpw4qmc instead of pw2qmcpack, there is miss-
ing ionic information. This flag bypasses the requirement that the ionic information in the eshdf.h5 file
match the input xml.

8.2.3 Linear combination of atomic orbitals (LCAO) with Gaussian and/or Slater-
type basis sets

In this section we describe the use of localized basis sets to expand the sposet. The general form of a single particle
orbital in this case is given by:

𝜑𝑖(�⃗�) =
∑︁
𝑘

𝐶𝑖,𝑘 𝜂𝑘(�⃗�), (8.5)

where {𝜂𝑘(�⃗�)} is a set of M atom-centered basis functions and 𝐶𝑖,𝑘 is a coefficient matrix. This should be used in
calculations of finite systems employing an atom-centered basis set and is typically generated by the convert4qmc
converter. Examples include calculations of molecules using Gaussian basis sets or Slater-type basis functions. Initial
support for periodic systems is described in Periodic LCAO for Solids. Even though this section is called “Gaussian
basis sets” (by far the most common atom-centered basis set), QMCPACK works with any atom-centered basis set
based on either spherical harmonic angular functions or Cartesian angular expansions. The radial functions in the
basis set can be expanded in either Gaussian functions, Slater-type functions, or numerical radial functions.

In this section we describe the input sections of sposet_collection for the atom-centered basis set. Here is an
example of single determinant with LCAO. The input sections for multideterminant trial wavefunctions are described
in Multideterminant wavefunctions.

Listing 8.6: slaterdeterminant with an LCAO
sposet_collection example

<sposet_collection type="MolecularOrbital" source="ion0" cuspCorrection="no">
<basisset name="LCAOBSet">
<atomicBasisSet name="Gaussian-G2" angular="cartesian" elementType="H" normalized=

→˓"no">
<grid type="log" ri="1.e-6" rf="1.e2" npts="1001"/>
<basisGroup rid="H00" n="0" l="0" type="Gaussian">

<radfunc exponent="5.134400000000e-02" contraction="1.399098787100e-02"/>
</basisGroup>

</atomicBasisSet>
</basisset>
<sposet name="spo" basisset="LCAOBSet" size="1">
<occupation mode="ground"/>
<coefficient size="1" id="updetC">

1.00000000000000e+00
</coefficient>

</sposet>
</sposet_collection>
<determinantset>

<slaterdeterminant>
<determinant sposet="spo" />

</slaterdeterminant>
</determinantset>

Here is the basic structure for LCAO sposet_collection input block. A list of options for
sposet_collection is given in Table 8.2.3.
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Listing 8.7: Basic input block for sposet_collection for LCAO.

<sposet_collection type="MolecularOrbital" ...>
<basisset name="LCAOBSet" ...>
...

</basisset>
<sposet name="spo" basisset="LCAOBSet" size="1">
<occupation mode="ground"/>
<coefficient size="1" id="updetC">

1.00000000000000e+00
</coefficient>

</sposet>
</sposet_collection>

The definition of the set of atom-centered basis functions is given by the basisset block and the sposet defined
within sposet_collection. The basisset input block is composed from a collection of atomicBasisSet
input blocks, one for each atomic species in the simulation where basis functions are centered. The general structure
for basisset and atomicBasisSet are given in Listing 4, and the corresponding lists of options are given in
Table 8.2.3 and Table 8.2.3.

sposet_collection element:

Parent elements wavefunction
Child elements basisset , sposet

Attribute:

Name Datatype Values De-
fault

Description

name/id Text Any ‘’ ‘’ Name of determinant set
type Text See below ‘’ ‘’ Type of sposet
keyword Text NMO, GTO, STO NMO Type of orbital set generated
transform Text Yes/no Yes Transform to numerical radial functions?
source Text Any Ion0 Particle set with the position of atom centers
cuspCorrection Text Yes/no No Apply cusp correction scheme to sposet?

Table 4 Options for the sposet_collection xml-block associated with atom-centered single particle orbital sets.

• type Type of sposet. For atom-centered based sposets, use type=”MolecularOrbital” or type=”MO”.

• keyword/key Type of basis set generated, which does not necessarily match the type of basis set on the input
block. The three possible options are: NMO (numerical molecular orbitals), GTO (Gaussian-type orbitals),
and STO (Slater-type orbitals). The default option is NMO. By default, QMCPACK will generate numer-
ical orbitals from both GTO and STO types and use cubic or quintic spline interpolation to evaluate the
radial functions. This is typically more efficient than evaluating the radial functions in the native basis
(Gaussians or exponents) and allows for arbitrarily large contractions without any additional cost. To force
use of the native expansion (not recommended), use GTO or STO for each type of input basis set.

• transform Request (or avoid) a transformation of the radial functions to NMO type. The default and recom-
mended behavior is to transform to numerical radial functions. If transform is set to yes, the option
keyword is ignored.

• cuspCorrection Enable (disable) use of the cusp correction algorithm (CASINO REFERENCE) for a
basisset built with GTO functions. The algorithm is implemented as described in (CASINO REF-
ERENCE) and works only with transform=”yes” and an input GTO basis set. No further input is needed.
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Listing 8.8: Basic input block for basisset.

<basisset name="LCAOBSet">
<atomicBasisSet name="Gaussian-G2" angular="cartesian" elementType="C" normalized=

→˓"no">
<grid type="log" ri="1.e-6" rf="1.e2" npts="1001"/>
<basisGroup rid="C00" n="0" l="0" type="Gaussian">

<radfunc exponent="5.134400000000e-02" contraction="1.399098787100e-02"/>
...

</basisGroup>
...

</atomicBasisSet>
<atomicBasisSet name="Gaussian-G2" angular="cartesian" type="Gaussian" elementType=

→˓"C" normalized="no">
...

</atomicBasisSet>
...

</basisset>

basisset element:

Parent elements sposet_collection
Child elements atomicBasisSet

Attribute:

Name Datatype Values Default Description
name / id Text Any ” “ Name of atom-centered basis set

Table 5 Options for the basisset xml-block associated with atom-centered single particle orbital sets.

AtomicBasisSet element:

Parent elements basisset
Child elements grid , basisGroup

Attribute:

Name Datatype Values De-
fault

Description

name / id Text Any ” “ Name of atomic basis set
angular Text See below Default Type of angular functions
expandYlm Text See below Yes Expand Ylm shells?
expM Text See below Yes Add sign for (−1)𝑚?
elementType/
species

Text Any e Atomic species where functions are centered

normalized Text Yes/no Yes Are single particle functions normalized?

Table 6 Options for the atomicBasisSet xml-block.

• name/id Name of the basis set. Names should be unique.

• angular Type of angular functions used in the expansion. In general, two angular basis functions are allowed:
“spherical” (for spherical Ylm functions) and “Cartesian” (for functions of the type 𝑥𝑛𝑦𝑚𝑧𝑙).
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• expandYlm Determines whether each basis group is expanded across the corresponding shell of m values (for
spherical type) or consistent powers (for Cartesian functions). Options:

– “No”: Do not expand angular functions across corresponding angular shell.

– “Gaussian”: Expand according to Gaussian03 format. This function is compatible only with angu-
lar=”spherical.” For a given input (l,m), the resulting order of the angular functions becomes (1,-1,0)
for l=1 and (0,1,-1,2,-2,. . . ,l,-l) for general l.

– “Natural”: Expand angular functions according to (-l,-l+1,. . . ,l-1,l).

– “Gamess”: Expand according to Gamess’ format for Cartesian functions. Notice that this option is
compatible only with angular=”Cartesian.” If angular=”Cartesian” is used, this option is not necessary.

• expM Determines whether the sign of the spherical Ylm function associated with m (−1𝑚) is included in the
coefficient matrix or not.

• elementType/species Name of the species where basis functions are centered. Only one atomicBasisSet
block is allowed per species. Additional blocks are ignored. The corresponding species must exist in the
particleset given as the source option to determinantset. Basis functions for all the atoms of
the corresponding species are included in the basis set, based on the order of atoms in the particleset.

basicGroup element:

Parent elements AtomicBasisSet
Child elements radfunc

Attribute:

Name Datatype Values Default Description
rid/id Text Any ‘’ ‘’ Name of the basisGroup
type Text Any ‘’ ‘’ Type of basisGroup
n/l/m/s Integer Any 0 Quantum numbers of basisGroup

Table 8.2.3 Options for the basisGroup xml-block.

• type Type of input basis radial function. Note that this refers to the type of radial function in the input
xml-block, which might not match the radial function generated internally and used in the calcula-
tion (if transform is set to “yes”). Also note that different basisGroup blocks within a given
atomicBasisSet can have different types.

• n/l/m/s Quantum numbers of the basis function. Note that if expandYlm is set to “yes” in
atomicBasisSet, a full shell of basis functions with the appropriate values of “m” will be defined
for the corresponding value of “l.” Otherwise a single basis function will be given for the specific combi-
nation of “(l,m).”

radfunc element: attributes for type = “Gaussian”:

TBDoc
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8.2.4 Hybrid orbital representation

The hybrid representation of the single particle orbitals combines a localized atomic basis set around atomic cores and
B-splines in the interstitial regions to reduce memory use while retaining high evaluation speed and either retaining or
increasing overall accuracy. Full details are provided in [[LEKS18]], and users of this feature are kindly requested
to cite this paper. In practice, we have seen that using a meshfactor=0.5 is often possible and achieves huge memory
savings. Fig. 8.1 illustrates how the regions are assigned.

Fig. 8.1: Regular and hybrid orbital representation. Regular B-spline representation (left panel) contains only one
region and a sufficiently fine mesh to resolve orbitals near the nucleus. The hybrid orbital representation (right panel)
contains near nucleus regions (A) where spherical harmonics and radial functions are used, buffers or interpolation
regions (B), and an interstitial region (C) where a coarse B-spline mesh is used.

Orbitals within region A are computed as

𝜑𝐴𝑛 (r) = 𝑅𝑛,𝑙,𝑚(𝑟)𝑌𝑙,𝑚(𝑟)

Orbitals in region C are computed as the regular B-spline basis described in 3D B-splines orbitals above. The region
B interpolates between A and C as

𝜑𝐵𝑛 (r) = 𝑆(𝑟)𝜑𝐴𝑛 (r) + (1− 𝑆(𝑟))𝜑𝐶𝑛 (r) (8.6)

(𝑆(𝑟) =
1

2
− 1

2
𝑡𝑎𝑛ℎ

[︂
𝛼

(︂
𝑟 − 𝑟A/B

𝑟B/C − 𝑟A/B
− 1

2

)︂]︂
(8.7)
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To enable hybrid orbital representation, the input XML needs to see the tag hybridrep="yes" shown in Listing 6.

Listing 8.9: Hybrid orbital representation input example.

<sposet_collection type="bspline" source="i" href="pwscf.h5"
tilematrix="1 1 3 1 2 -1 -2 1 0" gpu="yes" meshfactor="0.8"
twist="0 0 0" precision="single" hybridrep="yes">

...
</sposet_collection>

Second, the information describing the atomic regions is required in the particle set, shown in Listing 7.

Listing 8.10: particleset elements for ions with information needed by
hybrid orbital representation.

<group name="Ni">
<parameter name="charge"> 18 </parameter>
<parameter name="valence"> 18 </parameter>
<parameter name="atomicnumber" > 28 </parameter>
<parameter name="cutoff_radius" > 1.6 </parameter>
<parameter name="inner_cutoff" > 1.3 </parameter>
<parameter name="lmax" > 5 </parameter>
<parameter name="spline_radius" > 1.8 </parameter>
<parameter name="spline_npoints"> 91 </parameter>

</group>

The parameters specific to hybrid representation are listed as

attrib element

Attribute:

Name Datatype Values Default Description
cutoff_radius Real >=0.0 None Cutoff radius for B/C boundary
lmax Integer >=0 None Largest angular channel
inner_cutoff Real >=0.0 Dep. Cutoff radius for A/B boundary
spline_radius Real >0.0 Dep. Radial function radius used in spine
spline_npoints Integer >0 Dep. Number of spline knots

• cutoff_radius is required for every species. If a species is intended to not be covered by atomic regions,
setting the value 0.0 will put default values for all the reset parameters. A good value is usually a bit larger
than the core radius listed in the pseudopotential file. After a parametric scan, pick the one from the flat energy
region with the smallest variance.

• lmax is required if cutoff_radius > 0.0. This value usually needs to be at least the highest angular
momentum plus 2.

• inner_cutoff is optional and set as cutoff_radius −0.3 by default, which is fine in most cases.

• spline_radius and spline_npoints are optional. By default, they are calculated based on
cutoff_radius and a grid displacement 0.02 bohr. If users prefer inputing them, it is required that
cutoff_radius <= spline_radius − 2 × spline_radius/(spline_npoints − 1).

In addition, the hybrid orbital representation allows extra optimization to speed up the nonlocal pseudopotential eval-
uation using the batched algorithm listed in Pseudopotentials.
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8.2.5 Plane-wave basis sets

8.2.6 Homogeneous electron gas

The interacting Fermi liquid has its own special determinantset for filling up a Fermi surface. The shell number
can be specified separately for both spin-up and spin-down. This determines how many electrons to include of each
time; only closed shells are currently implemented. The shells are filled according to the rules of a square box; if other
lattice vectors are used, the electrons might not fill up a complete shell.

This following example can also be used for Helium simulations by specifying the proper pair interaction in the
Hamiltonian section.

Listing 8.11: 2D Fermi liquid example: particle specification

<simulationcell name="global">
<parameter name="rs" pol="0" condition="74">6.5</parameter>
<parameter name="bconds">p p p</parameter>
<parameter name="LR_dim_cutoff">15</parameter>

</simulationcell>
<particleset name="e" random="yes">

<group name="u" size="37">
<parameter name="charge">-1</parameter>
<parameter name="mass">1</parameter>

</group>
<group name="d" size="37">
<parameter name="charge">-1</parameter>
<parameter name="mass">1</parameter>

</group>
</particleset>

Listing 8.12: 2D Fermi liquid example (Slater Jastrow wavefunction)

<wavefunction name="psi0" target="e">
<determinantset type="electron-gas" shell="7" shell2="7" randomize="true">

</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="no">

<correlation speciesA="u" speciesB="u" size="8" cusp="0">
<coefficients id="uu" type="Array" optimize="yes">

</correlation>
<correlation speciesA="u" speciesB="d" size="8" cusp="0">
<coefficients id="ud" type="Array" optimize="yes">

</correlation>
</jastrow>
</wavefunction>

8.3 Single determinant wavefunctions

Placing a single determinant for each spin is the most used ansatz for the antisymmetric part of a trial wavefunction.
The input xml block for slaterdeterminant is given in Listing 1. A list of options is given in Table 8.3.

slaterdeterminant element:

Parent elements determinantset
Child elements determinant
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Attribute:

Name Datatype Values Default Description
delay_rank Integer >=0 1 Number of delayed updates.
optimize Text yes/no yes Enable orbital optimization.
gpu Text yes/no yes Use the GPU acceleration implementation.
batch Text yes/no dep. Select the batched walker implementation.
matrix_inverter Text gpu/host gpu Slater matrix inversion scheme.

Table 2 Options for the slaterdeterminant xml-block.

Listing 8.13: Slaterdeterminant set XML element.

<sposet_collection ...>
<sposet name="spo" size="8">
...

</sposet>
</sposet_collection>
<determinantset>

<slaterdeterminant delay_rank="32">
<determinant sposet="spo"/>
<determinant sposet="spo"/>

</slaterdeterminant>
</determinantset>

Additional information:

• delay_rank This option enables delayed updates of the Slater matrix inverse when particle-by-particle move
is used. By default or if delay_rank=0 given in the input file, QMCPACK sets 1 for Slater matrices
with a leading dimension < 192 and 32 otherwise. delay_rank=1 uses the Fahy’s variant [[FWL90]] of
the Sherman-Morrison rank-1 update, which is mostly using memory bandwidth-bound BLAS-2 calls. With
delay_rank>1, the delayed update algorithm [[LK18], [MDAzevedoL+17]] turns most of the computation
to compute bound BLAS-3 calls. Tuning this parameter is highly recommended to gain the best performance
on medium-to-large problem sizes (> 200 electrons). We have seen up to an order of magnitude speedup on
large problem sizes. When studying the performance of QMCPACK, a scan of this parameter is required and
we recommend starting from 32. The best delay_rank giving the maximal speedup depends on the problem
size. Usually the larger delay_rank corresponds to a larger problem size. On CPUs, delay_rank must be
chosen as a multiple of SIMD vector length for good performance of BLAS libraries. The best delay_rank
depends on the processor microarchitecture. GPU support is under development.

• gpu This option is only effective when GPU features are built. Use the implementation with GPU acceleration
if yes.

• batch The default value is yes if gpu=yes and no otherwise.

• matrix_inverter If the value is gpu, the inversion happens on the GPU and additional GPU memory is
needed. If the value is host, the inversion happens on the CPU and doesn’t need GPU memory.
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8.4 Multideterminant wavefunctions

multideterminant element:

Parent elements determinantset
Child elements detlist

Attribute:

Name Datatype Values Default Description
optimize Text yes/no yes Enable optimization.
spo_up Text The name of SPO for spin up electrons
spo_down Text The name of SPO for spin down electrons
algorithm Text precomputed_table_method Slater matrix inversion scheme.

Table 3 Options for the multideterminant xml-block.

Additional information:

• algorithm algorithms used in multi-Slater determinant implementation. table_method table method of
Clark et al. [[CMM+11]] . precomputed_table_method adds partial sum precomputation on top of
table_method.

Listing 8.14: multideterminant set XML element.

<sposet_collection ...>
<sposet name="spo" size="85">
...

</sposet>
</sposet_collection>
<determinantset>

<multideterminant optimize="yes" spo_up="spo" spo_dn="spo">
<detlist size="1487" type="DETS" nca="0" ncb="0" nea="2" neb="2" nstates="85"

→˓cutoff="1e-20" href="LiH.orbs.h5">
</multideterminant>

</determinantset>

Multiple schemes to generate a multideterminant wavefunction are possible, from CASSF to full CI or selected CI. The
QMCPACK converter can convert MCSCF multideterminant wavefunctions from GAMESS [[SBB+93]] and CIPSI
[[EG13]] wavefunctions from Quantum Package [[Sce17]] (QP). Full details of how to run a CIPSI calculation and
convert the wavefunction for QMCPACK are given in CIPSI wavefunction interface.

The script utils/determinants_tools.py can be used to generate useful information about the multidetermi-
nant wavefunction. This script takes, as a required argument, the path of an h5 file corresponding to the wavefunction.
Used without optional arguments, it prints the number of determinants, the number of CSFs, and a histogram of the
excitation degree.

> determinants_tools.py ./tests/molecules/C2_pp/C2.h5
Summary:
excitation degree 0 count: 1
excitation degree 1 count: 6
excitation degree 2 count: 148
excitation degree 3 count: 27
excitation degree 4 count: 20

(continues on next page)
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n_det 202
n_csf 104

If the --verbose argument is used, the script will print each determinant, the associated CSF, and the excitation
degree relative to the first determinant.

> determinants_tools.py -v ./tests/molecules/C2_pp/C2.h5 | head
1
alpha 1111000000000000000000000000000000000000000000000000000000
beta 1111000000000000000000000000000000000000000000000000000000
scf 2222000000000000000000000000000000000000000000000000000000
excitation degree 0

2
alpha 1011100000000000000000000000000000000000000000000000000000
beta 1011100000000000000000000000000000000000000000000000000000
scf 2022200000000000000000000000000000000000000000000000000000
excitation degree 2

8.5 Backflow Wavefunctions

One can perturb the nodal surface of a single-Slater/multi-Slater wavefunction through use of a backflow transforma-
tion. Specifically, if we have an antisymmetric function 𝐷(x0↑, · · · ,x𝑁↑,x0↓, · · · ,x𝑁↓), and if 𝑖𝛼 is the 𝑖-th particle
of species type 𝛼, then the backflow transformation works by making the coordinate transformation x𝑖𝛼 → x′

𝑖𝛼
and

evaluating 𝐷 at these new “quasiparticle” coordinates. QMCPACK currently supports quasiparticle transformations
given by

x′
𝑖𝛼 = x𝑖𝛼 +

∑︁
𝛼≤𝛽

∑︁
𝑖𝛼 ̸=𝑗𝛽

𝜂𝛼𝛽(|x𝑖𝛼 − x𝑗𝛽 |)(x𝑖𝛼 − x𝑗𝛽 ) . (8.8)

Here, 𝜂𝛼𝛽(|x𝑖𝛼 − x𝑗𝛽 |) is a radially symmetric backflow transformation between species 𝛼 and 𝛽. In QMCPACK,
particle 𝑖𝛼 is known as the “target” particle and 𝑗𝛽 is known as the “source.” The main types of transformations are so-
called one-body terms, which are between an electron and an ion 𝜂𝑒𝐼(|x𝑖𝑒−x𝑗𝐼 |) and two-body terms. Two-body terms
are distinguished as those between like and opposite spin electrons: 𝜂𝑒(↑)𝑒(↑)(|x𝑖𝑒(↑)−x𝑗𝑒(↑)|) and 𝜂𝑒(↑)𝑒(↓)(|x𝑖𝑒(↑)−
x𝑗𝑒(↓)|). Henceforth, we will assume that 𝜂𝑒(↑)𝑒(↑) = 𝜂𝑒(↓)𝑒(↓).

In the following, we explain how to describe general terms such as (8.8) in a QMCPACK XML file. For specificity,
we will consider a particle set consisting of H and He (in that order). This ordering will be important when we build
the XML file, so you can find this out either through your specific declaration of <particleset>, by looking at the hdf5
file in the case of plane waves, or by looking at the QMCPACK output file in the section labeled “Summary of QMC
systems.”

8.5.1 Input specifications

All backflow declarations occur within a single <backflow> ... </backflow> block. Backflow transforma-
tions occur in <transformation> blocks and have the following input parameters:

Transformation element:
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Name Datatype Values Default Description
name Text (Re-

quired)
Unique name for this Jastrow function.

type Text “e-I” (Re-
quired)

Define a one-body backflow transformation.

Text “e-e” Define a two-body backflow transformation.
func-
tion

Text B-
spline

(Re-
quired)

B-spline type transformation (no other types sup-
ported).

source Text “e” if two body, ion particle set if one body.

Just like one- and two-body jastrows, parameterization of the backflow transformations are specified within the
<transformation> blocks by <correlation> blocks. Please refer to Spline form for more information.

8.5.2 Example Use Case

Having specified the general form, we present a general example of one-body and two-body backflow transformations
in a hydrogen-helium mixture. The hydrogen and helium ions have independent backflow transformations, as do the
like and unlike-spin two-body terms. One caveat is in order: ionic backflow transformations must be listed in the order
they appear in the particle set. If in our example, helium is listed first and hydrogen is listed second, the following
example would be correct. However, switching backflow declaration to hydrogen first then helium, will result in an
error. Outside of this, declaration of one-body blocks and two-body blocks are not sensitive to ordering.

<backflow>
<!--The One-Body term with independent e-He and e-H terms. IN THAT ORDER -->
<transformation name="eIonB" type="e-I" function="Bspline" source="ion0">

<correlation cusp="0.0" size="8" type="shortrange" init="no" elementType="He"
→˓rcut="3.0">

<coefficients id="eHeC" type="Array" optimize="yes">
0 0 0 0 0 0 0 0

</coefficients>
</correlation>
<correlation cusp="0.0" size="8" type="shortrange" init="no" elementType="H" rcut=

→˓"3.0">
<coefficients id="eHC" type="Array" optimize="yes">

0 0 0 0 0 0 0 0
</coefficients>

</correlation>
</transformation>

<!--The Two-Body Term with Like and Unlike Spins -->
<transformation name="eeB" type="e-e" function="Bspline" >

<correlation cusp="0.0" size="7" type="shortrange" init="no" speciesA="u"
→˓speciesB="u" rcut="1.2">

<coefficients id="uuB1" type="Array" optimize="yes">
0 0 0 0 0 0 0

</coefficients>
</correlation>
<correlation cusp="0.0" size="7" type="shortrange" init="no" speciesA="d"

→˓speciesB="u" rcut="1.2">
<coefficients id="udB1" type="Array" optimize="yes">

0 0 0 0 0 0 0
</coefficients>

</correlation>

(continues on next page)
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</transformation>
</backflow>

Currently, backflow works only with single-Slater determinant wavefunctions. When a backflow transfor-
mation has been declared, it should be placed within the <determinantset> block, but outside of the
<slaterdeterminant> blocks, like so:

<determinantset ... >
<!--basis set declarations go here, if there are any -->

<backflow>
<transformation ...>
<!--Here is where one and two-body terms are defined -->

</transformation>
</backflow>

<slaterdeterminant>
<!--Usual determinant definitions -->

</slaterdeterminant>
</determinantset>

8.5.3 Optimization Tips

Backflow is notoriously difficult to optimize—it is extremely nonlinear in the variational parameters and moves the
nodal surface around. As such, it is likely that a full Jastrow+Backflow optimization with all parameters initialized
to zero might not converge in a reasonable time. If you are experiencing this problem, the following pointers are
suggested (in no particular order).

Get a good starting guess for Ψ𝑇 :

1. Try optimizing the Jastrow first without backflow.

2. Freeze the Jastrow parameters, introduce only the e-e terms in the backflow transformation, and optimize these
parameters.

3. Freeze the e-e backflow parameters, and then optimize the e-I terms.

• If difficulty is encountered here, try optimizing each species independently.

4. Unfreeze all Jastrow, e-e backflow, and e-I backflow parameters, and reoptimize.

Optimizing Backflow Terms

It is possible that the previous prescription might grind to a halt in steps 2 or 3 with the inability to optimize the e-e or
e-I backflow transformation independently, especially if it is initialized to zero. One way to get around this is to build
a good starting guess for the e-e or e-I backflow terms iteratively as follows:

1. Start off with a small number of knots initialized to zero. Set 𝑟𝑐𝑢𝑡 to be small (much smaller than an interatomic
distance).

2. Optimize the backflow function.

3. If this works, slowly increase 𝑟𝑐𝑢𝑡 and/or the number of knots.

4. Repeat steps 2 and 3 until there is no noticeable change in energy or variance of Ψ𝑇 .
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Tweaking the Optimization Run

The following modifications are worth a try in the optimization block:

• Try setting “useDrift” to “no.” This eliminates the use of wavefunction gradients and force biasing in the VMC
algorithm. This could be an issue for poorly optimized wavefunctions with pathological gradients.

• Try increasing “exp0” in the optimization block. Larger values of exp0 cause the search directions to more
closely follow those predicted by steepest-descent than those by the linear method.

Note that the new adaptive shift optimizer has not yet been tried with backflow wavefunctions. It should perform better
than the older optimizers, but a considered optimization process is still recommended.

8.6 Jastrow Factors

Jastrow factors are among the simplest and most effective ways of including dynamical correlation in the trial many
body wavefunction. The resulting many body wavefunction is expressed as the product of an antisymmetric (in the
case of Fermions) or symmetric (for Bosons) part and a correlating Jastrow factor like so:

Ψ(�⃗�) = 𝒜(�⃗�) exp
[︁
𝐽(�⃗�)

]︁
(8.9)

In this section we will detail the types and forms of Jastrow factor used in QMCPACK. Note that each type of Jastrow
factor needs to be specified using its own individual jastrow XML element. For this reason, we have repeated the
specification of the jastrow tag in each section, with specialization for the options available for that given type of
Jastrow.

8.6.1 One-body Jastrow functions

The one-body Jastrow factor is a form that allows for the direct inclusion of correlations between particles that are
included in the wavefunction with particles that are not explicitly part of it. The most common example of this are
correlations between electrons and ions.

The Jastrow function is specified within a wavefunction element and must contain one or more correlation
elements specifying additional parameters as well as the actual coefficients. Example use cases gives examples of the
typical nesting of jastrow, correlation, and coefficient elements.

Input Specification

Jastrow element:

name datatype values defaults description
name text (required) Unique name for this Jastrow function
type text One-body (required) Define a one-body function
function text Bspline (required) BSpline Jastrow

text pade2 Pade form
text . . . . . .

source text name (required) Name of attribute of classical particle set
print text yes / no yes Jastrow factor printed in external file?
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elements
Correlation

Contents
(None)

To be more concrete, the one-body Jastrow factors used to describe correlations between electrons and ions take the
form below:

𝐽1 =

𝑖𝑜𝑛0∑︁
𝐼

𝑒∑︁
𝑖

𝑢𝑎𝑏(|𝑟𝑖 −𝑅𝐼 |) (8.10)

where I runs over all of the ions in the calculation, i runs over the electrons and 𝑢𝑎𝑏 describes the functional form of
the correlation between them. Many different forms of 𝑢𝑎𝑏 are implemented in QMCPACK. We will detail two of the
most common ones below.

Spline form

The one-body spline Jastrow function is the most commonly used one-body Jastrow for solids. This form was first
described and used in [[EKCS12]]. Here 𝑢𝑎𝑏 is an interpolating 1D B-spline (tricublc spline on a linear grid) between
zero distance and 𝑟𝑐𝑢𝑡. In 3D periodic systems the default cutoff distance is the Wigner Seitz cell radius. For other
periodicities, including isolated molecules, the 𝑟𝑐𝑢𝑡 must be specified. The cusp can be set. 𝑟𝑖 and 𝑅𝐼 are most
commonly the electron and ion positions, but any particlesets that can provide the needed centers can be used.

Correlation element:

Name Datatype Values Defaults Description
ElementType Text Name See below Classical particle target
SpeciesA Text Name See below Classical particle target
SpeciesB Text Name See below Quantum species target
Size Integer > 0 (Required) Number of coefficients
Rcut Real > 0 See below Distance at which the correlation goes to 0
Cusp Real ≥ 0 0 Value for use in Kato cusp condition
Spin Text Yes or no No Spin dependent Jastrow factor

Elements
Coefficients

Contents
(None)

Additional information:

• elementType, speciesA, speciesB, spin For a spin-independent Jastrow factor (spin = “no”),
elementType should be the name of the group of ions in the classical particleset to which the quantum
particles should be correlated. For a spin-dependent Jastrow factor (spin = “yes”), set speciesA to the
group name in the classical particleset and speciesB to the group name in the quantum particleset.

• rcut The cutoff distance for the function in atomic units (bohr). For 3D fully periodic systems, this parameter
is optional, and a default of the Wigner Seitz cell radius is used. Otherwise this parameter is required.

• cusp The one-body Jastrow factor can be used to make the wavefunction satisfy the electron-ion cusp condition
:cite:kato. In this case, the derivative of the Jastrow factor as the electron approaches the nucleus will be
given by
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(︂
𝜕𝐽

𝜕𝑟𝑖𝐼

)︂
𝑟𝑖𝐼=0

= −𝑍. (8.11)

Note that if the antisymmetric part of the wavefunction satisfies the electron-ion cusp condition (for instance by using
single-particle orbitals that respect the cusp condition) or if a nondivergent pseudopotential is used, the Jastrow should
be cuspless at the nucleus and this value should be kept at its default of 0.

Coefficients element:

Name Datatype Values Defaults Description
Id Text (Required) Unique identifier
Type Text Array (Required)
Optimize Text Yes or no Yes if no, values are fixed in optimizations

Elements
(None)
Contents
(No name) Real array Zeros Jastrow coefficients

Example use cases

Specify a spin-independent function with four parameters. Because rcut is not specified, the default cutoff of the
Wigner Seitz cell radius is used; this Jastrow must be used with a 3D periodic system such as a bulk solid. The name
of the particleset holding the ionic positions is “i.”

<jastrow name="J1" type="One-Body" function="Bspline" print="yes" source="i">
<correlation elementType="C" cusp="0.0" size="4">
<coefficients id="C" type="Array"> 0 0 0 0 </coefficients>

</correlation>
</jastrow>

Specify a spin-dependent function with seven up-spin and seven down-spin parameters. The cutoff distance is set to 6
atomic units. Note here that the particleset holding the ions is labeled as ion0 rather than “i,” as in the other example.
Also in this case, the ion is lithium with a coulomb potential, so the cusp condition is satisfied by setting cusp=”d.”

<jastrow name="J1" type="One-Body" function="Bspline" source="ion0" spin="yes">
<correlation speciesA="Li" speciesB="u" size="7" rcut="6">
<coefficients id="eLiu" cusp="3.0" type="Array">
0.0 0.0 0.0 0.0 0.0 0.0 0.0
</coefficients>

</correlation>
<correlation speciesA="C" speciesB="d" size="7" rcut="6">
<coefficients id="eLid" cusp="3.0" type="Array">
0.0 0.0 0.0 0.0 0.0 0.0 0.0
</coefficients>

</correlation>
</jastrow>
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Pade form

Although the spline Jastrow factor is the most flexible and most commonly used form implemented in QMCPACK,
there are times where its flexibility can make it difficult to optimize. As an example, a spline Jastrow with a very
large cutoff can be difficult to optimize for isolated systems such as molecules because of the small number of samples
present in the tail of the function. In such cases, a simpler functional form might be advantageous. The second-order
Pade Jastrow factor, given in (8.12), is a good choice in such cases.

𝑢𝑎𝑏(𝑟) =
𝑎 * 𝑟 + 𝑐 * 𝑟2

1 + 𝑏 * 𝑟
(8.12)

Unlike the spline Jastrow factor, which includes a cutoff, this form has an infinite range and will be applied to every
particle pair (subject to the minimum image convention). It also is a cuspless Jastrow factor, so it should be used either
in combination with a single particle basis set that contains the proper cusp or with a smooth pseudopotential.

Correlation element:

Name Datatype Values Defaults Description
ElementType Text Name See below Classical particle target
Elements

Coefficients
Contents

(None)

Parameter element:

Name Datatype Values Defaults Description
Id String Name (Required) Name for variable
Name String A or B or C (Required) See (8.12)
Optimize Text Yes or no Yes If no, values are fixed in optimizations

Elements
(None)
Contents
(No name) Real Parameter value (Required) Jastrow coefficients

Example use case

Specify a spin-independent function with independent Jastrow factors for two different species (Li and H). The name
of the particleset holding the ionic positions is “i.”

<jastrow name="J1" function="pade2" type="One-Body" print="yes" source="i">
<correlation elementType="Li">
<var id="LiA" name="A"> 0.34 </var>
<var id="LiB" name="B"> 12.78 </var>
<var id="LiC" name="C"> 1.62 </var>

</correlation>
<correlation elementType="H"">
<var id="HA" name="A"> 0.14 </var>
<var id="HB" name="B"> 6.88 </var>
<var id="HC" name="C"> 0.237 </var>

</correlation>
</jastrow>
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Short Range Cusp Form

The idea behind this functor is to encode nuclear cusps and other details at very short range around a nucleus in the
region that the Gaussian orbitals of quantum chemistry are not capable of describing correctly. The functor is kept
short ranged, because outside this small region, quantum chemistry orbital expansions are already capable of taking
on the correct shapes. Unlike a pre-computed cusp correction, this optimizable functor can respond to changes in the
wave function during VMC optimization. The functor’s form is

𝑢(𝑟) = − exp (−𝑟/𝑅0)

(︃
𝐴𝑅0 +

𝑁−1∑︁
𝑘=0

𝐵𝑘
(𝑟/𝑅0)𝑘+2

1 + (𝑟/𝑅0)𝑘+2

)︃
(8.13)

in which 𝑅0 acts as a soft cutoff radius (𝑢(𝑟) decays to zero quickly beyond roughly this distance) and 𝐴 determines
the cusp condition.

lim
𝑟→0

𝜕𝑢

𝜕𝑟
= 𝐴 (8.14)

The simple exponential decay is modified by the 𝑁 coefficients 𝐵𝑘 that define an expansion in sigmoidal functions,
thus adding detailed structure in a short-ranged region around a nucleus while maintaining the correct cusp condition
at the nucleus. Note that sigmoidal functions are used instead of, say, a bare polynomial expansion, as they trend to
unity past the soft cutoff radius and so interfere less with the exponential decay that keeps the functor short ranged.
Although 𝐴, 𝑅0, and the 𝐵𝑘 coefficients can all be optimized as variational parameters, 𝐴 will typically be fixed as
the desired cusp condition is known.

To specify this one-body Jastrow factor, use an input section like the following.

<jastrow name="J1Cusps" type="One-Body" function="shortrangecusp" source="ion0" print=
→˓"yes">
<correlation rcut="6" cusp="3" elementType="Li">
<var id="LiCuspR0" name="R0" optimize="yes"> 0.06 </var>
<coefficients id="LiCuspB" type="Array" optimize="yes">

0 0 0 0 0 0 0 0 0 0
</coefficients>

</correlation>
<correlation rcut="6" cusp="1" elementType="H">
<var id="HCuspR0" name="R0" optimize="yes"> 0.2 </var>
<coefficients id="HCuspB" type="Array" optimize="yes">

0 0 0 0 0 0 0 0 0 0
</coefficients>

</correlation>
</jastrow>

Here “rcut” is specified as the range beyond which the functor is assumed to be zero. The value of 𝐴 can either be
specified via the “cusp” option as shown above, in which case its optimization is disabled, or through its own “var”
line as for 𝑅0, in which case it can be specified as either optimizable (“yes”) or not (“no”). The coefficients 𝐵𝑘 are
specified via the “coefficients” section, with the length 𝑁 of the expansion determined automatically based on the
length of the array.

Note that this one-body Jastrow form can (and probably should) be used in conjunction with a longer ranged one-body
Jastrow, such as a spline form. Be sure to set the longer-ranged Jastrow to be cusp-free!
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8.6.2 Two-body Jastrow functions

The two-body Jastrow factor is a form that allows for the explicit inclusion of dynamic correlation between two
particles included in the wavefunction. It is almost always given in a spin dependent form so as to satisfy the Kato
cusp condition between electrons of different spins [[Kat51]].

The two body Jastrow function is specified within a wavefunction element and must contain one or more correla-
tion elements specifying additional parameters as well as the actual coefficients. Example use cases gives examples of
the typical nesting of jastrow, correlation and coefficient elements.

Input Specification

Jastrow element:

name datatype values defaults description
name text (required) Unique name for this Jastrow function
type text Two-body (required) Define a one-body function
function text Bspline (required) BSpline Jastrow
print text yes / no yes Jastrow factor printed in external file?

elements
Correlation

Contents
(None)

The two-body Jastrow factors used to describe correlations between electrons take the form

𝐽2 =

𝑒∑︁
𝑖

𝑒∑︁
𝑗>𝑖

𝑢𝑎𝑏(|𝑟𝑖 − 𝑟𝑗 |) (8.15)

The most commonly used form of two body Jastrow factor supported by the code is a splined Jastrow factor, with
many similarities to the one body spline Jastrow.

Spline form

The two-body spline Jastrow function is the most commonly used two-body Jastrow for solids. This form was first
described and used in [[EKCS12]]. Here 𝑢𝑎𝑏 is an interpolating 1D B-spline (tricublc spline on a linear grid) between
zero distance and 𝑟𝑐𝑢𝑡. In 3D periodic systems, the default cutoff distance is the Wigner Seitz cell radius. For other
periodicities, including isolated molecules, the 𝑟𝑐𝑢𝑡 must be specified. 𝑟𝑖 and 𝑟𝑗 are typically electron positions. The
cusp condition as 𝑟𝑖 approaches 𝑟𝑗 is set by the relative spin of the electrons.

Correlation element:
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Name Datatype Values Defaults Description
SpeciesA Text U or d (Required) Quantum species target
SpeciesB Text U or d (Required) Quantum species target
Size Integer > 0 (Required) Number of coefficients
Rcut Real > 0 See below Distance at which the correlation goes to 0
Spin Text Yes or no No Spin-dependent Jastrow factor

Elements
Coefficients

Contents
(None)

Additional information:

• speciesA, speciesB The scale function u(r) is defined for species pairs uu and ud. There is no need to
define ud or dd since uu=dd and ud=du. The cusp condition is computed internally based on the charge of the
quantum particles.

Coefficients element:

Name Datatype Values Defaults Description
Id Text (Required) Unique identifier
Type Text Array (Required)
Optimize Text Yes or no Yes If no, values are fixed in optimizations

Elements
(None)
Contents
(No name) Real array Zeros Jastrow coefficients

Example use cases

Specify a spin-dependent function with four parameters for each channel. In this case, the cusp is set at a radius of 4.0
bohr (rather than to the default of the Wigner Seitz cell radius). Also, in this example, the coefficients are set to not be
optimized during an optimization step.

<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="8" rcut="4.0">
<coefficients id="uu" type="Array" optimize="no"> 0.2309049836 0.1312646071 0.

→˓05464141356 0.01306231516</coefficients>
</correlation>
<correlation speciesA="u" speciesB="d" size="8" rcut="4.0">
<coefficients id="ud" type="Array" optimize="no"> 0.4351561096 0.2377951747 0.

→˓1129144262 0.0356789236</coefficients>
</correlation>

</jastrow>
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8.6.3 User defined functional form

To aid in implementing different forms for 𝑢𝑎𝑏(𝑟), there is a script that uses a symbolic expression to generate the
appropriate code (with spatial and parameter derivatives). The script is located in src/QMCWaveFunctions/
Jastrow/codegen/user_jastrow.py. The script requires Sympy (www.sympy.org) for symbolic mathemat-
ics and code generation.

To use the script, modify it to specify the functional form and a list of variational parameters. Optionally, there may
be fixed parameters - ones that are specified in the input file, but are not part of the variational optimization. Also one
symbol may be specified that accepts a cusp value in order to satisfy the cusp condition. There are several example
forms in the script. The default form is the simple Padé.

Once the functional form and parameters are specified in the script, run the script from the codegen directory
and recompile QMCPACK. The main output of the script is the file src/QMCWaveFunctions/Jastrow/
UserFunctor.h. The script also prints information to the screen, and one section is a sample XML input block
containing all the parameters.

There is a unit test in src/QMCWaveFunctions/test/test_user_jastrow.cpp to perform some minimal
testing of the Jastrow factor. The unit test will need updating to properly test new functional forms. Most of the changes
relate to the number and name of variational parameters.

Jastrow element:

name datatype values defaults description
name text (required) Unique name for this Jastrow function
type text One-body (required) Define a one-body function

Two-body (required) Define a two-body function
function text user (required) User-defined functor

See other parameters as appropriate for one or two-body functions

elements
Correlation

Contents
(None)

8.6.4 Long-ranged Jastrow factors

While short-ranged Jastrow factors capture the majority of the benefit for minimizing the total energy and the energy
variance, long-ranged Jastrow factors are important to accurately reproduce the short-ranged (long wavelength) behav-
ior of quantities such as the static structure factor, and are therefore essential for modern accurate finite size corrections
in periodic systems.

Below two types of long-ranged Jastrow factors are described. The first (the k-space Jastrow) is simply an expansion
of the one and/or two body correlation functions in plane waves, with the coefficients comprising the optimizable
parameters. The second type have few variational parameters and use the optimized breakup method of Natoli and
Ceperley [[NC95]] (the Yukawa and Gaskell RPA Jastrows).
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Long-ranged Jastrow: k-space Jastrow

The k-space Jastrow introduces explicit long-ranged dependence commensurate with the periodic supercell. This
Jastrow is to be used in periodic boundary conditions only.

The input for the k-space Jastrow fuses both one and two-body forms into a single element and so they are discussed
together here. The one- and two-body terms in the k-Space Jastrow have the form:

𝐽1 =
∑︁
𝐺 ̸=0

𝑏𝐺𝜌
𝐼
𝐺𝜌−𝐺 (8.16)

𝐽2 =
∑︁
𝐺 ̸=0

𝑎𝐺𝜌𝐺𝜌−𝐺 (8.17)

Here 𝜌𝐺 is the Fourier transform of the instantaneous electron density:

𝜌𝐺 =
∑︁

𝑛∈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

𝑒𝑖𝐺·𝑟𝑛
(8.18)

and 𝜌𝐼𝐺 has the same form, but for the fixed ions. In both cases the coefficients are restricted to be real, though in
general the coefficients for the one-body term need not be. See Feature: Reciprocal-space Jastrow factors for more
detail.

Input for the k-space Jastrow follows the familar nesting of jastrow-correlation-coefficients elements,
with attributes unique to the k-space Jastrow at the correlation input level.

jastrow type=kSpace element:

parent elements: wavefunction
child elements: correlation

attributes:

Name Datatype Values Default Description
type𝑟 text kSpace must be kSpace
name𝑟 text anything 0 Unique name for Jastrow
source𝑟 text particleset.name Ion particleset name

correlation element:

parent elements: jastrow type=kSpace
child elements: coefficients

attributes:

Name Datatype Values De-
fault

Description

type𝑟 text One-body, Two-
Body

Must be One-body/Two-
body

kc𝑟 real kc ≥ 0 0.0 k-space cutoff in a.u.
symmetry𝑜 text crystal,isotropic,none crystal symmetry of coefficients
spinDependent𝑜 boolean yes,no no No current function

coefficients element:

86 Chapter 8. Trial wavefunction specification



QMCPACK Manual

parent elements: correlation
child elements: None

attributes:

Name Datatype Values Default Description
id𝑟 text anything cG1/cG2 Label for coeffs
type𝑟 text Array 0 Must be Array

body text: The body text is a list of real values for the parameters.

Additional information:

• It is normal to provide no coefficients as an initial guess. The number of coefficients will be automatically
calculated according to the k-space cutoff + symmetry and set to zero.

• Providing an incorrect number of parameters also results in all parameters being set to zero.

• There is currently no way to turn optimization on/off for the k-space Jastrow. The coefficients are always
optimized.

• Spin dependence is currently not implemented for this Jastrow.

• kc: Parameters with G vectors magnitudes less than kc are included in the Jastrow. If kc is zero, it is the same
as excluding the k-space term.

• symmetry=crystal: Impose crystal symmetry on coefficients according to the structure factor.

• symmetry=isotropic: Impose spherical symmetry on coefficients according to G-vector magnitude.

• symmetry=none: Impose no symmetry on the coefficients.

Listing 8.15: k-space Jastrow with one- and two-body terms.

<jastrow type="kSpace" name="Jk" source="ion0">
<correlation kc="4.0" type="One-Body" symmetry="cystal">
<coefficients id="cG1" type="Array">
</coefficients>

</correlation>
<correlation kc="4.0" type="Two-Body" symmetry="crystal">
<coefficients id="cG2" type="Array">
</coefficients>

</correlation>
</jastrow>

Listing 8.16: k-space Jastrow with one-body term only.

<jastrow type="kSpace" name="Jk" source="ion0">
<correlation kc="4.0" type="One-Body" symmetry="crystal">

<coefficients id="cG1" type="Array">
</coefficients>

</correlation>
</jastrow>

Listing 8.17: k-space Jastrow with two-body term only.

<jastrow type="kSpace" name="Jk" source="ion0">
<correlation kc="4.0" type="Two-Body" symmetry="crystal">

(continues on next page)
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(continued from previous page)

<coefficients id="cG2" type="Array">
</coefficients>

</correlation>
</jastrow>

Long-ranged Jastrows: Gaskell RPA and Yukawa forms

NOTE: The Yukawa and RPA Jastrows do not work at present and are currently being revived. Please contact
the developers if you are interested in using them.

The exact Jastrow correlation functions contain terms which have a form similar to the Coulomb pair potential. In
periodic systems the Coulomb potential is replaced by an Ewald summation of the bare potential over all periodic
image cells. This sum is often handled by the optimized breakup method [[NC95]] and this same approach is applied
to the long-ranged Jastrow factors in QMCPACK.

There are two main long-ranged Jastrow factors of this type implemented in QMCPACK: the Gaskell RPA [[Gas61],
[Gas62]] form and the [[Cep78]] form. Both of these forms were used by Ceperley in early studies of the electron gas
[[Cep78]], but they are also appropriate starting points for general solids.

The Yukawa form is defined in real space. It’s long-range form is formally defined as

𝑢𝑃𝐵𝐶𝑌 (𝑟) =
∑︁
𝐿 ̸=0

∑︁
𝑖<𝑗

𝑢𝑌 (|𝑟𝑖 − 𝑟𝑗 + 𝐿|) (8.19)

with 𝑢𝑌 (𝑟) given by

𝑢𝑌 (𝑟) =
𝑎

𝑟

(︁
1− 𝑒−𝑟/𝑏

)︁
(8.20)

In QMCPACK a slightly more restricted form is used:

𝑢𝑌 (𝑟) =
𝑟𝑠
𝑟

(︁
1− 𝑒−𝑟/

√
𝑟𝑠
)︁

(8.21)

here “𝑟𝑠” is understood to be a variational parameter.

The Gaskell RPA form—which contains correct short/long range limits and minimizes the total energy of the electron
gas within the RPA—is defined directly in k-space:

𝑢𝑅𝑃𝐴(𝑘) = − 1

2𝑆0(𝑘)
+

1

2

(︂
1

𝑆0(𝑘)2
+

4𝑚𝑒𝑣𝑘
~2𝑘2

)︂1/2

(8.22)

where $v_k$ is the Fourier transform of the Coulomb potential and 𝑆0(𝑘) is the static structure factor of the non-
interacting electron gas:

𝑆0(𝑘) =

⎧⎨⎩1 𝑘 > 2𝑘𝐹
3𝑘
4𝑘𝐹
− 1

2

(︁
𝑘

2𝑘𝐹

)︁3
𝑘 < 2𝑘𝐹

When written in atomic units, RPA Jastrow implemented in QMCPACK has the form

𝑢𝑅𝑃𝐴(𝑘) =
1

2𝑁𝑒

(︃
− 1

𝑆0(𝑘)
+

(︂
1

𝑆0(𝑘)2
+

12

𝑟3𝑠𝑘
4

)︂1/2
)︃

(8.23)

Here “𝑟𝑠” is again a variational parameter and 𝑘𝐹 ≡ ( 9𝜋
4𝑟3𝑠

)1/3.

For both the Yukawa and Gaskell RPA Jastrows, the default value for 𝑟𝑠 is 𝑟𝑠 = ( 3Ω
4𝜋𝑁𝑒

)1/3.

jastrow type=Two-Body function=rpa/yukawa element:
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parent elements: wavefunction
child elements: correlation

attributes:

Name Datatype Values Default Description
type𝑟 text Two-body Must be two-body
function𝑟 text rpa/yukawa Must be rpa or yukawa
name𝑟 text anything RPA_Jee Unique name for Jastrow
longrange𝑜 boolean yes/no yes Use long-range part
shortrange𝑜 boolean yes/no yes Use short-range part

parameters:

Name Datatype Values Default Description
rs𝑜 rs 𝑟𝑠 > 0 3Ω

4𝜋𝑁𝑒
Avg. elec-elec distance

kc𝑜 kc 𝑘𝑐 > 0 2
(︀
9𝜋
4

)︀1/3 4𝜋𝑁𝑒

3Ω k-space cutoff

Listing 8.18: Two body RPA Jastrow with long- and short-ranged parts.

<jastrow name=''Jee'' type=''Two-Body'' function=''rpa''>
</jastrow>

8.6.5 Three-body Jastrow functions

Explicit three-body correlations can be included in the wavefunction via the three-body Jastrow factor. The three-body
electron-electron-ion correlation function (𝑢𝜎𝜎′𝐼 ) currently used in is identical to the one proposed in [[DTN04]]:

𝑢𝜎𝜎′𝐼(𝑟𝜎𝐼 , 𝑟𝜎′𝐼 , 𝑟𝜎𝜎′) =

𝑀𝑒𝐼∑︁
ℓ=0

𝑀𝑒𝐼∑︁
𝑚=0

𝑀𝑒𝑒∑︁
𝑛=0

𝛾ℓ𝑚𝑛𝑟
ℓ
𝜎𝐼𝑟

𝑚
𝜎′𝐼𝑟

𝑛
𝜎𝜎′

×
(︁
𝑟𝜎𝐼 −

𝑟𝑐
2

)︁3
Θ
(︁
𝑟𝜎𝐼 −

𝑟𝑐
2

)︁
×
(︁
𝑟𝜎′𝐼 −

𝑟𝑐
2

)︁3
Θ
(︁
𝑟𝜎′𝐼 −

𝑟𝑐
2

)︁
Here 𝑀𝑒𝐼 and 𝑀𝑒𝑒 are the maximum polynomial orders of the electron-ion and electron-electron distances, respec-
tively, {𝛾ℓ𝑚𝑛} are the optimizable parameters (modulo constraints), 𝑟𝑐 is a cutoff radius, and 𝑟𝑎𝑏 are the distances
between electrons or ions 𝑎 and 𝑏. i.e. The correlation function is only a function of the interparticle distances and
not a more complex function of the particle positions, r. As indicated by the Θ functions, correlations are set to zero
beyond a distance of 𝑟𝑐/2 in either of the electron-ion distances and the largest meaningful electron-electron distance
is 𝑟𝑐. This is the highest-order Jastrow correlation function currently implemented.

Today, solid state applications of QMCPACK usually utilize one and two-body B-spline Jastrow functions, with cal-
culations on heavier elements often also using the three-body term described above.
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Example use case

Here is an example of H2O molecule. After optimizing one and two body Jastrow factors, add the following block in
the wavefunction. The coefficients will be filled zero automatically if not given.

<jastrow name="J3" type="eeI" function="polynomial" source="ion0" print="yes">
<correlation ispecies="O" especies="u" isize="3" esize="3" rcut="10">
<coefficients id="uuO" type="Array" optimize="yes"> </coefficients>

</correlation>
<correlation ispecies="O" especies1="u" especies2="d" isize="3" esize="3" rcut="10">
<coefficients id="udO" type="Array" optimize="yes"> </coefficients>

</correlation>
<correlation ispecies="H" especies="u" isize="3" esize="3" rcut="10">
<coefficients id="uuH" type="Array" optimize="yes"> </coefficients>

</correlation>
<correlation ispecies="H" especies1="u" especies2="d" isize="3" esize="3" rcut="10">
<coefficients id="udH" type="Array" optimize="yes"> </coefficients>

</correlation>
</jastrow>

8.7 Gaussian Product Wavefunction

The Gaussian Product wavefunction implements (8.24)

Ψ(�⃗�) =

𝑁∏︁
𝑖=1

exp

[︃
− (�⃗�𝑖 − �⃗�𝑜𝑖 )2

2𝜎2
𝑖

]︃
(8.24)

where �⃗�𝑖 is the position of the 𝑖th quantum particle and �⃗�𝑜𝑖 is its center. 𝜎𝑖 is the width of the Gaussian orbital around
center 𝑖.

This variational wavefunction enhances single-particle density at chosen spatial locations with adjustable strengths. It
is useful whenever such localization is physically relevant yet not captured by other parts of the trial wavefunction.
For example, in an electron-ion simulation of a solid, the ions are localized around their crystal lattice sites. This
single-particle localization is not captured by the ion-ion Jastrow. Therefore, the addition of this localization term will
improve the wavefunction. The simplest use case of this wavefunction is perhaps the quantum harmonic oscillator
(please see the “tests/models/sho” folder for examples).

Input specification

Gaussian Product Wavefunction (ionwf):

Name Datatype Values Default Description
Name Text ionwf (Required) Unique name for this wavefunction
Width Floats 1.0 -1 (Required) Widths of Gaussian orbitals
Source Text ion0 (Required) Name of classical particle set

Additional information:

• width There must be one width provided for each quantum particle. If a negative width is given, then its
corresponding Gaussian orbital is removed. Negative width is useful if one wants to use Gaussian wavefunction
for a subset of the quantum particles.

• source The Gaussian centers must be specified in the form of a classical particle set. This classical particle
set is likely the ion positions “ion0,” hence the name “ionwf.” However, arbitrary centers can be defined using a
different particle set. Please refer to the examples in “tests/models/sho.”
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8.7.1 Example Use Case

<qmcsystem>
<simulationcell>
<parameter name="bconds">

n n n
</parameter>

</simulationcell>
<particleset name="e">
<group name="u" size="1">

<parameter name="mass">5.0</parameter>
<attrib name="position" datatype="posArray" condition="0">

0.0001 -0.0001 0.0002
</attrib>

</group>
</particleset>
<particleset name="ion0" size="1">
<group name="H">

<attrib name="position" datatype="posArray" condition="0">
0 0 0

</attrib>
</group>

</particleset>
<wavefunction target="e" id="psi0">
<ionwf name="iwf" source="ion0" width="0.8165"/>

</wavefunction>
<hamiltonian name="h0" type="generic" target="e">
<extpot type="HarmonicExt" mass="5.0" energy="0.3"/>
<estimator type="latticedeviation" name="latdev"

target="e" tgroup="u"
source="ion0" sgroup="H"/>

</hamiltonian>
</qmcsystem>
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CHAPTER

NINE

HAMILTONIAN AND OBSERVABLES

QMCPACK is capable of the simultaneous measurement of the Hamiltonian and many other quantum operators. The
Hamiltonian attains a special status among the available operators (also referred to as observables) because it ultimately
generates all available information regarding the quantum system. This is evident from an algorithmic standpoint as
well since the Hamiltonian (embodied in the projector) generates the imaginary time dynamics of the walkers in DMC
and reptation Monte Carlo (RMC).

This section covers how the Hamiltonian can be specified, component by component, by the user in the XML format
native to qmcpack. It also covers the input structure of statistical estimators corresponding to quantum observables
such as the density, static structure factor, and forces.

9.1 The Hamiltonian

The many-body Hamiltonian in Hartree units is given by

�̂� = −
∑︁
𝑖

1

2𝑚𝑖
∇2
𝑖 +

∑︁
𝑖

𝑣𝑒𝑥𝑡(𝑟𝑖) +
∑︁
𝑖<𝑗

𝑣𝑞𝑞(𝑟𝑖, 𝑟𝑗) +
∑︁
𝑖ℓ

𝑣𝑞𝑐(𝑟𝑖, 𝑟ℓ) +
∑︁
ℓ<𝑚

𝑣𝑐𝑐(𝑟ℓ, 𝑟𝑚) . (9.1)

Here, the sums indexed by 𝑖/𝑗 are over quantum particles, while ℓ/𝑚 are reserved for classical particles. Often
the quantum particles are electrons, and the classical particles are ions, though is not limited in this way. The
mass of each quantum particle is denoted 𝑚𝑖, 𝑣𝑞𝑞/𝑣𝑞𝑐/𝑣𝑐𝑐 are pair potentials between quantum-quantum/quantum-
classical/classical-classical particles, and 𝑣𝑒𝑥𝑡 denotes a purely external potential.

QMCPACK is designed modularly so that any potential can be supported with minimal additions to the code base.
Potentials currently supported include Coulomb interactions in open and periodic boundary conditions, the MPC po-
tential, nonlocal pseudopotentials, helium pair potentials, and various model potentials such as hard sphere, Gaussian,
and modified Poschl-Teller.

Reference information and examples for the <hamiltonian/> XML element are provided subsequently. Detailed
descriptions of the input for individual potentials is given in the sections that follow.

hamiltonian element:

parent elements: simulation, qmcsystem
child elements: pairpot extpot estimator constant (deprecated)

attributes:
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Name Datatype Values De-
fault

Description

name/
id𝑜

text anything h0 Unique id for this Hamiltonian in-
stance

type𝑜 text generic No current function
role𝑜 text primary/extra extra Designate as Hamiltonian or not
source𝑜 text particleset.

name
i Identify classical particleset

target𝑜 text particleset.
name

e Identify quantum particleset

default𝑜 boolean yes/no yes Include kinetic energy term implicitly

Additional information:

• target: Must be set to the name of the quantum particleset. The default value is typically sufficient. In
normal usage, no other attributes are provided.

Listing 9.1: All electron Hamiltonian XML element.

<hamiltonian target="e">
<pairpot name="ElecElec" type="coulomb" source="e" target="e"/>
<pairpot name="ElecIon" type="coulomb" source="i" target="e"/>
<pairpot name="IonIon" type="coulomb" source="i" target="i"/>

</hamiltonian>

Listing 9.2: Pseudopotential Hamiltonian XML element.

<hamiltonian target="e">
<pairpot name="ElecElec" type="coulomb" source="e" target="e"/>
<pairpot name="PseudoPot" type="pseudo" source="i" wavefunction="psi0" format="xml

→˓">
<pseudo elementType="Li" href="Li.xml"/>
<pseudo elementType="H" href="H.xml"/>

</pairpot>
<pairpot name="IonIon" type="coulomb" source="i" target="i"/>

</hamiltonian>

9.2 Pair potentials

Many pair potentials are supported. Though only the most commonly used pair potentials are covered in detail in this
section, all currently available potentials are listed subsequently. If a potential you desire is not listed, or is not present
at all, feel free to contact the developers.

pairpot factory element:

parent elements: hamiltonian
child elements: type attribute
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type options coulomb Coulomb/Ewald potential
pseudo Semilocal pseudopotential
mpc Model periodic Coulomb interaction/correction
cpp Core polarization potential
skpot Unknown

shared attributes:

Name Datatype Values Default Description
type𝑟 text See above 0 Select pairpot type
name𝑟 text Anything any Unique name for this

pairpot
source𝑟 text particleset.

name
hamiltonian.
target

Identify interacting parti-
cles

target𝑟 text particleset.
name

hamiltonian.
target

Identify interacting parti-
cles

units𝑜 text hartree No current function

Additional information:

• type: Used to select the desired pair potential. Must be selected from the list of type options.

• name: A unique name used to identify this pair potential. Block averaged output data will appear under this
name in scalar.dat and/or stat.h5 files.

• source/target: These specify the particles involved in a pair interaction. If an interaction is between classi-
cal (e.g., ions) and quantum (e.g., electrons), source/target should be the name of the classical/quantum
particleset.

• Only Coulomb, pseudo, and mpc are described in detail in the following subsections. The older or less-used
types (cpp, skpot) are not covered.

• Available only if QMC_CUDA is not defined: skpot.

• Available only if OHMMS_DIM==3: mpc, vhxc, pseudo.

• Available only if OHMMS_DIM==3 and QMC_CUDA is not defined: cpp.

9.2.1 Coulomb potentials

The bare Coulomb potential is used in open boundary conditions:

𝑉 𝑜𝑝𝑒𝑛𝑐 =
∑︁
𝑖<𝑗

𝑞𝑖𝑞𝑗
|𝑟𝑖 − 𝑟𝑗 |

. (9.2)

When periodic boundary conditions are selected, Ewald summation is used automatically:

𝑉 𝑝𝑏𝑐𝑐 =
∑︁
𝑖<𝑗

𝑞𝑖𝑞𝑗
|𝑟𝑖 − 𝑟𝑗 |

+
1

2

∑︁
𝐿 ̸=0

∑︁
𝑖,𝑗

𝑞𝑖𝑞𝑗
|𝑟𝑖 − 𝑟𝑗 + 𝐿|

. (9.3)

The sum indexed by 𝐿 is over all nonzero simulation cell lattice vectors. In practice, the Ewald sum is broken into
short- and long-range parts in a manner optimized for efficiency (see [[NC95]]) for details.

For information on how to set the boundary conditions, consult Specifying the system to be simulated.

pairpot type=coulomb element:
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parent elements: hamiltonian
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text coulomb Must be coulomb
name/
id𝑟

text anything ElecElec Unique name for interac-
tion

source𝑟 text particleset.
name

hamiltonian.
target

Identify interacting parti-
cles

target𝑟 text particleset.
name

hamiltonian.
target

Identify interacting parti-
cles

pbc𝑜 boolean yes/no yes Use Ewald summation
physical𝑜 boolean yes/no yes Hamilto-

nian(yes)/Observable(no)
forces boolean yes/no no Deprecated

Additional information:

• type/source/target: See description for the previous generic pairpot factory element.

• name: Traditional user-specified names for electron-electron, electron-ion, and ion-ion terms are ElecElec,
ElecIon, and IonIon, respectively. Although any choice can be used, the data analysis tools expect to find
columns in *.scalar.dat with these names.

• pbc: Ewald summation will not be performed if simulationcell.bconds== n n n, regardless
of the value of pbc. Similarly, the pbc attribute can only be used to turn off Ewald summation if
simulationcell.bconds!= n n n. The default value is recommended.

• physical: If physical==yes, this pair potential is included in the Hamiltonian and will factor into the
LocalEnergy reported by QMCPACK and also in the DMC branching weight. If physical==no, then
the pair potential is treated as a passive observable but not as part of the Hamiltonian itself. As such it does not
contribute to the outputted LocalEnergy. Regardless of the value of physical output data will appear in
scalar.dat in a column headed by name.

Listing 9.3: QMCPXML element for Coulomb interaction between elec-
trons.

<pairpot name="ElecElec" type="coulomb" source="e" target="e"/>

Listing 9.4: QMCPXML element for Coulomb interaction between elec-
trons and ions (all-electron only).

<pairpot name="ElecIon" type="coulomb" source="i" target="e"/>
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Listing 9.5: QMCPXML element for Coulomb interaction between ions.

<pairpot name="IonIon" type="coulomb" source="i" target="i"/>

9.2.2 Pseudopotentials

QMCPACK supports pseudopotentials in semilocal form, which is local in the radial coordinate and nonlocal in
angular coordinates. When all angular momentum channels above a certain threshold (ℓ𝑚𝑎𝑥) are well approximated
by the same potential (𝑉ℓ̄ ≡ 𝑉𝑙𝑜𝑐), the pseudopotential separates into a fully local channel and an angularly nonlocal
component:

𝑉 𝑃𝑃 =
∑︁
𝑖𝑗

(︁
𝑉ℓ̄(|𝑟𝑖 − 𝑟𝑗 |) +

ℓ𝑚𝑎𝑥∑︁
ℓ ̸=ℓ̄

ℓ∑︁
𝑚=−ℓ

|𝑌ℓ𝑚⟩
[︀
𝑉ℓ(|𝑟𝑖 − 𝑟𝑗 |)− 𝑉ℓ̄(|𝑟𝑖 − 𝑟𝑗 |)

]︀
⟨𝑌ℓ𝑚|

)︁
. (9.4)

Here the electron/ion index is 𝑖/𝑗, and only one type of ion is shown for simplicity.

Evaluation of the localized pseudopotential energy Ψ−1
𝑇 𝑉 𝑃𝑃Ψ𝑇 requires additional angular integrals. These integrals

are evaluated on a randomly shifted angular grid. The size of this grid is determined by ℓ𝑚𝑎𝑥. See [[MSC91]] for
further detail.

uses the FSAtom pseudopotential file format associated with the “Free Software Project for Atomic-scale Simulations”
initiated in 2002. See http://www.tddft.org/fsatom/manifest.php for more information. The FSAtom format uses XML
for structured data. Files in this format do not use a specific identifying file extension; instead they are simply suffixed
with “.xml.” The tabular data format of CASINO is also supported.

In addition to the semilocal pseudopotential above, spin-orbit interactions can also be included through the use of
spin-orbit pseudopotentials. The spin-orbit contribution can be written as

𝑉 SO =
∑︁
𝑖𝑗

⎛⎝ℓ𝑚𝑎𝑥−1∑︁
ℓ=1

2

2ℓ+ 1
𝑉 SO
ℓ (|𝑟𝑖 − 𝑟𝑗 |)

ℓ∑︁
𝑚,𝑚′=−ℓ

|𝑌ℓ𝑚⟩⟨𝑌ℓ𝑚|ℓ⃗ · �⃗�|𝑌ℓ𝑚′⟩⟨𝑌ℓ𝑚′ |

⎞⎠ . (9.5)

Here, �⃗� is the spin operator. For each atom with a spin-orbit contribution, the radial functions 𝑉 SO
ℓ can be included in

the pseudopotential “.xml” file.

pairpot type=pseudo element:

parent elements: hamiltonian
child elements: pseudo

attributes:
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Name DatatypeValues Default Description
type𝑟 text pseudo Must be pseudo
name/id𝑟 text anything PseudoPot No current function
source𝑟 text particleset.

name
i Ion particleset name

target𝑟 text particleset.
name

hamiltonian.
target

Electron particleset name

pbc𝑜 boolean yes/no yes* Use Ewald summation
forces boolean yes/no no Deprecated
wavefunction𝑟text wavefunction.

name
invalid Identify wavefunction

format𝑟 text xml/table table Select file format
algorithm𝑜 text batched/non-

batched
batched Choose NLPP algorithm

DLA𝑜 text yes/no no Use determinant localization ap-
proximation

physicalSO𝑜 boolean yes/no yes Include the SO contribution in
the local energy

Additional information:

• type/source/target See description for the generic pairpot factory element.

• name: Ignored. Instead, default names will be present in *scalar.dat output files when pseudopotentials
are used. The field LocalECP refers to the local part of the pseudopotential. If nonlocal channels are present,
a NonLocalECP field will be added that contains the nonlocal energy summed over all angular momentum
channels.

• pbc: Ewald summation will not be performed if simulationcell.bconds== n n n, regardless
of the value of pbc. Similarly, the pbc attribute can only be used to turn off Ewald summation if
simulationcell.bconds!= n n n.

• format: If format==table, QMCPACK looks for *.psf files containing pseudopotential data in a tabular
format. The files must be named after the ionic species provided in particleset (e.g., Li.psf and H.
psf). If format==xml, additional pseudo child XML elements must be provided (see the following). These
elements specify individual file names and formats (both the FSAtom XML and CASINO tabular data formats
are supported).

• algorithm The non-batched algorithm evaluates the ratios of wavefunction components together for each
quadrature point and then one point after another. The batched algorithm evaluates the ratios of quadrature
points together for each wavefunction component and then one component after another. Internally, it uses
VirtualParticleSet for quadrature points. Hybrid orbital representation has an extra optimization en-
abled when using the batched algorithm. When OpenMP offload build is enabled, the default value is batched.
Otherwise, non-batched is the default.

• DLA Determinant localization approximation (DLA) [[ZBMAlfe19]] uses only the fermionic part of the wave-
function when calculating NLPP.

• physicalSO If the spin-orbit components are included in the .xml file, this flag allows control over whether the
SO contribution is included in the local energy.

Listing 9.6: QMCPXML element for pseudopotential electron-ion inter-
action (psf files).

<pairpot name="PseudoPot" type="pseudo" source="i" wavefunction="psi0" format="psf
→˓"/>
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Listing 9.7: QMCPXML element for pseudopotential electron-ion inter-
action (xml files). If SOC terms present in xml, they are added to local
energy

<pairpot name="PseudoPot" type="pseudo" source="i" wavefunction="psi0" format="xml
→˓">

<pseudo elementType="Li" href="Li.xml"/>
<pseudo elementType="H" href="H.xml"/>

</pairpot>

Listing 9.8: QMCPXML element for pseudopotential to accumulate the
spin-orbit energy, but do not include in local energy

<pairpot name="PseudoPot" type="pseudo" source="i" wavefunction="psi0" format="xml"
→˓physicalSO="no">

<pseudo elementType="Pb" href="Pb.xml"/>
</pairpot>

Details of <pseudo/> input elements are shown in the following. It is possible to include (or construct) a full
pseudopotential directly in the input file without providing an external file via href. The full XML format for
pseudopotentials is not yet covered.

pseudo element:

parent elements: pairpot type=pseudo
child elements: header local grid

attributes:

Name Datatype Values De-
fault

Description

elementType/
symbol𝑟

text groupe.
name

none Identify ionic species

href𝑟 text filepath none Pseudopotential file path
format𝑟 text xml/casino xml Specify file format
cutoff𝑜 real Nonlocal cutoff radius
lmax𝑜 integer Largest angular momen-

tum
nrule𝑜 integer Integration grid order
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Listing 9.9: QMCPXML element for pseudopotential of single ionic
species.

<pseudo elementType="Li" href="Li.xml"/>

9.2.3 MPC Interaction/correction

The MPC interaction is an alternative to direct Ewald summation. The MPC corrects the exchange correlation hole
to more closely match its thermodynamic limit. Because of this, the MPC exhibits smaller finite-size errors than the
bare Ewald interaction, though a few alternative and competitive finite-size correction schemes now exist. The MPC
is itself often used just as a finite-size correction in post-processing (set physical=false in the input).

pairpot type=mpc element:

parent elements: hamiltonian
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text mpc Must be MPC
name/
id𝑟

text anything MPC Unique name for interac-
tion

source𝑟 text particleset.
name

hamiltonian.
target

Identify interacting parti-
cles

target𝑟 text particleset.
name

hamiltonian.
target

Identify interacting parti-
cles

physical𝑜 boolean yes/no no Hamilto-
nian(yes)/observable(no)

cutoff real > 0 30.0 Kinetic energy cutoff

Remarks:

• physical: Typically set to no, meaning the standard Ewald interaction will be used during sampling and MPC
will be measured as an observable for finite-size post-correction. If physical is yes, the MPC interaction
will be used during sampling. In this case an electron-electron Coulomb pairpot element should not be
supplied.

• Developer note: Currently the name attribute for the MPC interaction is ignored. The name is always reset to
MPC.
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Listing 9.10: MPC for finite-size postcorrection.

<pairpot type="MPC" name="MPC" source="e" target="e" ecut="60.0" physical="no"/>

9.3 General estimators

A broad range of estimators for physical observables are available in QMCPACK. The following sections contain
input details for the total number density (density), number density resolved by particle spin (spindensity),
spherically averaged pair correlation function (gofr), static structure factor (sk), static structure factor (skall),
energy density (energydensity), one body reduced density matrix (dm1b), 𝑆(𝑘) based kinetic energy correction
(chiesa), forward walking (ForwardWalking), and force (Force) estimators. Other estimators are not yet
covered.

When an <estimator/> element appears in <hamiltonian/>, it is evaluated for all applicable chained QMC
runs (e.g., VMC→DMC→DMC). Estimators are generally not accumulated during wavefunction optimization sec-
tions. If an <estimator/> element is instead provided in a particular <qmc/> element, that estimator is only
evaluated for that specific section (e.g., during VMC only).

estimator factory element:

parent elements: hamiltonian, qmc
type selector: type attribute

type options density Density on a grid
spindensity Spin density on a grid
gofr Pair correlation function (quantum species)
sk Static structure factor
SkAll Static structure factor needed for finite size correction
structurefactor Species resolved structure factor
species kinetic Species resolved kinetic energy
latticedeviation Spatial deviation between two particlesets
momentum Momentum distribution
energydensity Energy density on uniform or Voronoi grid
dm1b One body density matrix in arbitrary basis
chiesa Chiesa-Ceperley-Martin-Holzmann kinetic energy correction
Force Family of “force” estimators (see “Force” estimators)
ForwardWalking Forward walking values for existing estimators
orbitalimages Create image files for orbitals, then exit
flux Checks sampling of kinetic energy
localmoment Atomic spin polarization within cutoff radius
Pressure No current function

shared attributes:

Name Datatype Values Default Description
type𝑟 text See above 0 Select estimator type
name𝑟 text anything any Unique name for this estimator
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9.3.1 Chiesa-Ceperley-Martin-Holzmann kinetic energy correction

This estimator calculates a finite-size correction to the kinetic energy following the formalism laid out in [[CCMH06]].
The total energy can be corrected for finite-size effects by using this estimator in conjunction with the MPC correction.

estimator type=chiesa element:

parent elements: hamiltonian, qmc
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text chiesa Must be chiesa
name𝑜 text anything KEcorr Always reset to KEcorr
source𝑜 text particleset.name e Identify quantum particles
psi𝑜 text wavefunction.name psi0 Identify wavefunction

Listing 9.11: “Chiesa” kinetic energy finite-size postcorrection.

<estimator name="KEcorr" type="chiesa" source="e" psi="psi0"/>

9.3.2 Density estimator

The particle number density operator is given by

�̂�𝑟 =
∑︁
𝑖

𝛿(𝑟 − 𝑟𝑖) . (9.6)

The density estimator accumulates the number density on a uniform histogram grid over the simulation cell. The
value obtained for a grid cell 𝑐 with volume Ω𝑐 is then the average number of particles in that cell:

𝑛𝑐 =

∫︁
𝑑𝑅 |Ψ|2

∫︁
Ω𝑐

𝑑𝑟
∑︁
𝑖

𝛿(𝑟 − 𝑟𝑖) . (9.7)

estimator type=density element:

parent elements: hamiltonian, qmc
child elements: None

attributes:
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Name Datatype Values Default Description
type𝑟 text density Must be density
name𝑟 text anything any Unique name for estimator
delta𝑜 real ar-

ray(3)
0 ≤ 𝑣𝑖 ≤
1

0.1 0.1 0.1 Grid cell spacing, unit coords

x_min𝑜 real > 0 0 Grid starting point in x (Bohr)
x_max𝑜 real > 0 | lattice[0]

|
Grid ending point in x (Bohr)

y_min𝑜 real > 0 0 Grid starting point in y (Bohr)
y_max𝑜 real > 0 | lattice[1]

|
Grid ending point in y (Bohr)

z_min𝑜 real > 0 0 Grid starting point in z (Bohr)
z_max𝑜 real > 0 | lattice[2]

|
Grid ending point in z (Bohr)

potential𝑜 boolean yes/no no Accumulate local potential, depre-
cated

debug𝑜 boolean yes/no no No current function

Additional information:

• name: The name provided will be used as a label in the stat.h5 file for the blocked output data. Postpro-
cessing tools expect name="Density."

• delta: This sets the histogram grid size used to accumulate the density: delta="0.1 0.1 0.05"→
10 × 10 × 20 grid, delta="0.01 0.01 0.01"→ 100 × 100 × 100 grid. The density grid is written to a
stat.h5 file at the end of each MC block. If you request many 𝑏𝑙𝑜𝑐𝑘𝑠 in a <qmc/> element, or select a large
grid, the resulting stat.h5 file could be many gigabytes in size.

• *_min/*_max: Can be used to select a subset of the simulation cell for the density histogram grid. For ex-
ample if a (cubic) simulation cell is 20 Bohr on a side, setting *_min=5.0 and *_max=15.0 will result in a
density histogram grid spanning a 10×10×10 Bohr cube about the center of the box. Use of x_min, x_max,
y_min, y_max, z_min, z_max is only appropriate for orthorhombic simulation cells with open bound-
ary conditions.

• When open boundary conditions are used, a <simulationcell/> element must be explicitly provided as
the first subelement of <qmcsystem/> for the density estimator to work. In this case the molecule should be
centered around the middle of the simulation cell (𝐿/2) and not the origin (0 since the space within the cell, and
hence the density grid, is defined from 0 to 𝐿).

Listing 9.12: QMCPXML,caption=Density estimator (uniform grid).

<estimator name="Density" type="density" delta="0.05 0.05 0.05"/>

9.3.3 Spin density estimator

The spin density is similar to the total density described previously. In this case, the sum over particles is performed
independently for each spin component.

estimator type=spindensity element:

parent elements: hamiltonian, qmc
child elements: None

attributes:
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Name Datatype Values Default Description
type𝑟 text spindensity Must be spindensity
name𝑟 text anything any Unique name for estimator
report𝑜 boolean yes/no no Write setup details to stdout

parameters:

Name Datatype Values De-
fault

Description

grid𝑜 integer ar-
ray(3)

𝑣𝑖 > Grid cell count

dr𝑜 real array(3) 𝑣𝑖 > Grid cell spacing (Bohr)
cell𝑜 real ar-

ray(3,3)
anything Volume grid exists in

corner𝑜 real array(3) anything Volume corner location
center𝑜 real array (3) anything Volume center/origin location
voronoi𝑜 text particleset.

name
Under development

test_moves𝑜 integer >= 0 0 Test estimator with random
moves

Additional information:

• name: The name provided will be used as a label in the stat.h5 file for the blocked output data. Postpro-
cessing tools expect name="SpinDensity."

• grid: The grid sets the dimension of the histogram grid. Input like <parameter name="grid"> 40 40
40 </parameter> requests a 40 × 40 × 40 grid. The shape of individual grid cells is commensurate with
the supercell shape.

• dr: The dr sets the real-space dimensions of grid cell edges (Bohr units). Input like <parameter
name="dr"> 0.5 0.5 0.5 </parameter> in a supercell with axes of length 10 Bohr each (but of
arbitrary shape) will produce a 20 × 20 × 20 grid. The inputted dr values are rounded to produce an integer
number of grid cells along each supercell axis. Either grid or dr must be provided, but not both.

• cell: When cell is provided, a user-defined grid volume is used instead of the global supercell. This must
be provided if open boundary conditions are used. Additionally, if cell is provided, the user must specify
where the volume is located in space in addition to its size/shape (cell) using either the corner or center
parameters.

• corner: The grid volume is defined as 𝑐𝑜𝑟𝑛𝑒𝑟 +
∑︀3
𝑑=1 𝑢𝑑𝑐𝑒𝑙𝑙𝑑 with 0 < 𝑢𝑑 < 1 (“cell” refers to either the

supercell or user-provided cell).

• center: The grid volume is defined as 𝑐𝑒𝑛𝑡𝑒𝑟 +
∑︀3
𝑑=1 𝑢𝑑𝑐𝑒𝑙𝑙𝑑 with −1/2 < 𝑢𝑑 < 1/2 (“cell” refers to

either the supercell or user-provided cell). corner/center can be used to shift the grid even if cell is not
specified. Simultaneous use of corner and center will cause QMCPACK to abort.

Listing 9.13: Spin density estimator (uniform grid).

<estimator type="spindensity" name="SpinDensity" report="yes">
<parameter name="grid"> 40 40 40 </parameter>

</estimator>
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Listing 9.14: Spin density estimator (uniform grid centered about origin).

<estimator type="spindensity" name="SpinDensity" report="yes">
<parameter name="grid">
20 20 20

</parameter>
<parameter name="center">
0.0 0.0 0.0

</parameter>
<parameter name="cell">
10.0 0.0 0.0
0.0 10.0 0.0
0.0 0.0 10.0

</parameter>
</estimator>

9.3.4 Pair correlation function, 𝑔(𝑟)

The functional form of the species-resolved radial pair correlation function operator is

𝑔𝑠𝑠′(𝑟) =
𝑉

4𝜋𝑟2𝑁𝑠𝑁𝑠′

𝑁𝑠∑︁
𝑖𝑠=1

𝑁𝑠′∑︁
𝑗𝑠′=1

𝛿(𝑟 − |𝑟𝑖𝑠 − 𝑟𝑗𝑠′ |) , (9.8)

where 𝑁𝑠 is the number of particles of species 𝑠 and 𝑉 is the supercell volume. If 𝑠 = 𝑠′, then the sum is restricted so
that 𝑖𝑠 ̸= 𝑗𝑠.

In QMCPACK, an estimate of 𝑔𝑠𝑠′(𝑟) is obtained as a radial histogram with a set of 𝑁𝑏 uniform bins of width 𝛿𝑟. This
can be expressed analytically as

𝑔𝑠𝑠′(𝑟) =
𝑉

4𝜋𝑟2𝑁𝑠𝑁𝑠′

𝑁𝑠∑︁
𝑖=1

𝑁𝑠′∑︁
𝑗=1

1

𝛿𝑟

∫︁ 𝑟+𝛿𝑟/2

𝑟−𝛿𝑟/2
𝑑𝑟′𝛿(𝑟′ − |𝑟𝑠𝑖 − 𝑟𝑠′𝑗 |) , (9.9)

where the radial coordinate 𝑟 is restricted to reside at the bin centers, 𝛿𝑟/2, 3𝛿𝑟/2, 5𝛿𝑟/2, . . ..

estimator type=gofr element:

parent elements: hamiltonian, qmc
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text gofr Must be gofr
name𝑜 text anything any No current function
num_bin𝑟 integer > 1 20 # of histogram bins
rmax𝑜 real > 0 10 Histogram extent

(Bohr)
dr𝑜 real 0 0.5 No current function
debug𝑜 boolean yes/no no No current function
target𝑜 text particleset.

name
hamiltonian.
target

Quantum particles

source/
sources𝑜

text
array

particleset.
name

hamiltonian.
target

Classical particles
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Additional information:

• num_bin: This is the number of bins in each species pair radial histogram.

• rmax: This is the maximum pair distance included in the histogram. The uniform bin width is 𝛿𝑟 =
rmax/num_bin. If periodic boundary conditions are used for any dimension of the simulation cell, then
the default value of rmax is the simulation cell radius instead of 10 Bohr. For open boundary conditions, the
volume (𝑉 ) used is 1.0 Bohr3.

• source/sources: If unspecified, only pair correlations between each species of quantum particle will be
measured. For each classical particleset specified by source/sources, additional pair correlations between
each quantum and classical species will be measured. Typically there is only one classical particleset (e.g.,
source="ion0"), but there can be several in principle (e.g., sources="ion0 ion1 ion2").

• target: The default value is the preferred usage (i.e., target does not need to be provided).

• Data is output to the stat.h5 for each QMC subrun. Individual histograms are named according to the
quantum particleset and index of the pair. For example, if the quantum particleset is named “e” and there are
two species (up and down electrons, say), then there will be three sets of histogram data in each stat.h5 file
named gofr_e_0_0, gofr_e_0_1, and gofr_e_1_1 for up-up, up-down, and down-down correlations,
respectively.

Listing 9.15: Pair correlation function estimator element.

<estimator type="gofr" name="gofr" num_bin="200" rmax="3.0" />

Listing 9.16: Pair correlation function estimator element with additional
electron-ion correlations.

<estimator type="gofr" name="gofr" num_bin="200" rmax="3.0" source="ion0" />

9.3.5 Static structure factor, 𝑆(𝑘)

Let 𝜌𝑒k =
∑︀
𝑗 𝑒
𝑖k·r𝑒𝑗 be the Fourier space electron density, with r𝑒𝑗 being the coordinate of the j-th electron. k is

a wavevector commensurate with the simulation cell. QMCPACK allows the user to accumulate the static electron
structure factor 𝑆(k) at all commensurate k such that |k| ≤ (𝐿𝑅_𝐷𝐼𝑀_𝐶𝑈𝑇𝑂𝐹𝐹 )𝑟𝑐. 𝑁𝑒 is the number of elec-
trons, LR_DIM_CUTOFF is the optimized breakup parameter, and 𝑟𝑐 is the Wigner-Seitz radius. It is defined as
follows:

𝑆(k) =
1

𝑁𝑒
⟨𝜌𝑒−k𝜌

𝑒
k⟩ . (9.10)

estimator type=sk element:

parent elements: hamiltonian, qmc
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text sk Must sk
name𝑟 text anything any Unique name for estimator
hdf5𝑜 boolean yes/no no Output to stat.h5 (yes) or scalar.dat (no)

Additional information:
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• name: This is the unique name for estimator instance. A data structure of the same name will appear in
stat.h5 output files.

• hdf5: If hdf5==yes, output data for 𝑆(𝑘) is directed to the stat.h5 file (recommended usage). If
hdf5==no, the data is instead routed to the scalar.dat file, resulting in many columns of data with head-
ings prefixed by name and postfixed by the k-point index (e.g., sk_0 sk_1 ...sk_1037 ...).

• This estimator only works in periodic boundary conditions. Its presence in the input file is ignored otherwise.

• This is not a species-resolved structure factor. Additionally, for k vectors commensurate with the unit cell, 𝑆(k)
will include contributions from the static electronic density, thus meaning it will not accurately measure the
electron-electron density response.

Listing 9.17: Static structure factor estimator element.

<estimator type="sk" name="sk" hdf5="yes"/>

9.3.6 Static structure factor, SkAll

In order to compute the finite size correction to the potential energy, records of 𝜌(k) is required. What sets SkAll
apart from sk is that SkAll records 𝜌(k) in addition to 𝑠(k).

estimator type=SkAll element:

parent elements: hamiltonian, qmc
child elements: None

attributes:

Name Datatype Values De-
fault

Description

type𝑟 text sk Must be sk
name𝑟 text anything any Unique name for estimator
source𝑟 text Ion ParticleSet

name
None -

target𝑟 text Electron Particle-
Set name

None -

hdf5𝑜 boolean yes/no no Output to stat.h5 (yes) or scalar.
dat (no)

writeionion𝑜boolean yes/no no Writes file rhok_IonIon.dat containing
𝑠(k) for the ions

Additional information:

• name: This is the unique name for estimator instance. A data structure of the same name will appear in
stat.h5 output files.

• hdf5: If hdf5==yes, output data is directed to the stat.h5 file (recommended usage). If hdf5==no, the
data is instead routed to the scalar.dat file, resulting in many columns of data with headings prefixed by
rhok and postfixed by the k-point index.

• This estimator only works in periodic boundary conditions. Its presence in the input file is ignored otherwise.
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• This is not a species-resolved structure factor. Additionally, for k vectors commensurate with the unit cell,
𝑆(k) will include contributions from the static electronic density, thus meaning it wil not accurately measure
the electron-electron density response.

Listing 9.18: SkAll estimator element.

<estimator type="skall" name="SkAll" source="ion0" target="e" hdf5="yes"/>

9.3.7 Species kinetic energy

Record species-resolved kinetic energy instead of the total kinetic energy in the Kinetic column of scalar.dat.
SpeciesKineticEnergy is arguably the simplest estimator in QMCPACK. The implementation of this estimator
is detailed in manual/estimator/estimator_implementation.pdf.

estimator type=specieskinetic element:

parent elements: hamiltonian, qmc
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text specieskinetic Must be specieskinetic
name𝑟 text anything any Unique name for estimator
hdf5𝑜 boolean yes/no no Output to stat.h5 (yes)

Listing 9.19: Species kinetic energy estimator element.

<estimator type="specieskinetic" name="skinetic" hdf5="no"/>

9.3.8 Lattice deviation estimator

Record deviation of a group of particles in one particle set (target) from a group of particles in another particle set
(source).

estimator type=latticedeviation element:

parent elements: hamiltonian, qmc
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text latticedeviation Must be latticedeviation
name𝑟 text anything any Unique name for estimator
hdf5𝑜 boolean yes/no no Output to stat.h5 (yes)
per_xyz𝑜 boolean yes/no no Directionally resolved (yes)
source𝑟 text e/ion0/. . . no source particleset
sgroup𝑟 text u/d/. . . no source particle group
target𝑟 text e/ion0/. . . no target particleset
tgroup𝑟 text u/d/. . . no target particle group
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Additional information:

• source: The “reference” particleset to measure distances from; actual reference points are determined together
with sgroup.

• sgroup: The “reference” particle group to measure distances from.

• source: The “target” particleset to measure distances to.

• sgroup: The “target” particle group to measure distances to. For example, in Listing 32 the distance from the
up electron (“u”) to the origin of the coordinate system is recorded.

• per_xyz: Used to record direction-resolved distance. In Listing 32, the x,y,z coordinates of the up electron
will be recorded separately if per_xyz=yes.

• hdf5: Used to record particle-resolved distances in the h5 file if gdf5=yes.

Listing 9.20: Lattice deviation estimator element.

<particleset name="e" random="yes">
<group name="u" size="1" mass="1.0">

<parameter name="charge" > -1 </parameter>
<parameter name="mass" > 1.0 </parameter>

</group>
<group name="d" size="1" mass="1.0">

<parameter name="charge" > -1 </parameter>
<parameter name="mass" > 1.0 </parameter>

</group>
</particleset>

<particleset name="wf_center">
<group name="origin" size="1">
<attrib name="position" datatype="posArray" condition="0">

0.00000000 0.00000000 0.00000000
</attrib>

</group>
</particleset>

<estimator type="latticedeviation" name="latdev" hdf5="yes" per_xyz="yes"
source="wf_center" sgroup="origin" target="e" tgroup="u"/>

9.3.9 Energy density estimator

An energy density operator, ℰ̂𝑟, satisfies ∫︁
𝑑𝑟ℰ̂𝑟 = �̂�, (9.11)

where the integral is over all space and �̂� is the Hamiltonian. In QMCPACK, the energy density is split into kinetic
and potential components

ℰ̂𝑟 = 𝒯𝑟 + 𝒱𝑟 , (9.12)
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with each component given by

𝒯𝑟 =
1

2

∑︁
𝑖

𝛿(𝑟 − 𝑟𝑖)𝑝2𝑖

𝒱𝑟 =
∑︁
𝑖<𝑗

𝛿(𝑟 − 𝑟𝑖) + 𝛿(𝑟 − 𝑟𝑗)
2

𝑣𝑒𝑒(𝑟𝑖, 𝑟𝑗) +
∑︁
𝑖ℓ

𝛿(𝑟 − 𝑟𝑖) + 𝛿(𝑟 − 𝑟ℓ)
2

𝑣𝑒𝐼(𝑟𝑖, 𝑟ℓ)

+
∑︁
ℓ<𝑚

𝛿(𝑟 − 𝑟ℓ) + 𝛿(𝑟 − 𝑟𝑚)

2
𝑣𝐼𝐼(𝑟ℓ, 𝑟𝑚) .

Here, 𝑟𝑖 and 𝑟ℓ represent electron and ion positions, respectively; 𝑝𝑖 is a single electron momentum operator; and
𝑣𝑒𝑒(𝑟𝑖, 𝑟𝑗), 𝑣𝑒𝐼(𝑟𝑖, 𝑟ℓ), and 𝑣𝐼𝐼(𝑟ℓ, 𝑟𝑚) are the electron-electron, electron-ion, and ion-ion pair potential operators
(including nonlocal pseudopotentials, if present). This form of the energy density is size consistent; that is, the
partially integrated energy density operators of well-separated atoms gives the isolated Hamiltonians of the respective
atoms. For periodic systems with twist-averaged boundary conditions, the energy density is formally correct only
for either a set of supercell k-points that correspond to real-valued wavefunctions or a k-point set that has inversion
symmetry around a k-point having a real-valued wavefunction. For more information about the energy density, see
[[KYKC13]].

In QMCPACK, the energy density can be accumulated on piecewise uniform 3D grids in generalized Cartesian, cylin-
drical, or spherical coordinates. The energy density integrated within Voronoi volumes centered on ion positions is
also available. The total particle number density is also accumulated on the same grids by the energy density estimator
for convenience so that related quantities, such as the regional energy per particle, can be computed easily.

estimator type=EnergyDensity element:

parent elements: hamiltonian, qmc
child elements: reference_points, spacegrid

attributes:

Name Datatype Values De-
fault

Description

type𝑟 text EnergyDensity Must be EnergyDensity
name𝑟 text anything Unique name for estimator
dynamic𝑟 text particleset.

name
Identify electrons

static𝑜 text particleset.
name

Identify ions

ion_points𝑜 text yes/no no Separate ion energy density onto point
field

Additional information:

• name: Must be unique. A dataset with blocked statistical data for the energy density will appear in the stat.
h5 files labeled as name.

• Important: in order for the estimator to work, a traces XML input element (<traces array=”yes” write=”no”/>)
must appear following the <qmcsystem/> element and prior to any <qmc/> element.
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Listing 9.21: Energy density estimator accumulated on a 20 × 10 × 10
grid over the simulation cell.

<estimator type="EnergyDensity" name="EDcell" dynamic="e" static="ion0">
<spacegrid coord="cartesian">

<origin p1="zero"/>
<axis p1="a1" scale=".5" label="x" grid="-1 (.05) 1"/>
<axis p1="a2" scale=".5" label="y" grid="-1 (.1) 1"/>
<axis p1="a3" scale=".5" label="z" grid="-1 (.1) 1"/>

</spacegrid>
</estimator>

Listing 9.22: Energy density estimator accumulated within spheres of
radius 6.9 Bohr centered on the first and second atoms in the ion0 parti-
cleset.

<estimator type="EnergyDensity" name="EDatom" dynamic="e" static="ion0">
<reference_points coord="cartesian">
r1 1 0 0
r2 0 1 0
r3 0 0 1

</reference_points>
<spacegrid coord="spherical">
<origin p1="ion01"/>
<axis p1="r1" scale="6.9" label="r" grid="0 1"/>
<axis p1="r2" scale="6.9" label="phi" grid="0 1"/>
<axis p1="r3" scale="6.9" label="theta" grid="0 1"/>

</spacegrid>
<spacegrid coord="spherical">
<origin p1="ion02"/>
<axis p1="r1" scale="6.9" label="r" grid="0 1"/>
<axis p1="r2" scale="6.9" label="phi" grid="0 1"/>
<axis p1="r3" scale="6.9" label="theta" grid="0 1"/>

</spacegrid>
</estimator>

Listing 9.23: Energy density estimator accumulated within Voronoi poly-
hedra centered on the ions.

<estimator type="EnergyDensity" name="EDvoronoi" dynamic="e" static="ion0">
<spacegrid coord="voronoi"/>

</estimator>

The <reference_points/> element provides a set of points for later use in specifying the origin and coordinate
axes needed to construct a spatial histogramming grid. Several reference points on the surface of the simulation
cell (see Table 9.3.9), as well as the positions of the ions (see the energydensity.static attribute), are made
available by default. The reference points can be used, for example, to construct a cylindrical grid along a bond with
the origin on the bond center.

reference_points element:

parent elements: estimator type=EnergyDensity
child elements: None

attributes:
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Name Datatype Values Default Description
coord𝑟 text Cartesian/cell Specify coordinate system

body text: The body text is a line formatted list of points with labels

Additional information:

• coord: If coord=cartesian, labeled points are in Cartesian (x,y,z) format in units of Bohr. If
coord=cell, then labeled points are in units of the simulation cell axes.

• body text: The list of points provided in the body text are line formatted, with four entries per line (la-
bel coor1 coor2 coor3). A set of points referenced to the simulation cell is available by default (see Table
9.3.9). If energydensity.static is provided, the location of each individual ion is also available (e.g., if
energydensity.static=ion0, then the location of the first atom is available with label ion01, the sec-
ond with ion02, etc.). All points can be used by label when constructing spatial histogramming grids (see the
following spacegrid element) used to collect energy densities.

label point description
zero 0 0 0 Cell center
a1 𝑎1 Cell axis 1
a2 𝑎2 Cell axis 2
a3 𝑎3 Cell axis 3
f1p 𝑎1/2 Cell face 1+
f1m -𝑎1/2 Cell face 1-
f2p 𝑎2/2 Cell face 2+
f2m -𝑎2/2 Cell face 2-
f3p 𝑎3/2 Cell face 3+
f3m -𝑎3/2 Cell face 3-
cppp (𝑎1 + 𝑎2 + 𝑎3)/2 Cell corner +,+,+
cppm (𝑎1 + 𝑎2 − 𝑎3)/2 Cell corner +,+,-
cpmp (𝑎1 − 𝑎2 + 𝑎3)/2 Cell corner +,-,+
cmpp (−𝑎1 + 𝑎2 + 𝑎3)/2 Cell corner -,+,+
cpmm (𝑎1 − 𝑎2 − 𝑎3)/2 Cell corner +,-,-
cmpm (−𝑎1 + 𝑎2 − 𝑎3)/2 Cell corner -,+,-
cmmp (−𝑎1 − 𝑎2 + 𝑎3)/2 Cell corner -,-,+
cmmm (−𝑎1 − 𝑎2 − 𝑎3)/2 Cell corner -,-,-

Table 8 Reference points available by default. Vectors 𝑎1, 𝑎2, and 𝑎3 refer to the simulation cell axes. The
representation of the cell is centered around zero.

The <spacegrid/> element is used to specify a spatial histogramming grid for the energy density. Grids are con-
structed based on a set of, potentially nonorthogonal, user-provided coordinate axes. The axes are based on information
available from reference_points. Voronoi grids are based only on nearest neighbor distances between electrons
and ions. Any number of space grids can be provided to a single energy density estimator.

spacegrid element:

parent elements: estimator type=EnergyDensity
child elements: origin, axis

attributes:
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Name Datatype Values Default Description
coord𝑟 text Cartesian Specify coordinate system

cylindrical
spherical
Voronoi

The <origin/> element gives the location of the origin for a non-Voronoi grid.

Additional information:

• p1/p2/fraction: The location of the origin is set to p1+fraction*(p2-p1). If only p1 is provided,
the origin is at p1.

origin element:

parent elements: spacegrid
child elements: None

attributes:

Name Datatype Values Default Description
p1𝑟 text reference_point.label Select end point
p2𝑜 text reference_point.label Select end point
fraction𝑜 real 0 Interpolation fraction

The <axis/> element represents a coordinate axis used to construct the, possibly curved, coordinate system for the
histogramming grid. Three <axis/> elements must be provided to a non-Voronoi <spacegrid/> element.

axis element:

parent elements: spacegrid
child elements: None

attributes:

Name Datatype Values Default Description
label𝑟 text See below Axis/dimension label
grid𝑟 text “0 1” Grid ranges/intervals
p1𝑟 text reference_point.label Select end point
p2𝑜 text reference_point.label Select end point
scale𝑜 real Interpolation fraction

Additional information:

• label: The allowed set of axis labels depends on the coordinate system (i.e., spacegrid.coord).
Labels are x/y/z for coord=cartesian, r/phi/z for coord=cylindrical, r/phi/theta for
coord=spherical.

• p1/p2/scale: The axis vector is set to p1+scale*(p2-p1). If only p1 is provided, the axis vector is
p1.

• grid: The grid specifies the histogram grid along the direction specified by label. The allowed grid points
fall in the range [-1,1] for label=x/y/z or [0,1] for r/phi/theta. A grid of 10 evenly spaced points
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between 0 and 1 can be requested equivalently by grid="0 (0.1) 1" or grid="0 (10) 1." Piecewise
uniform grids covering portions of the range are supported, e.g., grid="-0.7 (10) 0.0 (20) 0.5."

• Note that grid specifies the histogram grid along the (curved) coordinate given by label. The axis specified
by p1/p2/scale does not correspond one-to-one with label unless label=x/y/z, but the full set of axes
provided defines the (sheared) space on top of which the curved (e.g., spherical) coordinate system is built.

9.3.10 One body density matrix

The N-body density matrix in DMC is 𝜌𝑁 = |Ψ𝑇 ⟩⟨Ψ𝐹𝑁 | (for VMC, substitute Ψ𝑇 for Ψ𝐹𝑁 ). The one body reduced
density matrix (1RDM) is obtained by tracing out all particle coordinates but one:

�̂�1 =
∑︁
𝑛

𝑇𝑟𝑅𝑛 |Ψ𝑇 ⟩⟨Ψ𝐹𝑁 | (9.13)

In this formula, the sum is over all electron indices and 𝑇𝑟𝑅𝑛(*) ≡
∫︀
𝑑𝑅𝑛⟨𝑅𝑛 |*|𝑅𝑛⟩ with 𝑅𝑛 =

[𝑟1, ..., 𝑟𝑛−1, 𝑟𝑛+1, ..., 𝑟𝑁 ]. When the sum is restricted over spin-up or spin-down electrons, one obtains a density
matrix for each spin species. The 1RDM computed by is partitioned in this way.

In real space, the matrix elements of the 1RDM are

𝑛1(𝑟, 𝑟′) = ⟨𝑟 |�̂�1| 𝑟′⟩ =
∑︁
𝑛

∫︁
𝑑𝑅𝑛Ψ𝑇 (𝑟,𝑅𝑛)Ψ*

𝐹𝑁 (𝑟′, 𝑅𝑛) . (9.14)

A more efficient and compact representation of the 1RDM is obtained by expanding in the SPOs obtained from a
Hartree-Fock or DFT calculation, {𝜑𝑖}:

𝑛1(𝑖, 𝑗) = ⟨𝜑𝑖 |�̂�1|𝜑𝑗⟩

=

∫︁
𝑑𝑅Ψ*

𝐹𝑁 (𝑅)Ψ𝑇 (𝑅)
∑︁
𝑛

∫︁
𝑑𝑟′𝑛

Ψ𝑇 (𝑟′𝑛, 𝑅𝑛)

Ψ𝑇 (𝑟𝑛, 𝑅𝑛)
𝜑𝑖(𝑟

′
𝑛)*𝜑𝑗(𝑟𝑛) .

The integration over 𝑟′ in (9.15) is inefficient when one is also interested in obtaining matrices involving energetic
quantities, such as the energy density matrix of [[KKR14]] or the related (and more well known) generalized Fock
matrix. For this reason, an approximation is introduced as follows:

𝑛1(𝑖, 𝑗) ≈
∫︁
𝑑𝑅Ψ𝐹𝑁 (𝑅)*Ψ𝑇 (𝑅)

∑︁
𝑛

∫︁
𝑑𝑟′𝑛

Ψ𝑇 (𝑟′𝑛, 𝑅𝑛)*

Ψ𝑇 (𝑟𝑛, 𝑅𝑛)*
𝜑𝑖(𝑟𝑛)*𝜑𝑗(𝑟

′
𝑛) . (9.15)

For VMC, FN-DMC, FP-DMC, and RN-DMC this formula represents an exact sampling of the 1RDM corresponding
to 𝜌†𝑁 (see appendix A of [[KKR14]] for more detail).

estimtor type=dm1b element:

parent elements: hamiltonian, qmc
child elements: None

attributes:

Name Datatype Values Default Description
type𝑟 text dm1b Must be dm1b
name𝑟 text anything Unique name for estimator

parameters:
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Name Datatype Values Default Description
basis𝑟 text array sposet.name(s) Orbital basis
integrator𝑜 text uniform_grid uniform

density
uni-
form_grid

Integration method

evaluator𝑜 text loop/matrix loop Evaluation method
scale𝑜 real 0 < 𝑠𝑐𝑎𝑙𝑒 < 1 1.0 Scale integration cell
center𝑜 real

array(3)
any point Center of cell

points𝑜 integer > 0 10 Grid points in each
dim

samples𝑜 integer > 0 10 MC samples
warmup𝑜 integer > 0 30 MC warmup
timestep𝑜 real > 0 0.5 MC time step
use_drift𝑜 boolean yes/no no Use drift in VMC
check_overlap𝑜 boolean yes/no no Print overlap matrix
check_derivatives𝑜boolean yes/no no Check density

derivatives
acceptance_ratio𝑜boolean yes/no no Print accept ratio
rstats𝑜 boolean yes/no no Print spatial stats
normalized𝑜 boolean yes/no yes basis comes

norm’ed
volume_normed𝑜 boolean yes/no yes basis norm is vol-

ume
energy_matrix𝑜 boolean yes/no no Energy density ma-

trix

Additional information:

• name: Density matrix results appear in stat.h5 files labeled according to name.

• basis: List sposet.name’s. The total set of orbitals contained in all sposet’s comprises the basis (sub-
space) onto which the one body density matrix is projected. This set of orbitals generally includes many virtual
orbitals that are not occupied in a single reference Slater determinant.

• integrator: Select the method used to perform the additional single particle integration. Options are
uniform_grid (uniform grid of points over the cell), uniform (uniform random sampling over the cell),
and density (Metropolis sampling of approximate density,

∑︀
𝑏∈basis |𝜑𝑏|

2, is not well tested, please check
results carefully!). Depending on the integrator selected, different subsets of the other input parameters are
active.

• evaluator: Select for-loop or matrix multiply implementations. Matrix is preferred for speed. Both imple-
mentations should give the same results, but please check as this has not been exhaustively tested.

• scale: Resize the simulation cell by scale for use as an integration volume (active for
integrator=uniform/uniform_grid).

• center: Translate the integration volume to center at this point (active for integrator=uniform/
uniform_grid). If center is not provided, the scaled simulation cell is used as is.

• points: Number of grid points in each dimension for integrator=uniform_grid. For example,
points=10 results in a uniform 10× 10× 10 grid over the cell.

• samples: Sets the number of MC samples collected for each step (active for integrator=uniform/
density).
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• warmup: Number of warmup Metropolis steps at the start of the run before data collection (active for
integrator=density).

• timestep: Drift-diffusion time step used in Metropolis sampling (active for integrator=density).

• use_drift: Enable drift in Metropolis sampling (active for integrator=density).

• check_overlap: Print the overlap matrix (computed via simple Riemann sums) to the log, then abort. Note
that subsequent analysis based on the 1RDM is simplest if the input orbitals are orthogonal.

• check_derivatives: Print analytic and numerical derivatives of the approximate (sampled) density for
several sample points, then abort.

• acceptance_ratio: Print the acceptance ratio of the density sampling to the log for each step.

• rstats: Print statistical information about the spatial motion of the sampled points to the log for each step.

• normalized: Declare whether the inputted orbitals are normalized or not. If normalized=no, direct
Riemann integration over a 200× 200× 200 grid will be used to compute the normalizations before use.

• volume_normed: Declare whether the inputted orbitals are normalized to the cell volume (default) or not (a
norm of 1.0 is assumed in this case). Currently, B-spline orbitals coming from QE and HEG planewave orbitals
native to QMCPACK are known to be volume normalized.

• energy_matrix: Accumulate the one body reduced energy density matrix, and write it to stat.h5. This
matrix is not covered in any detail here; the interested reader is referred to [[KKR14]].

Listing 9.24: One body density matrix with uniform grid integration.

<estimator type="dm1b" name="DensityMatrices">
<parameter name="basis" > spo_u spo_uv </parameter>
<parameter name="evaluator" > matrix </parameter>
<parameter name="integrator" > uniform_grid </parameter>
<parameter name="points" > 4 </parameter>
<parameter name="scale" > 1.0 </parameter>
<parameter name="center" > 0 0 0 </parameter>

</estimator>

Listing 9.25: One body density matrix with uniform sampling.

<estimator type="dm1b" name="DensityMatrices">
<parameter name="basis" > spo_u spo_uv </parameter>
<parameter name="evaluator" > matrix </parameter>
<parameter name="integrator" > uniform </parameter>
<parameter name="samples" > 64 </parameter>
<parameter name="scale" > 1.0 </parameter>
<parameter name="center" > 0 0 0 </parameter>

</estimator>

Listing 9.26: One body density matrix with density sampling.

<estimator type="dm1b" name="DensityMatrices">
<parameter name="basis" > spo_u spo_uv </parameter>
<parameter name="evaluator" > matrix </parameter>
<parameter name="integrator" > density </parameter>
<parameter name="samples" > 64 </parameter>
<parameter name="timestep" > 0.5 </parameter>
<parameter name="use_drift" > no </parameter>

</estimator>
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Listing 9.27: Example sposet initialization for density matrix use.
Occupied and virtual orbital sets are created separately, then joined
(basis="spo_u spo_uv").

<sposet_builder type="bspline" href="../dft/pwscf_output/pwscf.pwscf.h5" tilematrix=
→˓"1 0 0 0 1 0 0 0 1" meshfactor="1.0" gpu="no" precision="single">
<sposet type="bspline" name="spo_u" group="0" size="4"/>
<sposet type="bspline" name="spo_d" group="0" size="2"/>
<sposet type="bspline" name="spo_uv" group="0" index_min="4" index_max="10"/>

</sposet_builder>

Listing 9.28: Example sposet initialization for density ma-
trix use. Density matrix orbital basis created separately
(basis="dm_basis").

<sposet_builder type="bspline" href="../dft/pwscf_output/pwscf.pwscf.h5" tilematrix=
→˓"1 0 0 0 1 0 0 0 1" meshfactor="1.0" gpu="no" precision="single">
<sposet type="bspline" name="spo_u" group="0" size="4"/>
<sposet type="bspline" name="spo_d" group="0" size="2"/>
<sposet type="bspline" name="dm_basis" size="50" spindataset="0"/>

</sposet_builder>

9.4 Forward-Walking Estimators

Forward walking is a method for sampling the pure fixed-node distribution ⟨Φ0|Φ0⟩. Specifically, one multiplies each
walker’s DMC mixed estimate for the observable 𝒪, 𝒪(R)Ψ𝑇 (R)

Ψ𝑇 (R) , by the weighting factor Φ0(R)
Ψ𝑇 (R) . As it turns out,

this weighting factor for any walker R is proportional to the total number of descendants the walker will have after a
sufficiently long projection time 𝛽.

To forward walk on an observable, declare a generic forward-walking estimator within a <hamiltonian> block,
and then specify the observables to forward walk on and the forward-walking parameters. Here is a summary.

estimator type=ForwardWalking element:

parent elements: hamiltonian, qmc
child elements: Observable

attributes:

Name Datatype Values Default Description
type𝑟 text ForwardWalking Must be “ForwardWalking”
name𝑟 text anything any Unique name for estimator

Observable element:

parent elements: estimator, hamiltonian, qmc
child elements: None
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Name DatatypeVal-
ues

De-
fault

Description

name𝑟 text any-
thing

any Registered name of existing estimator on which
to forward walk

max𝑟 integer > 0 Maximum projection time in steps (max=
𝛽/𝜏 )

frequency𝑟text ≥ 1 Dump data only for every frequency-th to
scalar.dat file

Additional information:

• Cost: Because histories of observables up to max time steps have to be stored, the memory cost of storing the
nonforward-walked observables variables should be multiplied by max. Although this is not an issue for items
such as potential energy, it could be prohibitive for observables such as density, forces, etc.

• Naming Convention: Forward-walked observables are automatically named FWE_name_i, where i is the
forward-walked expectation value at time step i, and name is whatever name appears in the <Observable>
block. This is also how it will appear in the scalar.dat file.

In the following example case, QMCPACK forward walks on the potential energy for 300 time steps and dumps the
forward-walked value at every time step.

Listing 9.29: Forward-walking estimator element.

<estimator name="fw" type="ForwardWalking">
<Observable name="LocalPotential" max="300" frequency="1"/>
<!--- Additional Observable blocks go here -->

</estimator>

9.5 “Force” estimators

QMCPACK supports force estimation by use of the Chiesa-Ceperly-Zhang (CCZ) estimator. Currently, open and
periodic boundary conditions are supported but for all-electron calculations only.

Without loss of generality, the CCZ estimator for the z-component of the force on an ion centered at the origin is given
by the following expression:

𝐹𝑧 = −𝑍
𝑁𝑒∑︁
𝑖=1

𝑧𝑖
𝑟3𝑖

[𝜃(𝑟𝑖 −ℛ) + 𝜃(ℛ− 𝑟𝑖)
𝑀∑︁
ℓ=1

𝑐ℓ𝑟
ℓ
𝑖 ] . (9.16)

Z is the ionic charge, 𝑀 is the degree of the smoothing polynomial,ℛ is a real-space cutoff of the sphere within which
the bare-force estimator is smoothed, and 𝑐ℓ are predetermined coefficients. These coefficients are chosen to minimize
the weighted mean square error between the bare force estimate and the s-wave filtered estimator. Specifically,

𝜒2 =

∫︁ ℛ

0

𝑑𝑟 𝑟𝑚 [𝑓𝑧(𝑟)− 𝑓𝑧(𝑟)]2 . (9.17)

Here, 𝑚 is the weighting exponent, 𝑓𝑧(𝑟) is the unfiltered radial force density for the z force component, and 𝑓𝑧(𝑟)
is the smoothed polynomial function for the same force density. The reader is invited to refer to the original paper
for a more thorough explanation of the methodology, but with the notation in hand, QMCPACK takes the following
parameters.

estimator type=Force element:
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parent elements: hamiltonian, qmc
child elements: parameter

attributes:

Name DatatypeValues De-
fault

Description

mode𝑜 text See above bare Select estimator type
lrmethod𝑜 text ewald or

srcoul
ewald Select long-range potential breakup

method
type𝑟 text Force Must be “Force”
name𝑜 text Anything Force-

Base
Unique name for this estimator

pbc𝑜 boolean yes/no yes Using periodic BCs or not
addionion𝑜boolean yes/no no Add the ion-ion force contribution to out-

put force estimate

parameters:

Name Datatype Values Default Description
rcut𝑜 real > 0 1.0 Real-space cutoffℛ in bohr
nbasis𝑜 integer > 0 2 Degree of smoothing polynomial 𝑀
weightexp𝑜 integer > 0 2 𝜒2 weighting exponent :math`m`

Additional information:

• Naming Convention: The unique identifier name is appended with name_X_Y in the scalar.dat file,
where X is the ion ID number and Y is the component ID (an integer with x=0, y=1, z=2). All force components
for all ions are computed and dumped to the scalar.dat file.

• Long-range breakup: With periodic boundary conditions, it is important to converge the lattice sum when
calculating Coulomb contribution to the forces. As a quick test, increase the LR_dim_cutoff parameter
until ion-ion forces are converged. The Ewald method converges more slowly than optimized method, but the
optimized method can break down in edge cases, eg. too large LR_dim_cutoff.

• Miscellaneous: Usually, the default choice of weightexp is sufficient. Different combinations of rcut and
nbasis should be tested though to minimize variance and bias. There is, of course, a tradeoff, with larger
nbasis and smaller rcut leading to smaller biases and larger variances.

The following is an example use case.

<simulationcell>
...
<parameter name="LR_handler"> opt_breakup_original </parameter>
<parameter name="LR_dim_cutoff"> 20 </parameter>

</simulationcell>
<hamiltonian>

<estimator name="F" type="Force" mode="cep" addionion="yes">
<parameter name="rcut">0.1</parameter>
<parameter name="nbasis">4</parameter>
<parameter name="weightexp">2</parameter>

</estimator>
</hamiltonian>
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9.6 Stress estimators

QMCPACK takes the following parameters.

parent elements: hamiltonian

attributes:

Name Datatype Values Default Description
mode𝑟 text stress bare Must be “stress”
type𝑟 text Force Must be “Force”
source𝑟 text ion0 Name of ion particleset
name𝑜 text Any-

thing
Force-
Base

Unique name for this estimator

addionion𝑜 boolean yes/no no Add the ion-ion stress contribution to
output

Additional information:

• Naming Convention: The unique identifier name is appended with name_X_Y in the scalar.dat file,
where X and Y are the component IDs (an integer with x=0, y=1, z=2).

• Long-range breakup: With periodic boundary conditions, it is important to converge the lattice sum when
calculating Coulomb contribution to the forces. As a quick test, increase the LR_dim_cutoff parameter until
ion-ion stresses are converged. Check using QE “Ewald contribution”, for example. The stress estimator is
implemented only with the Ewald method.

The following is an example use case.

<simulationcell>
...
<parameter name="LR_handler"> ewald </parameter>
<parameter name="LR_dim_cutoff"> 45 </parameter>

</simulationcell>
<hamiltonian>

<estimator name="S" type="Force" mode="stress" source="ion0"/>
</hamiltonian>
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qmc factory element:

Parent elements simulation, loop
type selector method attribute

type options:

vmc Variational Monte Carlo
linear Wavefunction optimization with linear method
dmc Diffusion Monte Carlo
rmc Reptation Monte Carlo

shared attributes:

Name Datatype Values Default Description
method text listed above invalid QMC driver
move text pbyp, alle pbyp Method used to move electrons
gpu text yes/no dep. Use the GPU
trace text no ???
profiling text yes/no no Activate resume/pause control
checkpoint integer -1, 0, n -1 Checkpoint frequency
record integer n 0 Save configuration ever n steps
target text ???
completed text ???
append text yes/no no ???

Additional information:

• move: There are two ways to move electrons. The more used method is the particle-by-particle move. In this
method, only one electron is moved for acceptance or rejection. The other method is the all-electron move;
namely, all the electrons are moved once for testing acceptance or rejection.

• gpu: When the executable is compiled with CUDA, the target computing device can be chosen by this switch.
With a regular CPU-only compilation, this option is not effective.

• profiling: Performance profiling tools by default profile complete application executions. This is largely
unnecessary if the focus is a QMC section instead of any initialization and additional QMC sections for equi-
librating walkers. Setting this flag to yes for the QMC sections of interest and starting the tool with data
collection paused from the beginning help reducing the profiling workflow and amount of collected data. Addi-
tional restriction may be imposed by profiling tools. For example, NVIDIA profilers can only be turned on and
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off once and thus only the first QMC section with profiling="yes" will be profiled. VTune instead allows
pause and resume for unlimited times and thus multiple selected QMC sections can be profiled in a single run.

• checkpoint: This enables and disables checkpointing and specifying the frequency of output. Possible values
are:

– [-1] No checkpoint (default setting).

– [0] Write the checkpoint files after the completion of the QMC section.

– [n] Write the checkpoint files after every 𝑛 blocks, and also at the end of the QMC section.

The particle configurations are written to a .config.h5 file.

Listing 10.1: The following is an example of running a simulation that
can be restarted.

<qmc method="dmc" move="pbyp" checkpoint="0">
<parameter name="timestep"> 0.004 </parameter>
<parameter name="blocks"> 100 </parameter>
<parameter name="steps"> 400 </parameter>

</qmc>

The checkpoint flag instructs QMCPACK to output walker configurations. This also works in VMC. This outputs
an h5 file with the name projectid.run-number.config.h5. Check that this file exists before attempting a
restart.

To continue a run, specify the mcwalkerset element before your VMC/DMC block:

Listing 10.2: Restart (read walkers from previous run).

<mcwalkerset fileroot="BH.s002" version="0 6" collected="yes"/>
<qmc method="dmc" move="pbyp" checkpoint="0">
<parameter name="timestep"> 0.004 </parameter>
<parameter name="blocks"> 100 </parameter>
<parameter name="steps"> 400 </parameter>

</qmc>

BH is the project id, and s002 is the calculation number to read in the walkers from the previous run.

In the project id section, make sure that the series number is different from any existing ones to avoid overwriting
them.

10.1 Variational Monte Carlo

10.1.1 vmc driver

parameters:
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Name DatatypeValues De-
fault

Description

walkers integer > 0 dep. Number of walkers per MPI task
blocks integer ≥ 0 1 Number of blocks
steps integer ≥ 0 1 Number of steps per block
warmupsteps integer ≥ 0 0 Number of steps for warming up
substeps integer ≥ 0 1 Number of substeps per step
usedrift text yes,no yes Use the algorithm with drift
timestep real > 0 0.1 Time step for each electron move
samples integer ≥ 0 0 Number of walker samples for

DMC/optimization
stepsbetweensamples integer > 0 1 Period of sample accumulation
samplesperthread integer ≥ 0 0 Number of samples per thread
storeconfigs integer all values 0 Write configurations to files
blocks_between_recomputeinteger ≥ 0 dep. Wavefunction recompute frequency
spinMass real > 0 1.0 Effective mass for spin sampling
debug_checks text see addi-

tional info
dep. Turn on/off additional recompute

and checks

Additional information:

• walkers The number of walkers per MPI task. The initial default number of ixml{walkers} is one per OpenMP
thread or per MPI task if threading is disabled. The number is rounded down to a multiple of the number of
threads with a minimum of one per thread to ensure perfect load balancing. One walker per thread is created in
the event fewer walkers than threads are requested.

• blocks This parameter is universal for all the QMC methods. The MC processes are divided into a number of
blocks, each containing a number of steps. At the end of each block, the statistics accumulated in the block
are dumped into files, e.g., scalar.dat. Typically, each block should have a sufficient number of steps that
the I/O at the end of each block is negligible compared with the computational cost. Each block should not take
so long that monitoring its progress is difficult. There should be a sufficient number of blocks to perform
statistical analysis.

• warmupsteps - warmupsteps are used only for equilibration. Property measurements are not performed
during warm-up steps.

• steps - steps are the number of energy and other property measurements to perform per block.

• substeps For each substep, an attempt is made to move each of the electrons once only by either particle-
by-particle or an all-electron move. Because the local energy is evaluated only at each full step and not each
substep, substeps are computationally cheaper and can be used to reduce the correlation between property
measurements at a lower cost.

• usedrift The VMC is implemented in two algorithms with or without drift. In the no-drift algorithm, the
move of each electron is proposed with a Gaussian distribution. The standard deviation is chosen as the time
step input. In the drift algorithm, electrons are moved by Langevin dynamics.

• timestep The meaning of time step depends on whether or not the drift is used. In general, larger time steps
reduce the time correlation but might also reduce the acceptance ratio, reducing overall statistical efficiency. For
VMC, typically the acceptance ratio should be close to 50% for an efficient simulation.

• samples Separate from conventional energy and other property measurements, samples refers to storing whole
electron configurations in memory (“walker samples”) as would be needed by subsequent wavefunction opti-
mization or DMC steps. A standard VMC run to measure the energy does not need samples to be set.

samples =
blocks · steps · walkers
stepsbetweensamples

· number of MPI tasks
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• samplesperthread This is an alternative way to set the target amount of samples and can be useful when
preparing a stored population for a subsequent DMC calculation.

samplesperthread =
blocks · steps

stepsbetweensamples

• stepsbetweensamples Because samples generated by consecutive steps are correlated, having
stepsbetweensamples larger than 1 can be used to reduces that correlation. In practice, using larger
substeps is cheaper than using stepsbetweensamples to decorrelate samples.

• storeconfigs If storeconfigs is set to a nonzero value, then electron configurations during the VMC
run are saved to files.

• blocks_between_recompute Recompute the accuracy critical determinant part of the wavefunction from
scratch: =1 by default when using mixed precision. =0 (no recompute) by default when not using mixed preci-
sion. Recomputing introduces a performance penalty dependent on system size.

• spinMassOptional parameter to allow the user to change the rate of spin sampling. If spin sampling is on using
spinor == yes in the electron ParticleSet input, the spin mass determines the rate of spin sampling, resulting
in an effective spin timestep 𝜏𝑠 = 𝜏

𝜇𝑠
. The algorithm is described in detail in [[MZG+16]] and [[MBM16]].

• debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_moves’. If the build type is debug, the default
value is ‘all’. Otherwise, the default value is ‘no’.

An example VMC section for a simple VMC run:

<qmc method="vmc" move="pbyp">
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="walkers"> 256 </parameter>
<parameter name="warmupSteps"> 100 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="blocks"> 20 </parameter>
<parameter name="steps"> 100 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> yes </parameter>

</qmc>

Here we set 256 walkers per MPI, have a brief initial equilibration of 100 steps, and then have 20 blocks of
100 steps with 5 substeps each.

The following is an example of VMC section storing configurations (walker samples) for optimization.

<qmc method="vmc" move="pbyp" gpu="yes">
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="walkers"> 256 </parameter>
<parameter name="samples"> 2867200 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 5 </parameter>
<parameter name="blocks"> 70 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>

</qmc>
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10.1.2 vmc_batch driver (experimental)

parameters:

Name DatatypeValues De-
fault

Description

total_walkers integer > 0 1 Total number of walkers over all
MPI ranks

walkers_per_rank integer > 0 1 Number of walkers per MPI rank
crowds integer > 0 dep. Number of desynchronized

dwalker crowds
blocks integer ≥ 0 1 Number of blocks
steps integer ≥ 0 1 Number of steps per block
warmupsteps integer ≥ 0 0 Number of steps for warming up
substeps integer ≥ 0 1 Number of substeps per step
usedrift text yes,no yes Use the algorithm with drift
timestep real > 0 0.1 Time step for each electron move
samples (not ready) integer ≥ 0 0 Number of walker samples for in

this VMC run
storeconfigs (not
ready)

integer all values 0 Write configurations to files

blocks_between_recomputeinteger ≥ 0 dep. Wavefunction recompute fre-
quency

crowd_serialize_walkersinteger yes, no no Force use of single walker APIs
(for testing)

debug_checks text see addi-
tional info

dep. Turn on/off additional recompute
and checks

Additional information:

• crowds The number of crowds that the walkers are subdivided into on each MPI rank. If not provided, it is set
equal to the number of OpenMP threads.

• walkers_per_rank The number of walkers per MPI rank. The exact number of walkers will be generated
before performing random walking. It is not required to be a multiple of the number of OpenMP threads.
However, to avoid any idle resources, it is recommended to be at least the number of OpenMP threads for pure
CPU runs. For GPU runs, a scan of this parameter is necessary to reach reasonable single rank efficiency and
also get a balanced time to solution. If neither total_walkers nor walkers_per_rank is provided,
walkers_per_rank is set equal to crowds.

• total_walkers Total number of walkers over all MPI ranks. if not provided, it is com-
puted as walkers_per_rank times the number of MPI ranks. If both total_walkers and
walkers_per_rank are provided, total_walkers must be equal to walkers_per_rank times the
number MPI ranks.

• blocks This parameter is universal for all the QMC methods. The MC processes are divided into a number of
blocks, each containing a number of steps. At the end of each block, the statistics accumulated in the block
are dumped into files, e.g., scalar.dat. Typically, each block should have a sufficient number of steps that
the I/O at the end of each block is negligible compared with the computational cost. Each block should not take
so long that monitoring its progress is difficult. There should be a sufficient number of blocks to perform
statistical analysis.

• warmupsteps - warmupsteps are used only for equilibration. Property measurements are not performed
during warm-up steps.

• steps - steps are the number of energy and other property measurements to perform per block.
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• substeps For each substep, an attempt is made to move each of the electrons once only by either particle-
by-particle or an all-electron move. Because the local energy is evaluated only at each full step and not each
substep, substeps are computationally cheaper and can be used to de-correlation at a low computational cost.

• usedrift The VMC is implemented in two algorithms with or without drift. In the no-drift algorithm, the
move of each electron is proposed with a Gaussian distribution. The standard deviation is chosen as the time
step input. In the drift algorithm, electrons are moved by Langevin dynamics.

• timestep The meaning of time step depends on whether or not the drift is used. In general, larger time steps
reduce the time correlation but might also reduce the acceptance ratio, reducing overall statistical efficiency. For
VMC, typically the acceptance ratio should be close to 50% for an efficient simulation.

• samples (not ready)

• storeconfigs If storeconfigs is set to a nonzero value, then electron configurations during the VMC
run are saved to files.

• blocks_between_recompute Recompute the accuracy critical determinant part of the wavefunction from
scratch: =1 by default when using mixed precision. =0 (no recompute) by default when not using mixed preci-
sion. Recomputing introduces a performance penalty dependent on system size.

• debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_load’, ‘checkGL_after_moves’,
‘checkGL_after_tmove’. If the build type is debug, the default value is ‘all’. Otherwise, the default
value is ‘no’.

An example VMC section for a simple vmc_batch run:

<qmc method="vmc_batch" move="pbyp">
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="walkers_per_rank"> 256 </parameter>
<parameter name="warmupSteps"> 100 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="blocks"> 20 </parameter>
<parameter name="steps"> 100 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> yes </parameter>

</qmc>

Here we set 256 walkers per MPI rank, have a brief initial equilibration of 100 steps, and then have 20 blocks of
100 steps with 5 substeps each.

10.2 Wavefunction optimization

Optimizing wavefunction is critical in all kinds of real-space QMC calculations because it significantly improves both
the accuracy and efficiency of computation. However, it is very difficult to directly adopt deterministic minimization
approaches because of the stochastic nature of evaluating quantities with MC. Thanks to the algorithmic breakthrough
during the first decade of this century and the tremendous computer power available, it is now feasible to optimize
tens of thousands of parameters in a wavefunction for a solid or molecule. QMCPACK has multiple optimizers
implemented based on the state-of-the-art linear method. We are continually improving our optimizers for robustness
and friendliness and are trying to provide a single solution. Because of the large variation of wavefunction types
carrying distinct characteristics, using several optimizers might be needed in some cases. We strongly suggested
reading recommendations from the experts who maintain these optimizers.

A typical optimization block looks like the following. It starts with method=”linear” and contains three blocks of
parameters.
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<loop max="10">
<qmc method="linear" move="pbyp" gpu="yes">
<!-- Specify the VMC options -->
<parameter name="walkers"> 256 </parameter>
<parameter name="samples"> 2867200 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 5 </parameter>
<parameter name="blocks"> 70 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>
<estimator name="LocalEnergy" hdf5="no"/>
...
<!-- Specify the correlated sampling options and define the cost function -->
<parameter name="minwalkers"> 0.3 </parameter>

<cost name="energy"> 0.95 </cost>
<cost name="unreweightedvariance"> 0.00 </cost>
<cost name="reweightedvariance"> 0.05 </cost>

...
<!-- Specify the optimizer options -->
<parameter name="MinMethod"> OneShiftOnly </parameter>
...

</qmc>
</loop>

- Loop is helpful to repeatedly execute identical optimization blocks.

- The first part is highly identical to a regular VMC block.

- The second part is to specify the correlated sampling options and
define the cost function.

- The last part is used to specify the options of different optimizers,
which can be very distinct from one to another.

10.2.1 VMC run for the optimization

The VMC calculation for the wavefunction optimization has a strict requirement that samples or
samplesperthread must be specified because of the optimizer needs for the stored samples. The input pa-
rameters of this part are identical to the VMC method.

Recommendations:

• Run the inclusive VMC calculation correctly and efficiently because this takes a significant amount of time
during optimization. For example, make sure the derived steps per block is 1 and use larger substeps to
control the correlation between samples.

• A reasonable starting wavefunction is necessary. A lot of optimization fails because of a bad wavefunction
starting point. The sign of a bad initial wavefunction includes but is not limited to a very long equilibration
time, low acceptance ratio, and huge variance. The first thing to do after a failed optimization is to check the
information provided by the VMC calculation via *.scalar.dat files.
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10.2.2 Correlated sampling and cost function

After generating the samples with VMC, the derivatives of the wavefunction with respect to the parameters are com-
puted for proposing a new set of parameters by optimizers. And later, a correlated sampling calculation is performed
to quickly evaluate values of the cost function on the old set of parameters and the new set for further decisions. The
input parameters are listed in the following table.

linear method:

parameters:

Name Datatype Val-
ues

De-
fault

Description

nonlocalpp text yes, no no include non-local PP energy in the cost function
minwalkers real 0–1 0.3 Lower bound of the effective weight
maxWeight real > 1 1e6 Maximum weight allowed in reweighting

Additional information:

• maxWeight The default should be good.

• nonlocalpp The nonlocalpp contribution to the local energy depends on the wavefunction. When a new
set of parameters is proposed, this contribution needs to be updated if the cost function consists of local energy.
Fortunately, nonlocal contribution is chosen small when making a PP for small locality error. We can ignore
its change and avoid the expensive computational cost. An implementation issue with GPU code is that a large
amount of memory is consumed with this option.

• minwalkers This is a critical parameter. When the ratio of effective samples to actual number of samples
in a reweighting step goes lower than minwalkers, the proposed set of parameters is invalid.

The cost function consists of three components: energy, unreweighted variance, and reweighted variance.

<cost name="energy"> 0.95 </cost>
<cost name="unreweightedvariance"> 0.00 </cost>
<cost name="reweightedvariance"> 0.05 </cost>

10.2.3 Optimizers

QMCPACK implements a number of different optimizers each with different priorities for accuracy, convergence,
memory usage, and stability. The optimizers can be switched among “OneShiftOnly” (default), “adaptive,” “descent,”
“hybrid,” and “quartic” (old) using the following line in the optimization block:

<parameter name="MinMethod"> THE METHOD YOU LIKE </parameter>

10.2.4 OneShiftOnly Optimizer

The OneShiftOnly optimizer targets a fast optimization by moving parameters more aggressively. It works with
OpenMP and GPU and can be considered for large systems. This method relies on the effective weight of correlated
sampling rather than the cost function value to justify a new set of parameters. If the effective weight is larger than
minwalkers, the new set is taken whether or not the cost function value decreases. If a proposed set is rejected,
the standard output prints the measured ratio of effective samples to the total number of samples and adjustment on
minwalkers can be made if needed.

linear method:
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parameters:

Name Datatype Values Default Description
shift_i real > 0 0.01 Direct stabilizer added to the Hamiltonian matrix
shift_s real > 0 1.00 Initial stabilizer based on the overlap matrix

Additional information:

• shift_i This is the direct term added to the diagonal of the Hamiltonian matrix. It provides more stable but
slower optimization with a large value.

• shift_s This is the initial value of the stabilizer based on the overlap matrix added to the Hamiltonian matrix.
It provides more stable but slower optimization with a large value. The used value is auto-adjusted by the
optimizer.

Recommendations:

• Default shift_i, shift_s should be fine.

• For hard cases, increasing shift_i (by a factor of 5 or 10) can significantly stabilize the optimization by
reducing the pace towards the optimal parameter set.

• If the VMC energy of the last optimization iterations grows significantly, increase minwalkers closer to 1
and make the optimization stable.

• If the first iterations of optimization are rejected on a reasonable initial wavefunction, lower the minwalkers
value based on the measured value printed in the standard output to accept the move.

We recommended using this optimizer in two sections with a very small minwalkers in the first and a large value
in the second, such as the following. In the very beginning, parameters are far away from optimal values and large
changes are proposed by the optimizer. Having a small minwalkers makes it much easier to accept these changes.
When the energy gradually converges, we can have a large minwalkers to avoid risky parameter sets.

<loop max="6">
<qmc method="linear" move="pbyp" gpu="yes">
<!-- Specify the VMC options -->
<parameter name="walkers"> 1 </parameter>
<parameter name="samples"> 10000 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 5 </parameter>
<parameter name="blocks"> 25 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<!-- Specify the optimizer options -->
<parameter name="MinMethod"> OneShiftOnly </parameter>
<parameter name="minwalkers"> 1e-4 </parameter>

</qmc>
</loop>
<loop max="12">
<qmc method="linear" move="pbyp" gpu="yes">
<!-- Specify the VMC options -->
<parameter name="walkers"> 1 </parameter>
<parameter name="samples"> 20000 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 2 </parameter>
<parameter name="blocks"> 50 </parameter>

(continues on next page)
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(continued from previous page)

<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<!-- Specify the optimizer options -->
<parameter name="MinMethod"> OneShiftOnly </parameter>
<parameter name="minwalkers"> 0.5 </parameter>

</qmc>
</loop>

For each optimization step, you will see

The new set of parameters is valid. Updating the trial wave function!

or

The new set of parameters is not valid. Revert to the old set!

Occasional rejection is fine. Frequent rejection indicates potential problems, and users should inspect the VMC cal-
culation or change optimization strategy. To track the progress of optimization, use the command qmca -q ev

*.scalar.dat to look at the VMC energy and variance for each optimization step.

10.2.5 Adaptive Optimizer

The default setting of the adaptive optimizer is to construct the linear method Hamiltonian and overlap matrices
explicitly and add different shifts to the Hamiltonian matrix as “stabilizers.” The generalized eigenvalue problem is
solved for each shift to obtain updates to the wavefunction parameters. Then a correlated sampling is performed for
each shift’s updated wavefunction and the initial trial wavefunction using the middle shift’s updated wavefunction as
the guiding function. The cost function for these wavefunctions is compared, and the update corresponding to the best
cost function is selected. In the next iteration, the median magnitude of the stabilizers is set to the magnitude that
generated the best update in the current iteration, thus adapting the magnitude of the stabilizers automatically.

When the trial wavefunction contains more than 10,000 parameters, constructing and storing the linear method ma-
trices could become a memory bottleneck. To avoid explicit construction of these matrices, the adaptive optimizer
implements the block linear method (BLM) approach. [[ZN17]] The BLM tries to find an approximate solution �⃗�𝑜𝑝𝑡 to
the standard LM generalized eigenvalue problem by dividing the variable space into a number of blocks and making
intelligent estimates for which directions within those blocks will be most important for constructing �⃗�𝑜𝑝𝑡, which is
then obtained by solving a smaller, more memory-efficient eigenproblem in the basis of these supposedly important
block-wise directions.

linear method:

parameters:
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Name DatatypeVal-
ues

De-
fault

Description

max_relative_changereal > 0 10.0 Allowed change in cost function
max_param_changereal > 0 0.3 Allowed change in wavefunction parameter
shift_i real > 0 0.01 Initial diagonal stabilizer added to the Hamiltonian

matrix
shift_s real > 0 1.00 Initial overlap-based stabilizer added to the Hamil-

tonian matrix
target_shift_i real any -1.0 Diagonal stabilizer value aimed for during adaptive

method (disabled if ≤ 0)
cost_increase_tolreal ≥ 0 0.0 Tolerance for cost function increases
chase_lowest text yes,

no
yes Chase the lowest eigenvector in iterative solver

chase_closest text yes,
no

no Chase the eigenvector closest to initial guess

block_lm text yes,
no

no Use BLM

blocks integer > 0 Number of blocks in BLM
nolds integer > 0 Number of old update vectors used in BLM
nkept integer > 0 Number of eigenvectors to keep per block in BLM

Additional information:

• shift_i This is the initial coefficient used to scale the diagonal stabilizer. More stable but slower optimization
is expected with a large value. The adaptive method will automatically adjust this value after each linear method
iteration.

• shift_s This is the initial coefficient used to scale the overlap-based stabilizer. More stable but slower op-
timization is expected with a large value. The adaptive method will automatically adjust this value after each
linear method iteration.

• target_shift_i If set greater than zero, the adaptive method will choose the update whose shift_i value is
closest to this target value so long as the associated cost is within cost_increase_tol of the lowest cost. Disable
this behavior by setting target_shift_i to a negative number.

• cost_increase_tol Tolerance for cost function increases when selecting the best shift.

• nblocks This is the number of blocks used in BLM. The amount of memory required to store LM matrices
decreases as the number of blocks increases. But the error introduced by BLM would increase as the number of
blocks increases.

• nolds In BLM, the interblock correlation is accounted for by including a small number of wavefunction update
vectors outside the block. Larger would include more interblock correlation and more accurate results but also
higher memory requirements.

• nkept This is the number of update directions retained from each block in the BLM. If all directions are
retained in each block, then the BLM becomes equivalent to the standard LM. Retaining five or fewer directions
per block is often sufficient.

Recommendations:

• Default shift_i, shift_s should be fine.

• When there are fewer than about 5,000 variables being optimized, the traditional LM is preferred because it has
a lower overhead than the BLM when the number of variables is small.

• Initial experience with the BLM suggests that a few hundred blocks and a handful of and often provide a good
balance between memory use and accuracy. In general, using fewer blocks should be more accurate but would
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require more memory.

<loop max="15">
<qmc method="linear" move="pbyp">
<!-- Specify the VMC options -->
<parameter name="walkers"> 1 </parameter>
<parameter name="samples"> 20000 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 5 </parameter>
<parameter name="blocks"> 50 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<!-- Specify the correlated sampling options and define the cost function -->

<cost name="energy"> 1.00 </cost>
<cost name="unreweightedvariance"> 0.00 </cost>
<cost name="reweightedvariance"> 0.00 </cost>

<!-- Specify the optimizer options -->
<parameter name="MinMethod">adaptive</parameter>
<parameter name="max_relative_cost_change">10.0</parameter>
<parameter name="shift_i"> 1.00 </parameter>
<parameter name="shift_s"> 1.00 </parameter>
<parameter name="max_param_change"> 0.3 </parameter>
<parameter name="chase_lowest"> yes </parameter>
<parameter name="chase_closest"> yes </parameter>
<parameter name="block_lm"> no </parameter>
<!-- Specify the BLM specific options if needed

<parameter name="nblocks"> 100 </parameter>
<parameter name="nolds"> 5 </parameter>
<parameter name="nkept"> 3 </parameter>

-->
</qmc>

</loop>

The adaptive optimizer is also able to optimize individual excited states directly. [[ZN16]] In this case, it tries to
minimize the following function:

Ω[Ψ] =
⟨Ψ|𝜔 −𝐻|Ψ⟩⟨
Ψ|(𝜔 −𝐻)

2|Ψ
⟩ .

The global minimum of this function corresponds to the state whose energy lies immediately above the shift parameter
𝜔 in the energy spectrum. For example, if 𝜔 were placed in between the ground state energy and the first excited state
energy and the wavefunction ansatz was capable of a good description for the first excited state, then the wavefunction
would be optimized for the first excited state. Note that if the ansatz is not capable of a good description of the excited
state in question, the optimization could converge to a different state, as is known to occur in some circumstances for
traditional ground state optimizations. Note also that the ground state can be targeted by this method by choosing 𝜔 to
be below the ground state energy, although we should stress that this is not the same thing as a traditional ground state
optimization and will in general give a slightly different wavefunction. Excited state targeting requires two additional
parameters, as shown in the following table.

Excited state targeting:

parameters:
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Name Datatype Values De-
fault

Description

targetExcitedtext yes, no no Whether to use the excited state targeting op-
timization

omega real real num-
bers

none Energy shift used to target different excited
states

Excited state recommendations:

• Because of the finite variance in any approximate wavefunction, we recommended setting 𝜔 = 𝜔0 − 𝜎, where
𝜔0 is placed just below the energy of the targeted state and 𝜎2 is the energy variance.

• To obtain an unbiased excitation energy, the ground state should be optimized with the excited state variational
principle as well by setting omega below the ground state energy. Note that using the ground state variational
principle for the ground state and the excited state variational principle for the excited state creates a bias in
favor of the ground state.

10.2.6 Descent Optimizer

Gradient descent algorithms are an alternative set of optimization methods to the OneShiftOnly and adaptive opti-
mizers based on the linear method. These methods use only first derivatives to optimize trial wave functions and
convergence can be accelerated by retaining a memory of previous derivative values. Multiple flavors of acceler-
ated descent methods are available. They differ in details such as the schemes for adaptive adjustment of step sizes.
[[ON19]] Descent algorithms avoid the construction of matrices that occurs in the linear method and consequently can
be applied to larger sets of optimizable parameters. Parameters for descent are shown in the table below.

descent method:

parameters:

Name DatatypeValues De-
fault

Description

flavor text RMSprop, Random,
ADAM, AMSGrad

RM-
Sprop

Particular type of descent method

Ramp_eta text yes, no no Whether to gradually ramp up step
sizes

Ramp_num inte-
ger

> 0 30 Number of steps over which to ramp up
step size

TJF_2Body_etareal > 0 0.01 Step size for two body Jastrow param-
eters

TJF_1Body_etareal > 0 0.01 Step size for one body Jastrow parame-
ters

F_eta real > 0 0.001 Step size for number counting Jastrow
F matrix parameters

Gauss_eta real > 0 0.001 Step size for number counting Jastrow
gaussian basis parameters

CI_eta real > 0 0.01 Step size for CI parameters
Orb_eta real > 0 0.001 Step size for orbital parameters
collection_stepreal > 0 0.01 Step number to start collecting samples

for final averages
compute_stepreal > 0 0.001 Step number to start computing aver-

aged from stored history
print_derivsreal yes, no no Whether to print parameter derivatives
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These descent algorithms have been extended to the optimization of the same excited state functional as the adaptive
LM. [[LON20]] This also allows the hybrid optimizer discussed below to be applied to excited states. The relevant
parameters are the same as for targeting excited states with the adaptive optimizer above.

Additional information and recommendations:

• It is generally advantageous to set different step sizes for different types of parameters. More nonlinear parame-
ters such as those for number counting Jastrow factors or orbitals typically require smaller steps sizes than those
for CI coefficients or traditional Jastrow parameters. There are defaults for several parameter types and a default
of .001 has been chosen for all other parameters.

• The ability to gradually ramp up step sizes to their input values is useful for avoiding spikes in the average local
energy during early iterations of descent optimization. This initial rise in the energy occurs as a memory of past
gradients is being built up and it may be possible for the energy to recover without ramping if there are enough
iterations in the optimization.

• The step sizes chosen can have a substantial influence on the quality of the optimization and the final variational
energy achieved. Larger step sizes may be helpful if there is reason to think the descent optimization is not
reaching the minimum energy. There are also additional hyperparameters in the descent algorithms with default
values. [[ON19]] They seem to have limited influence on the effectiveness of the optimization compared to step
sizes, but users can adjust them within the source code of the descent engine if they wish.

• The sampling effort for individual descent steps can be small compared that for linear method iterations as
shown in the example input below. Something in the range of 10,000 to 30,000 seems sufficient for molecules
with tens of electrons. However, descent optimizations may require anywhere from a few hundred to a few
thousand iterations.

• For reporting quantities such as a final energy and associated uncertainty, an average over many descent steps
can be taken. The parameters for collection_step and compute_step help automate this task. After
the descent iteration specified by collection_step, a history of local energy values will be kept for deter-
mining a final error and average, which will be computed and given in the output once the iteration specified by
compute_step is reached. For reasonable results, this procedure should use descent steps near the end of the
optimization when the wave function parameters are essentially no longer changing.

• In cases where a descent optimization struggles to reach the minimum and a linear method optimization is
not possible or unsatisfactory, it may be useful to try the hybrid optimization approach described in the next
subsection.

<loop max="2000">
<qmc method="linear" move="pbyp" checkpoint="-1" gpu="no">

<!-- VMC inputs -->
<parameter name="blocks">2000</parameter>
<parameter name="steps">1</parameter>
<parameter name="samples">20000</parameter>
<parameter name="warmupsteps">100</parameter>
<parameter name="timestep">0.05</parameter>

<parameter name="MinMethod">descent</parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="usebuffer">yes</parameter>

<estimator name="LocalEnergy" hdf5="no"/>

<!-- Descent Inputs -->
<parameter name="flavor">RMSprop</parameter>

<parameter name="Ramp_eta">no</parameter>
<parameter name="Ramp_num">30</parameter>

(continues on next page)
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(continued from previous page)

<parameter name="TJF_2Body_eta">.02</parameter>
<parameter name="TJF_1Body_eta">.02</parameter>

<parameter name="F_eta">.001</parameter>
<parameter name="Gauss_eta">.001</parameter>
<parameter name="CI_eta">.1</parameter>
<parameter name="Orb_eta">.0001</parameter>

<parameter name="collection_step">500</parameter>
<parameter name="compute_step">998</parameter>

<parameter name="targetExcited"> yes </parameter>
<parameter name="targetExcited"> -11.4 </parameter>

<parameter name="print_derivs">no</parameter>

</qmc>
</loop>

10.2.7 Hybrid Optimizer

Another optimization option is to use a hybrid combination of accelerated descent and blocked linear method. It
provides a means to retain the advantages of both individual methods while scaling to large numbers of parameters
beyond the traditional 10,000 parameter limit of the linear method. [[ON19]] In a hybrid optimization, alternating
sections of descent and BLM optimization are used. Gradient descent is used to identify the previous important
directions in parameter space used by the BLM, the number of which is set by the nold input for the BLM. Over the
course of a section of descent, vectors of parameter differences are stored and then passed to the linear method engine
after the optimization changes to the BLM. One motivation for including sections of descent is to counteract noise in
linear method updates due to uncertainties in its step direction and allow for a smoother movement to the minimum.
There are two additional parameters used in the hybrid optimization and it requires a slightly different format of input
to specify the constituent methods as shown below in the example.

descent method:

parameters:

Name Datatype Values Default Description
num_updates integer > 0 Number of steps for a method
Stored_Vectors integer > 0 5 Number of vectors to transfer to BLM

<loop max="203">
<qmc method="linear" move="pbyp" checkpoint="-1" gpu="no">
<parameter name="Minmethod"> hybrid </parameter>

<optimizer num_updates="100">

<parameter name="blocks">1000</parameter>
<parameter name="steps">1</parameter>
<parameter name="samples">20000</parameter>
<parameter name="warmupsteps">1000</parameter>
<parameter name="timestep">0.05</parameter>

(continues on next page)
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(continued from previous page)

<estimator name="LocalEnergy" hdf5="no"/>

<parameter name="Minmethod"> descent </parameter>
<parameter name="Stored_Vectors">5</parameter>
<parameter name="flavor">RMSprop</parameter>
<parameter name="TJF_2Body_eta">.01</parameter>
<parameter name="TJF_1Body_eta">.01</parameter>
<parameter name="CI_eta">.1</parameter>

<parameter name="Ramp_eta">no</parameter>
<parameter name="Ramp_num">10</parameter>

</optimizer>

<optimizer num_updates="3">

<parameter name="blocks">2000</parameter>
<parameter name="steps">1</parameter>
<parameter name="samples">1000000</parameter>
<parameter name="warmupsteps">1000</parameter>
<parameter name="timestep">0.05</parameter>

<estimator name="LocalEnergy" hdf5="no"/>

<parameter name="Minmethod"> adaptive </parameter>
<parameter name="max_relative_cost_change">10.0</parameter>
<parameter name="max_param_change">3</parameter>
<parameter name="shift_i">0.01</parameter>
<parameter name="shift_s">1.00</parameter>

<parameter name="block_lm">yes</parameter>
<parameter name="nblocks">2</parameter>
<parameter name="nolds">5</parameter>
<parameter name="nkept">5</parameter>

</optimizer>
</qmc>
</loop>

Additional information and recommendations:

• In the example above, the input for loop gives the total number of steps for the full optimization while the inputs
for num_updates specify the number of steps in the constituent methods. For this case, the optimization
would begin with 100 steps of descent using the parameters in the first optimizer block and then switch to
the BLM for 3 steps before switching back to descent for the final 100 iterations of the total of 203.

• The design of the hybrid method allows for more than two optimizer blocks to be used and the optimiza-
tion will cycle through the individual methods. However, the effectiveness of this in terms of the quality of
optimization results is unexplored.

• It can be useful to follow a hybrid optimization with a section of pure descent optimization and take an average
energy over the last few hundred iterations as the final variational energy. This approach can achieve a lower
statistical uncertainty on the energy for less overall sampling effort compared to what a pure linear method
optimization would require. The collection_step and compute_step parameters discussed earlier for
descent are useful for setting up the descent engine to do this averaging on its own.
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10.2.8 Quartic Optimizer

This is an older optimizer method retained for compatibility. We recommend starting with the newest OneShiftOnly
or adaptive optimizers. The quartic optimizer fits a quartic polynomial to 7 values of the cost function obtained using
reweighting along the chosen direction and determines the optimal move. This optimizer is very robust but is a bit
conservative when accepting new steps, especially when large parameters changes are proposed.

linear method:

parameters:

Name Datatype Values De-
fault

Description

bigchange real > 0 50.0 Largest parameter change allowed
alloweddifference real > 0 1e-4 Allowed increase in energy
exp0 real any

value
-16.0 Initial value for stabilizer

stabilizerscale real > 0 2.0 Increase in value of exp0 between iter-
ations

nstabilizers integer > 0 3 Number of stabilizers to try
max_its integer > 0 1 Number of inner loops with same sam-

ples

Additional information:

• exp0 This is the initial value for stabilizer (shift to diagonal of H). The actual value of stabilizer is 10exp0.

Recommendations:

• For hard cases (e.g., simultaneous optimization of long MSD and 3-Body J), set exp0 to 0 and do a single inner
iteration (max its=1) per sample of configurations.

<!-- Specify the optimizer options -->
<parameter name="MinMethod">quartic</parameter>
<parameter name="exp0">-6</parameter>
<parameter name="alloweddifference"> 1.0e-4 </parameter>
<parameter name="nstabilizers"> 1 </parameter>
<parameter name="bigchange">15.0</parameter>

10.2.9 General Recommendations

• All electron wavefunctions are typically more difficult to optimize than pseudopotential wavefunctions because
of the importance of the wavefunction near the nucleus.

• Two-body Jastrow contributes the largest portion of correlation energy from bare Slater determinants. Conse-
quently, the recommended order for optimizing wavefunction components is two-body, one-body, three-body
Jastrow factors and MSD coefficients.

• For two-body spline Jastrows, always start from a reasonable one. The lack of physically motivated constraints
in the functional form at large distances can cause slow convergence if starting from zero.

• One-body spline Jastrow from old calculations can be a good starting point.

• Three-body polynomial Jastrow can start from zero. It is beneficial to first optimize one-body and two-body
Jastrow factors without adding three-body terms in the calculation and then add the three-body Jastrow and
optimize all the three components together.
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Optimization of CI coefficients

When storing a CI wavefunction in HDF5 format, the CI coefficients and the 𝛼 and 𝛽 components of each CI are not
in the XML input file. When optimizing the CI coefficients, they will be stored in HDF5 format. The optimization
header block will have to specify that the new CI coefficients will be saved to HDF5 format. If the tag is not added
coefficients will not be saved.

<qmc method="linear" move="pbyp" gpu="no" hdf5="yes">

The rest of the optimization block remains the same.

When running the optimization, the new coefficients will be stored in a *.sXXX.opt.h5 file, where XXX
coressponds to the series number. The H5 file contains only the optimized coefficients. The corresponding *.sXXX.
opt.xml will be updated for each optimization block as follows:

<detlist size="1487" type="DETS" nca="0" ncb="0" nea="2" neb="2" nstates="85" cutoff=
→˓"1e-2" href="../LiH.orbs.h5" opt_coeffs="LiH.s001.opt.h5"/>

The opt_coeffs tag will then reference where the new CI coefficients are stored.

When restarting the run with the new optimized coeffs, you need to specify the previous hdf5 containing the basis set,
orbitals, and MSD, as well as the new optimized coefficients. The code will read the previous data but will rewrite
the coefficients that were optimized with the values found in the *.sXXX.opt.h5 file. Be careful to keep the pair of
optimized CI coefficients and Jastrow coefficients together to avoid inconsistencies.

10.2.10 Output of intermediate values

Use the following parameters to the linear optimizers to output intermediate values such as the overlap and Hamiltonian
matrices.

Name Datatype Val-
ues

De-
fault

Description

output_matrices_csvtext yes, no no Output linear method matrices to CSV
files

output_matrices_hdftext yes, no no Output linear method matrices to HDF
file

freeze_parameters text yes, no no Do not update parameters between iter-
ations

The output_matrices_csv parameter will write to <base name>.ham.s000.scalar.dat and
<base name>.ovl.scalar.dat. One line per iteration of the optimizer loop. Combined with
freeze_parameters, this allows computing error bars on the matrices for use in regression testing.

The output_matrices_hdf parameter will output in HDF format the matrices used in the linear
method along with the shifts and the eigenvalue and eigenvector produced by QMCPACK. The file is
named “<base name>.<series number>.linear_matrices.h5”. It only works with the batched optimizer
(linear_batch)
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10.3 Diffusion Monte Carlo

10.3.1 dmc driver

Main input parameters are given in Table 10.3.1, additional in Table 10.3.1.

parameters:

Name Datatype Values De-
fault

Description

targetwalkers integer > 0 dep. Overall total number of walkers
blocks integer ≥ 0 1 Number of blocks
steps integer ≥ 0 1 Number of steps per block
warmupsteps integer ≥ 0 0 Number of steps for warming up
timestep real > 0 0.1 Time step for each electron move
nonlocalmoves string yes, no, v0, v1, v3 no Run with T-moves
branching_cutoff_schemestring clas-

sic/DRV/ZSGMA/YL
classic Branch cutoff scheme

maxcpusecs real ≥ 0 3.6e5 Deprecated. Superseded by
max_seconds

max_seconds real ≥ 0 3.6e5 Maximum allowed walltime in sec-
onds

blocks_between_recomputeinteger ≥ 0 dep. Wavefunction recompute frequency
spinMass real > 0 1.0 Effective mass for spin sampling
debug_checks text see additional info dep. Turn on/off additional recompute

and checks

Table 9 Main DMC input parameters.

Name Datatype Values De-
fault

Description

energyUpdateIntervalinteger ≥ 0 0 Trial energy update interval
refEnergy real all values dep. Reference energy in atomic units
feedback double ≥ 0 1.0 Population feedback on the trial energy
sigmaBound 10 ≥ 0 10 Parameter to cutoff large weights
killnode string yes/other no Kill or reject walkers that cross nodes
warmupByReconfigurationoption yes,no 0 Warm up with a fixed population
reconfiguration string yes/pure/otherno Fixed population technique
branchInterval integer ≥ 0 1 Branching interval
substeps integer ≥ 0 1 Branching interval
MaxAge double ≥ 0 10 Kill persistent walkers
MaxCopy double ≥ 0 2 Limit population growth
maxDisplSq real all values -1 Maximum particle move
scaleweight string yes/other yes Scale weights (CUDA only)
checkproperties integer ≥ 0 100 Number of steps between walker updates
fastgrad text yes/other yes Fast gradients
storeconfigs integer all values 0 Store configurations
use_nonblocking string yes/no yes Using nonblocking send/recv
debug_disable_branchingstring yes/no no Disable branching for debugging without correct-

ness guarantee

Table 10 Additional DMC input parameters.
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Additional information:

• targetwalkers: A DMC run can be considered a restart run or a new run. A restart run is considered to be
any method block beyond the first one, such as when a DMC method block follows a VMC block. Alternatively,
a user reading in configurations from disk would also considered a restart run. In the case of a restart run, the
DMC driver will use the configurations from the previous run, and this variable will not be used. For a new run,
if the number of walkers is less than the number of threads, then the number of walkers will be set equal to the
number of threads.

• blocks: This is the number of blocks run during a DMC method block. A block consists of a number of DMC
steps (steps), after which all the statistics accumulated in the block are written to disk.

• steps: This is the number of DMC steps in a block.

• warmupsteps: These are the steps at the beginning of a DMC run in which the instantaneous average energy
is used to update the trial energy. During regular steps, E𝑟𝑒𝑓 is used.

• timestep: The timestep determines the accuracy of the imaginary time propagator. Generally, multiple
time steps are used to extrapolate to the infinite time step limit. A good range of time steps in which to perform
time step extrapolation will typically have a minimum of 99% acceptance probability for each step.

• checkproperties: When using a particle-by-particle driver, this variable specifies how often to reset all the
variables kept in the buffer.

• maxcpusecs: Deprecated. Superseded by max_seconds.

• max_seconds: The default is 100 hours. Once the specified time has elapsed, the program will finalize the
simulation even if all blocks are not completed.

• spinMass This is an optional parameter to allow the user to change the rate of spin sampling. If spin sampling
is on using spinor == yes in the electron ParticleSet input, the spin mass determines the rate of spin sampling,
resulting in an effective spin timestep 𝜏𝑠 = 𝜏

𝜇𝑠
where 𝜏 is the normal spatial timestep and 𝜇𝑠 is the value of the

spin mass. The algorithm is described in detail in [[MZG+16]] and [[MBM16]].

• debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_moves’. If the build type is debug, the default
value is ‘all’. Otherwise, the default value is ‘no’.

• energyUpdateInterval: The default is to update the trial energy at every step. Otherwise the trial energy
is updated every energyUpdateInterval step.

𝐸trial = refEnergy + feedback · (lntargetWalkers− ln𝑁) ,

where 𝑁 is the current population.

• refEnergy: The default reference energy is taken from the VMC run that precedes the DMC run. This value
is updated to the current mean whenever branching happens.

• feedback: This variable is used to determine how strong to react to population fluctuations when doing
population control. See the equation in energyUpdateInterval for more details.

• useBareTau: The same time step is used whether or not a move is rejected. The default is to use an effective
time step when a move is rejected.

• warmupByReconfiguration: Warmup DMC is done with a fixed population.

• sigmaBound: This determines the branch cutoff to limit wild weights based on the sigma and sigmaBound.

• killnode: When running fixed-node, if a walker attempts to cross a node, the move will normally be rejected.
If killnode = “yes,” then walkers are destroyed when they cross a node.

• reconfiguration: If reconfiguration is “yes,” then run with a fixed walker population using the
reconfiguration technique.
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• branchInterval: This is the number of steps between branching. The total number of DMC steps in a
block will be BranchInterval*Steps.

• substeps: This is the same as BranchInterval.

• nonlocalmoves: Evaluate pseudopotentials using one of the nonlocal move algorithms such as T-moves.

– no(default): Imposes the locality approximation.

– yes/v0: Implements the algorithm in the 2006 Casula paper [[Cas06]].

– v1: Implements the v1 algorithm in the 2010 Casula paper [[CMSF10]].

– v2: Is not implemented and is skipped to avoid any confusion with the v2 algorithm in the 2010 Casula
paper [[CMSF10]].

– v3: (Experimental) Implements an algorithm similar to v1 but is much faster. v1 computes the transition
probability before each single electron T-move selection because of the acceptance of previous T-moves.
v3 mostly reuses the transition probability computed during the evaluation of nonlocal pseudopotentials
for the local energy, namely before accepting any T-moves, and only recomputes the transition probability
of the electrons within the same pseudopotential region of any electrons touched by T-moves. This is
an approximation to v1 and results in a slightly different time step error, but it significantly reduces the
computational cost. v1 and v3 agree at zero time step. This faster algorithm is the topic of a paper in
preparation.

The v1 and v3 algorithms are size-consistent and are important advances over the previous v0 non-size-
consistent algorithm. We highly recommend investigating the importance of size-consistency.

• scaleweight: This is the scaling weight per Umrigar/Nightingale. CUDA only.

• MaxAge: Set the weight of a walker to min(currentweight,0.5) after a walker has not moved for MaxAge steps.
Needed if persistent walkers appear during the course of a run.

• MaxCopy: When determining the number of copies of a walker to branch, set the number of copies equal to
min(Multiplicity,MaxCopy).

• fastgrad: This calculates gradients with either the fast version or the full-ratio version.

• maxDisplSq: When running a DMC calculation with particle by particle, this sets the maximum displacement
allowed for a single particle move. All distance displacements larger than the max are rejected. If initialized to
a negative value, it becomes equal to Lattice(LR/rc).

• sigmaBound: This determines the branch cutoff to limit wild weights based on the sigma and sigmaBound.

• storeconfigs: If storeconfigs is set to a nonzero value, then electron configurations during the DMC
run will be saved. This option is disabled for the OpenMP version of DMC.

• blocks_between_recompute: See details in Variational Monte Carlo.

• branching_cutoff_scheme: Modifies how the branching factor is computed so as to avoid divergences
and stability problems near nodal surfaces.

– classic (default): The implementation found in QMCPACK v3.0.0 and earlier. 𝐸cut = min(max(𝜎2 ×
sigmaBound,maxSigma), 2.5/𝜏), where 𝜎2 is the variance and maxSigma is set to 50 during warmup
(equilibration) and 10 thereafter. sigmaBound is default to 10.

– DRV: Implements the algorithm of DePasquale et al., Eq. 3 in [[DRV88]] or Eq. 9 of [[UNR93]]. 𝐸cut =
2.0/
√
𝜏 .

– ZSGMA: Implements the “ZSGMA” algorithm of [[ZSG+16]] with 𝛼 = 0.2. The cutoff energy is mod-
ified by a factor including the electron count, 𝐸cut = 𝛼

√︀
𝑁/𝜏 , which greatly improves size consis-

tency over Eq. 39 of [[UNR93]]. See Eq. 6 in [[ZSG+16]] and for an application to molecular crystals
[[ZBKlimevs+18]].
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– YL: An unpublished algorithm due to Ye Luo. 𝐸cut = 𝜎 ×min(sigmaBound,
√︀

1/𝜏). This option takes
into account both size consistency and wavefunction quality via the term 𝜎. sigmaBound is default to 10.

Listing 10.3: The following is an example of a very simple DMC section.

<qmc method="dmc" move="pbyp" target="e">
<parameter name="blocks">100</parameter>
<parameter name="steps">400</parameter>
<parameter name="timestep">0.010</parameter>
<parameter name="warmupsteps">100</parameter>

</qmc>

The time step should be individually adjusted for each problem. Please refer to the theory section on diffusion Monte
Carlo.

Listing 10.4: The following is an example of running a simulation that
can be restarted.

<qmc method="dmc" move="pbyp" checkpoint="0">
<parameter name="timestep"> 0.004 </parameter>
<parameter name="blocks"> 100 </parameter>
<parameter name="steps"> 400 </parameter>

</qmc>

The checkpoint flag instructs QMCPACK to output walker configurations. This also works in VMC. This will output
an h5 file with the name projectid.run-number.config.h5. Check that this file exists before attempting a
restart. To read in this file for a continuation run, specify the following:

Listing 10.5: Restart (read walkers from previous run).

<mcwalkerset fileroot="BH.s002" version="0 6" collected="yes"/>

BH is the project id, and s002 is the calculation number to read in the walkers from the previous run.

Combining VMC and DMC in a single run (wavefunction optimization can be combined in this way too) is the standard
way in which QMCPACK is typically run. There is no need to run two separate jobs since method sections can be
stacked and walkers are transferred between them.

Listing 10.6: Combined VMC and DMC run.

<qmc method="vmc" move="pbyp" target="e">
<parameter name="blocks">100</parameter>
<parameter name="steps">4000</parameter>
<parameter name="warmupsteps">100</parameter>
<parameter name="samples">1920</parameter>
<parameter name="walkers">1</parameter>
<parameter name="timestep">0.5</parameter>

</qmc>
<qmc method="dmc" move="pbyp" target="e">

<parameter name="blocks">100</parameter>
<parameter name="steps">400</parameter>
<parameter name="timestep">0.010</parameter>
<parameter name="warmupsteps">100</parameter>

</qmc>
<qmc method="dmc" move="pbyp" target="e">

<parameter name="warmupsteps">500</parameter>
<parameter name="blocks">50</parameter>
<parameter name="steps">100</parameter>

(continues on next page)
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(continued from previous page)

<parameter name="timestep">0.005</parameter>
</qmc>

10.3.2 dmc_batch driver (experimental)

parameters:

Name DatatypeValues De-
fault

Description

total_walkers integer > 0 1 Total number of walkers over all
MPI ranks

walkers_per_rank integer > 0 1 Number of walkers per MPI
rank

crowds integer > 0 dep. Number of desynchronized
dwalker crowds

blocks integer ≥ 0 1 Number of blocks
steps integer ≥ 0 1 Number of steps per block
warmupsteps integer ≥ 0 0 Number of steps for warming

up
timestep real > 0 0.1 Time step for each electron

move
nonlocalmoves string yes, no, v0, v1, v3 no Run with T-moves
branching_cutoff_schemestring clas-

sic/DRV/ZSGMA/YL
clas-
sic

Branch cutoff scheme

blocks_between_recomputeinteger ≥ 0 dep. Wavefunction recompute fre-
quency

feedback double ≥ 0 1.0 Population feedback on the trial
energy

sigmaBound 10 ≥ 0 10 Parameter to cutoff large
weights

reconfiguration string yes/pure/other no Fixed population technique
storeconfigs integer all values 0 Store configurations
use_nonblocking string yes/no yes Using nonblocking send/recv
debug_disable_branchingstring yes/no no Disable branching for debug-

ging
crowd_serialize_walkersinteger yes, no no Force use of single walker APIs

(for testing)
debug_checks text see additional info dep. Turn on/off additional recom-

pute and checks

• crowds The number of crowds that the walkers are subdivided into on each MPI rank. If not provided, it is set
equal to the number of OpenMP threads.

• walkers_per_rank The number of walkers per MPI rank. This number does not have to be a multiple of the
number of OpenMP threads. However, to avoid any idle resources, it is recommended to be at least the number
of OpenMP threads for pure CPU runs. For GPU runs, a scan of this parameter is necessary to reach reasonable
single rank efficiency and also get a balanced time to solution. For highest throughput on GPUs, expect to use
hundreds of walkers_per_rank, or the largest number that will fit in GPU memory. If neither total_walkers
nor walkers_per_rank is provided, walkers_per_rank is set equal to crowds.

• total_walkers Total number of walkers summed over all MPI ranks, or equivalently the total number of
walkers in the DMC calculation. If not provided, it is computed as walkers_per_rank times the number of
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MPI ranks. If both total_walkers and walkers_per_rank are provided, which is not recommended,
total_walkers must be consistently set equal to walkers_per_rank times the number MPI ranks.

• debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_load’, ‘checkGL_after_moves’,
‘checkGL_after_tmove’. If the build type is debug, the default value is ‘all’. Otherwise, the default
value is ‘no’.

Listing 10.7: The following is an example of a minimal DMC section
using the dmc_batch driver

<qmc method="dmc_batch" move="pbyp" target="e">
<parameter name="walkers_per_rank">256</parameter>
<parameter name="blocks">100</parameter>
<parameter name="steps">400</parameter>
<parameter name="timestep">0.010</parameter>
<parameter name="warmupsteps">100</parameter>

</qmc>

10.4 Reptation Monte Carlo

Like DMC, RMC is a projector-based method that allows sampling of the fixed-node wavefunciton. However, by
exploiting the path-integral formulation of Schrödinger’s equation, the RMC algorithm can offer some advantages
over traditional DMC, such as sampling both the mixed and pure fixed-node distributions in polynomial time, as well
as not having population fluctuations and biases. The current implementation does not work with T-moves.

There are two adjustable parameters that affect the quality of the RMC projection: imaginary projection time 𝛽 of the
sampling path (commonly called a “reptile”) and the Trotter time step 𝜏 . 𝛽 must be chosen to be large enough such
that 𝑒−𝛽�̂� |Ψ𝑇 ⟩ ≈ |Φ0⟩ for mixed observables, and 𝑒−

𝛽
2 �̂� |Ψ𝑇 ⟩ ≈ |Φ0⟩ for pure observables. The reptile is discretized

into 𝑀 = 𝛽/𝜏 beads at the cost of an𝒪(𝜏) time-step error for observables arising from the Trotter-Suzuki breakup of
the short-time propagator.

The following table lists some of the more practical

vmc method:

parameters:

Name Datatype Val-
ues

De-
fault

Description

beta real > 0 dep. Reptile project time 𝛽
timestep real > 0 0.1 Trotter time step 𝜏 for each electron move
beads int > 0 1 Number of reptile beads 𝑀 = 𝛽/𝜏
blocks integer > 0 1 Number of blocks
steps integer ≥ 0 1 Number of steps per block
vmcpresteps integer ≥ 0 0 Propagates reptile using VMC for given number of

steps
warmupsteps integer ≥ 0 0 Number of steps for warming up
maxAge integer ≥ 0 0 Force accept for stuck reptile if age exceeds

maxAge

Additional information:

Because of the sampling differences between DMC ensembles of walkers and RMC reptiles, the RMC block
should contain the following estimator declaration to ensure correct sampling: <estimator name="RMC"
hdf5="no">.
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• beta or beads? One or the other can be specified, and from the Trotter time step, the code will construct an
appropriately sized reptile. If both are given, beta overrides beads.

• Mixed vs. pure observables? Configurations sampled by the endpoints of the reptile are distributed according
to the mixed distribution 𝑓(R) = Ψ𝑇 (R)Φ0(R). Any observable that is computable within DMC and is
dumped to the scalar.dat file will likewise be found in the scalar.dat file generated by RMC, except
there will be an appended _m to alert the user that the observable was computed on the mixed distribution. For
pure observables, care must be taken in the interpretation. If the observable is diagonal in the position basis (in
layman’s terms, if it is entirely computable from a single electron configuration R, like the potential energy),
and if the observable does not have an explicit dependence on the trial wavefunction (e.g., the local energy
has an explicit dependence on the trial wavefunction from the kinetic energy term), then pure estimates will be
correctly computed. These observables will be found in either the scalar.dat, where they will be appended
with a _p suffix, or in the stat.h5 file. No mixed estimators will be dumped to the h5 file.

• Sampling: For pure estimators, the traces of both pure and mixed estimates should be checked. Ergodicity is a
known problem in RMC. Because we use the bounce algorithm, it is possible for the reptile to bounce back and
forth without changing the electron coordinates of the central beads. This might not easily show up with mixed
estimators, since these are accumulated at constantly regrown ends, but pure estimates are accumulated on these
central beads and so can exhibit strong autocorrelations in pure estimate traces.

• Propagator: Our implementation of RMC uses Moroni’s DMC link action (symmetrized), with Umrigar’s
scaled drift near nodes. In this regard, the propagator is identical to the one QMCPACK uses in DMC.

• Sampling: We use Ceperley’s bounce algorithm. MaxAge is used in case the reptile gets stuck, at which point
the code forces move acceptance, stops accumulating statistics, and requilibrates the reptile. Very rarely will
this be required. For move proposals, we use particle-by-particle VMC a total of 𝑁𝑒 times to generate a new
all-electron configuration, at which point the action is computed and the move is either accepted or rejected.
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CHAPTER

ELEVEN

OUTPUT OVERVIEW

QMCPACK writes several output files that report information about the simulation (e.g., the physical properties such
as the energy), as well as information about the computational aspects of the simulation, checkpoints, and restarts.
The types of output files generated depend on the details of a calculation. The following list is not meant to be
exhaustive but rather to highlight some salient features of the more common file types. Further details can be found in
the description of the estimator of interest.

11.1 The .scalar.dat file

The most important output file is the scalar.dat file. This file contains the output of block-averaged properties of
the system such as the local energy and other estimators. Each line corresponds to an average over 𝑁𝑤𝑎𝑙𝑘𝑒𝑟𝑠 *𝑁𝑠𝑡𝑒𝑝𝑠
samples. By default, the quantities reported in the scalar.dat file include the following:

LocalEnergy The local energy.

LocalEnergy_sq The local energy squared.

LocalPotential The local potential energy.

Kinetic The kinetic energy.

ElecElec The electron-electron potential energy.

IonIon The ion-ion potential energy.

LocalECP The energy due to the pseudopotential/effective core potential.

NonLocalECP The nonlocal energy due to the pseudopotential/effective core potential.

MPC The modified periodic Coulomb potential energy.

BlockWeight The number of MC samples in the block.

BlockCPU The number of seconds to compute the block.

AcceptRatio The acceptance ratio.

QMCPACK includes a python utility, qmca, that can be used to process these files. Details and examples are given in
Analyzing QMCPACK data.
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11.2 The .opt.xml file

This file is generated after a VMC wavefunction optimization and contains the part of the input file that lists the
optimized Jastrow factors. Conveniently, this file is already formatted such that it can easily be incorporated into a
DMC input file.

11.3 The .qmc.xml file

This file contains information about the computational aspects of the simulation, for example, which parts of the code
are being executed when. This file is generated only during an ensemble run in which QMCPACK runs multiple input
files.

11.4 The .dmc.dat file

This file contains information similar to the .scalar.dat file but also includes extra information about the details
of a DMC calculation, for example, information about the walker population.

Index The block number.

LocalEnergy The local energy.

Variance The variance.

Weight The number of samples in the block.

NumOfWalkers The number of walkers times the number of steps.

AvgSentWalkers The average number of walkers sent. During a DMC simulation, walkers might be created or de-
stroyed. At every step, QMCPACK will do some load balancing to ensure that the walkers are evenly distributed
across nodes.

TrialEnergy The trial energy. See Diffusion Monte Carlo for an explanation of trial energy.

DiffEff The diffusion efficiency.

LivingFraction The fraction of the walker population from the previous step that survived to the current step.

11.5 The .bandinfo.dat file

This file contains information from the trial wavefunction about the band structure of the system, including the avail-
able 𝑘-points. This can be helpful in constructing trial wavefunctions.

11.6 Checkpoint and restart files

11.6.1 The .cont.xml file

This file enables continuation of the run. It is mostly a copy of the input XML file with the series number incremented
and the mcwalkerset element added to read the walkers from a config file. The .cont.xml file is always created,
but other files it depends on are present only if checkpointing is enabled.
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11.6.2 The .config.h5 file

This file contains stored walker configurations.

11.6.3 The .random.h5 file

This file contains the state of the random number generator to allow restarts. (Older versions used an XML file with a
suffix of .random.xml).
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CHAPTER

TWELVE

ANALYZING QMCPACK DATA

12.1 Using the qmca tool to obtain total energies and related quanti-
ties

The qmca tool is the primary means of analyzing scalar-valued data generated by QMCPACK. Output files that contain
scalar-valued data are *.scalar.dat and *.dmc.dat (see Output Overview for a detailed description of these
files). Quantities that are available for analysis in *.scalar.dat files include the local energy and its variance,
kinetic energy, potential energy and its components, acceptance ratio, and the average CPU time spent per block,
among others. The *.dmc.dat files provide information regarding the DMC walker population in addition to the
local energy.

Basic capabilities of qmca include calculating mean values and associated error bars, processing multiple files at once
in batched fashion, performing twist averaging, plotting mean values by series, and plotting traces (per block or step)
of the underlying data. These capabilities are explained with accompanying examples in the following subsections.

To use qmca, installations of Python and NumPy must be present on the local machine. For graphical plotting, the
matplotlib module must also be available.

An overview of all supported input flags to qmca can be obtained by typing qmca at the command line with no other
inputs (also try qmca -x for a short list of examples):

>qmca
no files provided, please see help info below

Usage: qmca [options] [file(s)]

Options:
--version show program's version number and exit
-v, --verbose Print detailed information (default=False).
-q QUANTITIES, --quantities=QUANTITIES

Quantity or list of quantities to analyze. See names
and abbreviations below (default=all).

-u UNITS, --units=UNITS
Desired energy units. Can be Ha (Hartree), Ry
(Rydberg), eV (electron volts), kJ_mol (k.
joule/mole), K (Kelvin), J (Joules) (default=Ha).

-e EQUILIBRATION, --equilibration=EQUILIBRATION
Equilibration length in blocks (default=auto).

-a, --average Average over files in each series (default=False).
-w WEIGHTS, --weights=WEIGHTS

List of weights for averaging (default=None).
-b, --reblock (pending) Use reblocking to calculate statistics

(default=False).

(continues on next page)
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(continued from previous page)

-p, --plot Plot quantities vs. series (default=False).
-t, --trace Plot a trace of quantities (default=False).
-h, --histogram (pending) Plot a histogram of quantities

(default=False).
-o, --overlay Overlay plots (default=False).
--legend=LEGEND Placement of legend. None for no legend, outside for

outside legend (default=upper right).
--noautocorr Do not calculate autocorrelation. Warning: error bars

are no longer valid! (default=False).
--noac Alias for --noautocorr (default=False).
--sac Show autocorrelation of sample data (default=False).
--sv Show variance of sample data (default=False).
-i, --image (pending) Save image files (default=False).
-r, --report (pending) Write a report (default=False).
-s, --show_options Print user provided options (default=False).
-x, --examples Print examples and exit (default=False).
--help Print help information and exit (default=False).
-d DESIRED_ERROR, --desired_error=DESIRED_ERROR

Show number of samples needed for desired error bar
(default=none).

-n PARTICLE_NUMBER, --enlarge_system=PARTICLE_NUMBER
Show number of samples needed to maintain error bar on
larger system: desired particle number first, current
particle number second (default=none)

12.1.1 Obtaining a statistically correct mean and error bar

A rough guess at the mean and error bar of the local energy can be obtained in the following way with qmca:

>qmca -q e qmc.s000.scalar.dat
qmc series 0 LocalEnergy = -45.876150 +/- 0.017688

In this case the VMC energy of an 8-atom cell of diamond is estimated to be −45.876(2) Hartrees (Ha). This rough
guess should not be used for production-level or publication-quality estimates.

To obtain production-level results, the underlying data should first be inspected visually to ensure that all data included
in the averaging can be attributed to a distribution sharing the same mean. The first steps of essentially any MC
calculation (the “equilibration phase”) do not belong to the equilibrium distribution and should be excluded from
estimates of the mean and its error bar.

We can plot a data trace (-t) of the local energy in the following way:

>qmca -t -q e -e 0 qmc.s000.scalar.dat

The -e 0 part indicates that we do not want any data to be initially excluded from the calculation of averages. The
resulting plot is shown in Fig. 12.1. The unphysical equilibration period is visible on the left side of the plot.

Most of the data fluctuates around a well-defined mean (consistent variations around a flat line). This property is
important to verify by plotting the trace for each QMC run.

If we exclude none of the equilibration data points, we get an erroneous estimate of −45.870(2) Ha for the local
energy:

>qmca -q e -e 0 qmc.s000.scalar.dat
qmc series 0 LocalEnergy = -45.870071 +/- 0.018072
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Fig. 12.1: Trace of the VMC local energy for an 8-atom cell of diamond generated with qmca. The x-axis (“samples”)
refers to the VMC block index in this case.

The equilibration period is typically estimated by eye, though a few conservative values should be checked to ensure
that the mean remains unaffected. In this dataset, the equilibration appears to have been reached after 100 or so
samples. After excluding the first 100 VMC blocks from the analysis we get

>qmca -q e -e 100 qmc.s000.scalar.dat
qmc series 0 LocalEnergy = -45.877363 +/- 0.017432

This estimate (−45.877(2) Ha) differs significantly from the −45.870(2) Ha figure obtained from the full set of data,
but it agrees with the rough estimate of−45.876(2) Ha obtained with the abbreviated command (qmca -q e qmc.
s000.scalar.dat). This is because qmca makes a heuristic guess at the equilibration period and got it reasonably
correct in this case. In many cases, the heuristic guess fails and should not be relied on for quality results.

We have so far obtained a statistically correct mean. To obtain a statistically correct error bar, it is best to include∼100
or more statistically independent samples. An estimate of the number of independent samples can be obtained by
considering the autocorrelation time, which is essentially a measure of the number of samples that must be traversed
before an uncorrelated/independent sample is reached. We can get an estimate of the autocorrelation time in the
following way:

>qmca -q e -e 100 qmc.s000.scalar.dat --sac
qmc series 0 LocalEnergy = -45.877363 +/- 0.017432 4.8

The flag -sac stands for (s)how (a)uto(c)orrelation. In this case, the autocorrelation estimate is 4.8 ≈ 5 samples.
Since the total run contained 800 samples and we have excluded 100 of them, we can estimate the number of indepen-
dent samples as (800− 100)/5 = 140. In this case, the error bar is expected to be estimated reasonably well.

Keep in mind that the error bar represents the expected range of the mean with a certainty of only ∼ 70%; i.e., it is
a one sigma error bar. The actual mean value will lie outside the range indicated by the error bar in 1 out of every 3
runs, and in a set of 20 runs 1 value can be expected to deviate from its estimate by twice the error bar.
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Fig. 12.2: Trace of the local energy during one- and two-body Jastrow optimizations for an 8-atom cell of diamond
generated with qmca. Data for each optimization cycle (QMCPACK series) is separated by a vertical black line.

12.1.2 Judging wavefunction optimization

Wavefunction optimization is a highly nonlinear and sometimes sensitive process. As such, there is a risk that system-
atic errors encountered at this stage of the QMC process can be propagated into subsequent (expensive) DMC runs
unless they are guarded against with vigilance.

In this section we again consider an 8-atom cell of diamond but now in the context of Jastrow optimization (one- and
two-body terms). In optimization runs it is often preferable to use a large number of warmupsteps (∼ 100) so that
equilibration bias does not propagate into the optimization process. We can check that the added warm-up has had its
intended effect by again checking the local energy trace:

>qmca -t -q e *scalar*

The resulting plot can be found in Fig. 12.2. In this case sufficient warmupsteps were used to exit the equilibration
period before samples were collected and we can proceed without using the -e option with qmca.

After inspecting the trace, we should inspect the text output from qmca, now including the total energy and its
variance:

>qmca -q ev opt*scalar.dat
LocalEnergy Variance ratio

opt series 0 -44.823616 +/- 0.007430 7.054219 +/- 0.041998 0.1574
opt series 1 -45.877643 +/- 0.003329 1.095362 +/- 0.041154 0.0239
opt series 2 -45.883191 +/- 0.004149 1.077942 +/- 0.021555 0.0235
opt series 3 -45.877524 +/- 0.003094 1.074047 +/- 0.010491 0.0234
opt series 4 -45.886062 +/- 0.003750 1.061707 +/- 0.014459 0.0231
opt series 5 -45.877668 +/- 0.003475 1.091585 +/- 0.021637 0.0238
opt series 6 -45.877109 +/- 0.003586 1.069205 +/- 0.009387 0.0233
opt series 7 -45.882563 +/- 0.004324 1.058771 +/- 0.008651 0.0231

The flags -q ev requested the energy (e) and the variance (v). For this combination of quantities, a third column
(ratio) is printed containing the ratio of the variance and the absolute value of the local energy. The variance/energy
ratio is an intensive quantity and is useful to inspect regardless of the system under study. Successful optimization of
molecules and solids of any size generally result in comparable values for the variance/energy ratio.

The first line of the output (series 0) corresponds to the local energy and variance of the system without a Jastrow
factor (all Jastrow coefficients were initialized to zero in this case), reflecting the quality of the orbitals alone. For
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pseudopotential systems, a variance/energy ratio > 0.20 Ha generally indicates there is a problem with the input
orbitals that needs to be resolved before performing wavefunction optimization.

The subsequent lines correspond to energies and variances of intermediate parameterizations of the trial wavefunc-
tion during the optimization process. The output line containing opt series 1, for example, corresponds to the
trial wavefunction parameterized during the series 0 step (the parameters of this wavefunction would be found
in an output file matching *s000*opt.xml). The first thing to check about the resulting optimization is again the
variance/energy ratio. For pseudopotential systems, a variance/energy ratio < 0.03 Ha is consistent with a trial wave-
function of production quality, and values of 0.01 Ha are rarely obtainable for standard Slater-Jastrow wavefunctions.
By this metric, all parameterizations obtained for optimizations performed in series 0-6 are of comparable quality
(note that the quality of the wavefunction obtained during optimization series 7 is effectively unknown).

A good way to further discriminate among the parameterizations is to plot the energy and variance as a function of
series with qmca:

>qmca -p -q ev opt*scalar.dat

The -p option results in plots of means plus error bars vs. series for all requested quantities. The resulting plots for
the local energy and variance are shown in Fig. 12.3. In this case, the resulting energies and variances are statistically
indistinguishable for all optimization cycles.

A good way to choose the optimal wavefunction for use in DMC is to select the one with the lowest statistically
significant energy within the set of optimized wavefunctions with reasonable variance (e.g., among those with a vari-
ance/energy ratio < 0.03 Ha). For pseudopotential calculations, minimizing according to the total energy is recom-
mended to reduce locality errors in DMC.
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Fig. 12.3: Energy and variance vs. optimization series for an 8-atom cell of diamond as plotted by qmca.

12.1.3 Judging diffusion Monte Carlo runs

Judging the quality of the DMC projection process requires more care than is needed in VMC. To reduce bias, a small
time step is required in the approximate projector but this also leads to slow equilibration and long autocorrelation
times. Systematic errors in the projection process can also arise from statistical fluctuations due to pseudopotentials
or from trial wavefunctions with larger-than-necessary variance.

To illustrate the problems that can arise with respect to slow equilibration and long autocorrelation times, we consider
the 8-atom diamond system with VMC (200 blocks of 160 steps) followed by DMC (400 blocks of 5 steps) with a
small time step (0.002 Ha−1). A good first step in assessing the quality of any DMC run is to plot the trace of the local
energy:

>qmca -t -q e -e 0 *scalar*

The resulting trace plot is shown in Fig. 12.4. As always, the DMC local energy decreases exponentially away from
the VMC value, but in this case it takes a long time to do so. At least half of the DMC run is inefficiently consumed
by equilibration. If we are not careful to inspect and remove the transient, the estimated DMC energy will be strongly
biased by the transient as shown by the horizontal red line (estimated mean) in the figure. The autocorrelation time is
also large (∼ 12 blocks):

>qmca -q e -e 200 --sac *s001.scalar*
qmc series 1 LocalEnergy = -46.045720 +/- 0.004813 11.6

Of the included 200 blocks, fewer than 20 contribute to the estimated error bar, indicating that we cannot trust the
reported error bar. This can also be demonstrated directly from the data. If we halve the number of included samples
to 100, we expect from Gaussian statistics that the error bar will grow by a factor of

√
2, but instead we get

>qmca -q e -e 300 *s001.scalar*
qmc series 1 LocalEnergy = -46.048537 +/- 0.009280

which erroneously shows an estimated increase in the error bar by a factor of about 2. Overall, this run is simply too
short to gain meaningful information.

156 Chapter 12. Analyzing QMCPACK data



QMCPACK Manual

Fig. 12.4: Trace of the local energy for VMC followed by DMC with a small time step (0.002 Ha−1) for an 8-atom
cell of diamond generated with qmca.

Consider the case in which we are interested in the cohesive energy of diamond, and, after having performed a time
step study of the cohesive energy, we have found that the energy difference between bulk diamond and atomic carbon
converges to our required accuracy with a larger time step of 0.01 Ha−1. In a production setting, a small cell could
be used to determine the appropriate time step, while a larger cell would subsequently be used to obtain a converged
cohesive energy, though for purposes of demonstration we still proceed here with the 8-atom cell. The new time step
of 0.01 Ha−1 will result in a shorter autocorrelation time than the smaller time step used previously, but we would
like to shorten the equilibration time further still. This can be achieved by using a larger time step (say 0.02 Ha−1)
in a short intermediate DMC run used to walk down the transient. The rapidly achieved equilibrium with the 0.02
Ha−1 time step projector will be much nearer to the 0.01 Ha−1 time step we seek than the original VMC equilibrium,
so we can expect a shortened secondary equilibration time in the production 0.01 Ha−1 time step run. Note that this
procedure is fully general, even if having to deal with an even shorter time step (e.g., 0.002 Ha−1) for a particular
problem.

We now rerun the previous example but with an intermediate DMC calculation using 40 blocks of 5 steps with a time
step of 0.02 Ha−1, followed by a production DMC calculation using 400 blocks of 10 steps with a time step of 0.01
Ha−1. We again plot the local energy trace using qmca:

>qmca -t -q e -e 0 *scalar*

with the result shown in Fig. 12.5. The projection transient has been effectively contained in the short DMC run with
a larger time step. As expected, the production run contains only a short equilibration period. Removing the first 20
blocks as a precaution, we obtain an estimate of the total energy in VMC and DMC:

>qmca -q ev -e 20 --sac qmc.*.scalar.dat
LocalEnergy Variance ratio

qmc series 0 -45.881042 +/- 0.001283 1.0 1.076726 +/- 0.007013 1.0 0.0235
qmc series 1 -46.040814 +/- 0.005046 3.9 1.011303 +/- 0.016807 1.1 0.0220
qmc series 2 -46.032960 +/- 0.002077 5.2 1.014940 +/- 0.002547 1.0 0.0220

Notice that the variance/energy ratio in DMC (0.220 Ha) is similar to but slightly smaller than that obtained with VMC
(0.235 Ha). If the DMC variance/energy ratio is ever significantly larger than with VMC, this is cause to be concerned
about the correctness of the DMC run. Also notice the estimated autocorrelation time (∼ 5 blocks). This leaves us
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Fig. 12.5: Trace of the local energy for VMC followed by a short intermediate DMC with a large time step (0.02
Ha−1) and finally a production DMC run with a time step of 0.01 Ha−1. Calculations were performed in an 8-atom
cell of diamond.

with an estimated ∼ 76 independent samples, though we should recall that the autocorrelation time is also a statistical
estimate that can be improved with more data. We can gain a better estimate of the autocorrelation time by using the
*.dmc.dat files, which contain output data resolved per step rather than per block (there are 10× more steps than
blocks in this example case):

>qmca -q ev -e 200 --sac qmc.s002.dmc.dat
LocalEnergy Variance ratio

qmc series 2 -46.032909 +/- 0.002068 31.2 1.015781 +/- 0.002536 1.4 0.0221

This results in an estimated autocorrelation time of ∼ 31 steps, or ∼ 3 blocks, indicating that we actually have ∼ 122
independent samples, which should be sufficient to obtain a trustworthy error bar. Our final DMC total energy is
estimated to be −46.0329(2) Ha.

Another simulation property that should be explicitly monitored is the behavior of the DMC walker population. Data
regarding the walker population is contained in the *.dmc.dat files. In Fig. 12.6 we show the trace of the DMC
walker population for the current run:

>qmca -t -q nw *dmc.dat
qmc series 1 NumOfWalkers = 2056.905405 +/- 8.775527
qmc series 2 NumOfWalkers = 2050.164160 +/- 4.954850

Following a DMC run, the walker population should be checked for two qualities: (1) that the population is sufficiently
large (a number> 2, 000 is generally sufficient to reduce population control bias) and (2) that the population fluctuates
benignly around its intended target value. In this case the target walker count (provided in the input file) was 2, 048
and we can confirm from the plot that the population is simply fluctuating around this value. Also, from the text output
we have a dynamic population estimate of 2,050(5) walkers. Rapid population reductions or increases—population
explosions—are indicative of problems with a run. These issues sometimes result from using a considerably poor
wavefunction (see comments regarding variance/energy ratio in the preceding subsections). QMCPACK has internal
guards in place that prevent the population from exceeding certain maximum and minimum bounds, so in particularly
faulty runs one might see the population “stabilize” to a constant value much larger or smaller than the target. In
such cases the cause(s) for the divergent population behavior needs to be investigated and resolved before proceeding
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further.

Fig. 12.6: Trace of the DMC walker population for an 8-atom cell of diamond obtained with qmca.

12.1.4 Obtaining other quantities

A number of other scalar-valued quantities are available with qmca. To obtain text output for all quantities available,
simply exclude the -q option used in previous examples. The following example shows output for a DMC calculation
of the 8-atom diamond system from the scalar.dat file:

>qmca -e 20 qmc.s002.scalar.dat
qmc series 2

LocalEnergy = -46.0330 +/- 0.0021
Variance = 1.0149 +/- 0.0025
Kinetic = 33.851 +/- 0.019
LocalPotential = -79.884 +/- 0.020
ElecElec = -11.4483 +/- 0.0083
LocalECP = -22.615 +/- 0.029
NonLocalECP = 5.2815 +/- 0.0079
IonIon = -51.10 +/- 0.00
LocalEnergy_sq = 2120.05 +/- 0.19
BlockWeight = 20514.27 +/- 48.38
BlockCPU = 1.4890 +/- 0.0038
AcceptRatio = 0.9963954 +/- 0.0000055
Efficiency = 71.88 +/- 0.00
TotalTime = 565.80 +/- 0.00
TotalSamples = 7795421 +/- 0

Similarly, for the dmc.dat file we get

>qmca -e 20 qmc.s002.dmc.dat
qmc series 2

LocalEnergy = -46.0329 +/- 0.0020
Variance = 1.0162 +/- 0.0025

(continues on next page)
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(continued from previous page)

TotalSamples = 8201275 +/- 0
TrialEnergy = -46.0343 +/- 0.0023
DiffEff = 0.9939150 +/- 0.0000088
Weight = 2050.23 +/- 4.82
NumOfWalkers = 2050 +/- 5
LivingFraction = 0.996427 +/- 0.000021
AvgSentWalkers = 0.2625 +/- 0.0011

Any subset of desired quantities can be obtained by using the -q option with either the full names of the quantities
just listed

>qmca -q 'LocalEnergy Kinetic LocalPotential' -e 20 qmc.s002.scalar.dat
qmc series 2

LocalEnergy = -46.0330 +/- 0.0021
Kinetic = 33.851 +/- 0.019
LocalPotential = -79.884 +/- 0.020

or with their corresponding abbreviations.

>qmca -q ekp -e 20 qmc.s002.scalar.dat
qmc series 2

LocalEnergy = -46.0330 +/- 0.0021
Kinetic = 33.851 +/- 0.019
LocalPotential = -79.884 +/- 0.020

Abbreviations for each quantity can be found by typing qmca at the command line with no other input. This following
is a current list:

Abbreviations and full names for quantities:
ar = AcceptRatio
bc = BlockCPU
bw = BlockWeight
ce = CorrectedEnergy
de = DiffEff
e = LocalEnergy
ee = ElecElec
eff = Efficiency
ii = IonIon
k = Kinetic
kc = KEcorr
l = LocalECP
le2 = LocalEnergy_sq
mpc = MPC
n = NonLocalECP
nw = NumOfWalkers
p = LocalPotential
sw = AvgSentWalkers
te = TrialEnergy
ts = TotalSamples
tt = TotalTime
v = Variance
w = Weight

See the output overview for scalar.dat (The .scalar.dat file) and dmc.dat (The .dmc.dat file) for more infor-
mation about these quantities. The data analysis aspects for these quantities are essentially the same as for the local
energy as covered in the preceding subsections. Quantities that do not belong to an equilibrium distribution (e.g.,
BlockCPU) are somewhat different, though they still exhibit statistical fluctuations.
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12.1.5 Processing multiple files

Batch file processing is a common use case for qmca. If we consider an “equation-of-state” calculation involving the
8-atom diamond cell we have used so far, we might be interested in the total energy for the various supercell volumes
along the trajectory from compression to expansion. After checking the traces (qmca -t -q e scale_*/vmc/

*scalar*) to settle on a sensible equilibration cutoff as discussed in the preceding subsections, we can obtain the
total energies all at once:

>qmca -q ev -e 40 scale_*/vmc/*scalar*
LocalEnergy Variance ratio

scale_0.80/vmc/qmc series 0 -44.670984 +/- 0.006051 2.542384 +/- 0.019902 0.0569
scale_0.82/vmc/qmc series 0 -44.982818 +/- 0.005757 2.413011 +/- 0.022626 0.0536
scale_0.84/vmc/qmc series 0 -45.228257 +/- 0.005374 2.258577 +/- 0.019322 0.0499
scale_0.86/vmc/qmc series 0 -45.415842 +/- 0.005532 2.204980 +/- 0.052978 0.0486
scale_0.88/vmc/qmc series 0 -45.570215 +/- 0.004651 2.061374 +/- 0.014359 0.0452
scale_0.90/vmc/qmc series 0 -45.683684 +/- 0.005009 1.988539 +/- 0.018267 0.0435
scale_0.92/vmc/qmc series 0 -45.751359 +/- 0.004928 1.913282 +/- 0.013998 0.0418
scale_0.94/vmc/qmc series 0 -45.791622 +/- 0.005026 1.843704 +/- 0.014460 0.0403
scale_0.96/vmc/qmc series 0 -45.809256 +/- 0.005053 1.829103 +/- 0.014536 0.0399
scale_0.98/vmc/qmc series 0 -45.806235 +/- 0.004963 1.775391 +/- 0.015199 0.0388
scale_1.00/vmc/qmc series 0 -45.783481 +/- 0.005293 1.726869 +/- 0.012001 0.0377
scale_1.02/vmc/qmc series 0 -45.741655 +/- 0.005627 1.681776 +/- 0.011496 0.0368
scale_1.04/vmc/qmc series 0 -45.685101 +/- 0.005353 1.682608 +/- 0.015423 0.0368
scale_1.06/vmc/qmc series 0 -45.615164 +/- 0.005978 1.652155 +/- 0.010945 0.0362
scale_1.08/vmc/qmc series 0 -45.543037 +/- 0.005191 1.646375 +/- 0.013446 0.0361
scale_1.10/vmc/qmc series 0 -45.450976 +/- 0.004794 1.707649 +/- 0.048186 0.0376
scale_1.12/vmc/qmc series 0 -45.371851 +/- 0.005103 1.686997 +/- 0.035920 0.0372
scale_1.14/vmc/qmc series 0 -45.265490 +/- 0.005311 1.631614 +/- 0.012381 0.0360
scale_1.16/vmc/qmc series 0 -45.161961 +/- 0.004868 1.656586 +/- 0.014788 0.0367
scale_1.18/vmc/qmc series 0 -45.062579 +/- 0.005971 1.671998 +/- 0.019942 0.0371
scale_1.20/vmc/qmc series 0 -44.960477 +/- 0.004888 1.651864 +/- 0.009756 0.0367

In this case, we are using a Jastrow factor optimized only at the equilibrium geometry (scale_1.00) but with radial
cutoffs restricted to the Wigner-Seitz radius of the most compressed supercell (scale_0.80) to avoid introducing
wavefunction cusps at the cell boundary (had we tried, QMCPACK would have aborted with a warning in this case).
It is clear that this restricted Jastrow factor is not an optimal choice because it yields variance/energy ratios between
0.036 and 0.057 Ha. This issue is largely a result of our undersized (8-atom) supercell; larger cells should always be
used in real production calculations.

Batch processing is also possible for multiple quantities. If multiple quantities are requested, an additional line is
inserted to separate results from different runs:

>qmca -q 'e bc eff' -e 40 scale_*/vmc/*scalar*
scale_0.80/vmc/qmc series 0

LocalEnergy = -44.6710 +/- 0.0061
BlockCPU = 0.02986 +/- 0.00038
Efficiency = 38104.00 +/- 0.00

scale_0.82/vmc/qmc series 0
LocalEnergy = -44.9828 +/- 0.0058
BlockCPU = 0.02826 +/- 0.00013
Efficiency = 44483.91 +/- 0.00

scale_0.84/vmc/qmc series 0
LocalEnergy = -45.2283 +/- 0.0054
BlockCPU = 0.02747 +/- 0.00030
Efficiency = 52525.12 +/- 0.00

(continues on next page)
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(continued from previous page)

scale_0.86/vmc/qmc series 0
LocalEnergy = -45.4158 +/- 0.0055
BlockCPU = 0.02679 +/- 0.00013
Efficiency = 50811.55 +/- 0.00

scale_0.88/vmc/qmc series 0
LocalEnergy = -45.5702 +/- 0.0047
BlockCPU = 0.02598 +/- 0.00015
Efficiency = 74148.79 +/- 0.00

scale_0.90/vmc/qmc series 0
LocalEnergy = -45.6837 +/- 0.0050
BlockCPU = 0.02527 +/- 0.00011
Efficiency = 65714.98 +/- 0.00

...

12.1.6 Twist averaging

Twist averaging can be performed straightforwardly for any output quantity listed in Obtaining other quantities with
qmca. We illustrate these capabilities by repeating the 8-atom diamond DMC runs performed in Section Judging
diffusion Monte Carlo runs at 8 real-valued supercell twist angles (a 2 × 2 × 2 Monkhorst-Pack grid centered at the
Γ-point). Data traces for each twist can be overlapped on the same plot:

>qmca -to -q e -e '30 20 30' *scalar* --legend outside

The -o option requests the plots to be overlapped; otherwise, 8 separate plots would be generated. The equilibration
input -e '30 20 30' cuts out from the analyzed data the first 30 blocks for series 0 (VMC), 20 blocks for series 1
(intermediate DMC), and 30 blocks for series 2 (production DMC). The resulting plot is shown in Fig. 12.7.

Fig. 12.7: Overlapped energy traces from VMC to DMC for an 8-supercell diamond obtained with qmca. Data for
each twist appears in a different color.

Twist averaging is performed by providing the -a option. If provided on its own, uniform weights are applied to each
twist angle. To obtain a trace plot with twist averaging enforced, use a command similar to the following:
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>qmca -a -t -q e -e '30 20 30' *scalar*

The resulting plot is shown in Fig. 12.8. As can be seen from the trace plot, the chosen equilibration lengths are
appropriate, and we proceed to obtain the twist-averaged total energy from the scalar.dat files

>qmca -a -q ev -e 30 --sac *s002.scalar*
LocalEnergy Variance ratio

avg series 2 -45.873369 +/- 0.000753 5.3 1.028751 +/- 0.001056 1.3 0.0224

and also from the dmc.dat files

>qmca -a -q ev -e 300 --sac *s002.dmc*
LocalEnergy Variance ratio

avg series 2 -45.873371 +/- 0.000741 30.5 1.028843 +/- 0.000972 1.6 0.0224

yielding a twist-averaged total energy of −45.8733(8) Ha.

Fig. 12.8: Twist-averaged energy trace from VMC to DMC for an 8-supercell diamond obtained with qmca.

As can be seen from Fig. 12.7, some of the twist angles are degenerate. This is seen more clearly in the text output

>qmca -q ev -e 30 *s002.scalar*
LocalEnergy Variance ratio

qmc.g000 series 2 -45.264510 +/- 0.001942 1.057065 +/- 0.002318 0.0234
qmc.g001 series 2 -46.035511 +/- 0.001806 1.015992 +/- 0.002836 0.0221
qmc.g002 series 2 -46.035410 +/- 0.001538 1.015039 +/- 0.002661 0.0220
qmc.g003 series 2 -46.047285 +/- 0.001898 1.018219 +/- 0.002588 0.0221
qmc.g004 series 2 -46.034225 +/- 0.002539 1.013420 +/- 0.002835 0.0220
qmc.g005 series 2 -46.046731 +/- 0.002963 1.018337 +/- 0.004109 0.0221
qmc.g006 series 2 -46.047133 +/- 0.001958 1.021483 +/- 0.003082 0.0222
qmc.g007 series 2 -45.476146 +/- 0.002065 1.070456 +/- 0.003133 0.0235

The degenerate twists grouped by set are {0}, {1, 2, 4}, {3, 5, 6}, and {7}.

Alternatively, the run could have been performed at the four unique (irreducible) twist angles only. We will emulate
this situation by analyzing data for twists 0, 1, 3, and 7 only. In a production setting with irreducibly weighted twists,
the run would be performed on these twists alone; we reuse the uniform twist data for illustration purposes only.
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We can use qmca to perform twist averaging with different weights applied to each twist:

>qmca -a -w '1 3 3 1' -q ev -e 30 *g000*2*sc* *g001*2*sc* *g003*2*sc* *g007*2*sc*
LocalEnergy Variance ratio

avg series 2 -45.873631 +/- 0.001044 1.028769 +/- 0.001520 0.0224

yielding a total energy value of −45.874(1) Ha, in agreement with the uniform weighted twist average performed
previously.

The decision of whether or not to perform irreducible weighted twist averaging should be made on the basis of effi-
ciency. The relative efficiency of irreducible vs. uniform weighted twist averaging depends on the irreducible weights
and the ratio of the lengths of the available sampling and equilibration periods. A formula for the relative efficiency of
these two cases is derived and discussed in more detail in Appendix A: Derivation of twist averaging efficiency.

12.1.7 Setting output units

Estimates outputted by qmca are in Hartree units by default. The output units for energetic quantities can be changed
by using the -u option.

Energy in Hartrees:

>qmca -q e -u Ha -e 20 qmc.s002.scalar.dat
qmc series 2 LocalEnergy = -46.032960 +/- 0.002077

Energy in electron volts:

>qmca -q e -u eV -e 20 qmc.s002.scalar.dat
qmc series 2 LocalEnergy = -1252.620565 +/- 0.056521

Energy in Rydbergs:

>qmca -q e -u rydberg -e 20 qmc.s002.scalar.dat
qmc series 2 LocalEnergy = -92.065919 +/- 0.004154

Energy in kilojoules per mole:

>qmca -q e -u kj_mol -e 20 qmc.s002.scalar.dat
qmc series 2 LocalEnergy = -120859.512998 +/- 5.453431

12.1.8 Speeding up trace plotting

When working with many files or files with many entries, qmca might take a long time to produce plots. The time
delay is actually due to the autocorrelation time estimate used to calculate error bars. The calculation time for the
autocorrelation scales as𝒪(𝑀2), with𝑀 being the number of statistical samples. If you are interested only in plotting
traces and not in the estimated error bars, the autocorrelation time estimation can be turned off with the -noac option:

>qmca -t -q e -e 20 --noac qmc.s002.scalar.dat

Note that the resulting error bars printed to the console will be underestimated and are not meaningful. Do not use
-noac in conjunction with the -p plotting option as these plots are of no use without meaningful error bars.
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12.1.9 Short usage examples

Plotting a trace of the local energy:

>qmca -t -q e *scalar*

Applying an equilibration cutoff to VMC data (series 0):

>qmca -q e -e 30 *s000.scalar*

Applying the same equilibration cutoff to VMC and DMC data (series 0, 1, 2):

>qmca -q e -e 20 *scalar*

Applying different equilibration cutoffs to VMC and DMC data (series 0, 1, 2):

>qmca -q e -e '30 20 40' *scalar*

Obtaining the energy, variance, and variance/energy ratio for all series:

>qmca -q ev -e 30 *scalar*

Overlaying plots of mean + error bar for energy and variance for separate two- and three-body Jastrow optimization
runs:

>qmca -po -q ev ./optJ2/*scalar* ./optJ3/*scalar*

Obtaining the acceptance ratio:

>qmca -q ar -e 30 *scalar*

Obtaining the average DMC walker population:

>qmca -q nw -e 400 *s002.dmc.dat

Obtaining the MC efficiency:

>qmca -q eff -e 30 *scalar*

Obtaining the total wall clock time per series:

>qmca -q tt -e 0 *scalar*

Obtaining the average wall clock time spent per block:

>qmca -q bc -e 0 *scalar*

Obtaining a subset of desired quantities:

>qmca -q 'e v ar eff' -e 30 *scalar*

Obtaining all available quantities:

>qmca -e 30 *scalar*

Obtaining the twist-averaged total energy with uniform weights:
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>qmca -a -q e -e 40 *g*s002.scalar.dat

Obtaining the twist-averaged total energy with specific weights:

>qmca -a -w '1 3 3 1' -q e -e 40 *g*s002.scalar.dat

Obtaining the local, kinetic, and potential energies in eV:

>qmca -q ekp -e 30 -u eV *scalar*

12.1.10 Production quality checklist

1. Inspect the trace plots (-t option) for any oddities in the data. Typical behavior is a short equilibration period
followed by benign fluctuations around a clear mean value. There should not be any large spikes in the data.
This applies to all runs (VMC, optimization, DMC, etc.).

2. Remove all equilibration steps (-e option) from the data by inspecting the trace plot.

3. Check the quality of the orbitals (standalone Jastrow-less VMC or sometimes the first scalar file produced
during optimization) by inspecting the variance/energy ratio qmca -q ev *scalar*. For pseudopotential
systems without a Jastrow, the variance/energy ratio should not exceed 0.2 Ha; otherwise, there is a problem
with the orbitals.

4. Check the quality of the optimized Jastrow factor by inspecting the variance/energy ratio. For pseudopotential
systems with a Jastrow, the variance/energy ratio should not exceed 0.04 Ha for pseudopotential systems. A
good Jastrow is indicated by a variance/energy ratio in the range of 0.01 − 0.03 Ha. A value less than 0.01 Ha
is difficult to achieve.

5. Confirm that the optimization has converged by plotting the energy and variance vs. optimization series (qmca
-p -q ev *scalar*). Do not assume that optimization has converged in only a few cycles. Use at least 10
cycles with about 100,000 samples unless you already have experience with the system in question.

6. Optimize Jastrow factors according to energy minimization to reduce locality errors arising from the use of
nonlocal pseudopotentials in DMC. A good approach is to optimize with a few cycles of variance minimization
followed by several cycles of energy minimization.

7. Occasionally try optimizing with more samples and/or cycles to see if improved results are obtained.

8. If using a B-spline representation of the orbitals, converge the VMC energy and variance with respect to the
mesh size (controlled via meshfactor). This is best done in the presence of any Jastrow factor to reduce noise.
Consider using the hybrid LMTO representation of the orbitals as this can reduce both the VMC/DMC variance
and the DMC time step error, in addition to saving memory.

9. Check the variance/energy ratio of all production VMC and DMC calculations. In all cases, the DMC ratio
should be slightly less than the VMC ratio and both should abide the preceding guidelines, i.e., the ratio should
be less than 0.04 Ha for pseudopotential systems. The production ratio should also be consistent with what is
observed during wavefunction optimization.

10. Be aware of population control bias in DMC. Run with a population of ∼ 2, 000 or greater. Occasionally repeat
a run using a larger population to explicitly confirm that population control bias is small.

11. Check the stability of the DMC walker population by plotting the trace of the population size (qmca -t -q
nw *dmc.dat). Verify that the average walker population is consistent with the requested value provided in
the input.

12. In DMC, perform a time step study to obtain either (1) extrapolated results or (2) a time step for future production
where an energy difference shows convergence (e.g., a band gap or defect formation energy). For pseudopo-
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tential systems, converged time steps for many systems are in the range of 0.002 − 0.01 Ha−1, but the actual
converged time step must be explicitly checked.

13. In periodic systems, converge the total energy with respect to the size of the twist/k-point grid. Results for
smaller systems can easily be transferred to larger ones (e.g., a 2 × 2 × 2 twist grid in a 2 × 2 × 2 tiled cell is
equivalent to a 1× 1× 1 twist grid in a 4× 4× 4 tiled cell).

14. In periodic systems, perform finite-size extrapolation including two body corrections (needed for cohesive en-
ergy/phase stability studies) unless it can be shown that finite-size effects cancel for the energy difference in
question (e.g., some defect formation energies).

12.2 Using the qmc-fit tool for statistical time step extrapolation and
curve fitting

The qmc-fit tool is used to provide statistical estimates of curve-fitting parameters based on QMCPACK data.
Although qmc-fit will eventually support many types of fitted curves (e.g., Morse potential binding curves and
various equation-of-state fitting curves), it is currently limited to estimating fitting parameters related to time step
extrapolation.

12.2.1 The jackknife statistical technique

The qmc-fit tool obtains estimates of fitting parameter means and associated error bars via the “jack-knife” tech-
nique. This technique is a powerful and general tool to obtain meaningful error bars for any quantity that is related in
a nonlinear fashion to an underlying set of statistical data. For this reason, we give a brief overview of the jackknife
technique before proceeding with usage instructions for the qmc-fit tool.

Consider 𝑁 statistical variables {𝑥𝑛}𝑁𝑛=1 that have been outputted by one or more simulation runs. If we have 𝑀
samples of each of the 𝑁 variables, then the mean values of each these variables can be estimated in the standard way,
that is, �̄�𝑛 ≈ 1

𝑀

∑︀𝑀
𝑚=1 𝑥𝑛𝑚.

Suppose we are interested in 𝑃 statistical quantities {𝑦𝑝}𝑃𝑝=1 that are related to the original 𝑁 variables by a known
multidimensional function 𝐹 :

𝑦1, 𝑦2, . . . , 𝑦𝑃 = 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) or
�⃗� = 𝐹 (�⃗�) .

The relationship implied by 𝐹 is completely general. For example, the {𝑥𝑛} might be elements of a matrix with
{𝑦𝑝} being the eigenvalues, or 𝐹 might be a fitting procedure for 𝑁 energies at different time steps with 𝑃 fitting
parameters. An approximate guess at the mean value of �⃗� can be obtained by evaluating 𝐹 at the mean value of �⃗� (i.e.
𝐹 (�̄�1 . . . �̄�𝑁 )), but with this approach we have no way to estimate the statistical error bar of any 𝑦𝑝.

In the jackknife procedure, the statistical variability intrinsic to the underlying data {𝑥𝑛} is used to obtain estimates of
the mean and error bar of {𝑦𝑝}. We first construct a new set of 𝑥 statistical data by taking the average over all samples
but one:

�̃�𝑛𝑚 =
1

𝑁 − 1
(𝑁�̄�𝑛 − 𝑥𝑛𝑚) 𝑚 ∈ [1,𝑀 ] . (12.1)

The result is a distribution of approximate 𝑥 mean values. These are used to construct a distribution of approximate
means for 𝑦:

𝑦1𝑚, . . . , 𝑦𝑃𝑚 = 𝐹 (�̃�1𝑚, . . . , �̃�𝑁𝑚) 𝑚 ∈ [1,𝑀 ] . (12.2)
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Estimates for the mean and error bar of the quantities of interest can finally be obtained using the following formulas:

𝑦𝑝 =
1

𝑀

𝑀∑︁
𝑚=1

𝑦𝑝𝑚 .

𝜎𝑦𝑝 =

⎯⎸⎸⎷𝑀 − 1

𝑀

(︃
𝑀∑︁
𝑚=1

𝑦2𝑝𝑚 −𝑀𝑦2𝑝

)︃
.

(12.3)

12.2.2 Performing time step extrapolation

In this section, we use a 32-atom supercell of MnO as an example system for time step extrapolation. Data for this sys-
tem has been collected in DMC using the following sequence of time steps: 0.04, 0.02, 0.01, 0.005, 0.0025, 0.00125
Ha−1. For a typical production pseudopotential study, time steps in the range of 0.02 − 0.002 Ha−1 are usually suf-
ficient and it is recommended to increase the number of steps/blocks by a factor of two when the time step is halved.
To perform accurate statistical fitting, we must first understand the equilibration and autocorrelation properties of the
inputted local energy data. After plotting the local energy traces (qmca -t -q e -e 0 ./qmc*/*scalar*), it
is clear that an equilibration period of 30 blocks is reasonable. Approximate autocorrelation lengths are also obtained
with qmca:

>qmca -e 30 -q e --sac ./qmc*/qmc.g000.s002.scalar.dat
./qmc_tm_0.00125/qmc.g000 series 2 LocalEnergy = -3848.234513 +/- 0.055754 1.7
./qmc_tm_0.00250/qmc.g000 series 2 LocalEnergy = -3848.237614 +/- 0.055432 2.2
./qmc_tm_0.00500/qmc.g000 series 2 LocalEnergy = -3848.349741 +/- 0.069729 2.8
./qmc_tm_0.01000/qmc.g000 series 2 LocalEnergy = -3848.274596 +/- 0.126407 3.9
./qmc_tm_0.02000/qmc.g000 series 2 LocalEnergy = -3848.539017 +/- 0.075740 2.4
./qmc_tm_0.04000/qmc.g000 series 2 LocalEnergy = -3848.976424 +/- 0.075305 1.8

The autocorrelation must be removed from the data before jackknifing, so we will reblock the data by a factor of 4.

The qmc-fit tool can be used in the following way to obtain a linear time step fit of the data:

>qmc-fit ts -e 30 -b 4 -s 2 -t '0.00125 0.0025 0.005 0.01 0.02 0.04' ./qmc*/*scalar*
fit function : linear
fitted formula: (-3848.193 +/- 0.037) + (-18.95 +/- 1.95)*t
intercept : -3848.193 +/- 0.037 Ha

The input arguments are as follows: ts indicates we are performing a time step fit, -e 30 is the equilibration period
removed from each set of scalar data, -b 4 indicates the data will be reblocked by a factor of 4 (e.g., a file containing
400 entries will be block averaged into a new set of 100 before jackknife fitting), -s 2 indicates that the time step
data begins with series 2 (scalar files matching *s000* or *s001* are to be excluded), and -t ‘0.00125 0.0025
0.005 0.01 0.02 0.04’ provides a list of time step values corresponding to the inputted scalar files. The -e and -b
options can receive a list of file-specific values (same format as -t) if desired. As can be seen from the text output,
the parameters for the linear fit are printed with error bars obtained with jackknife resampling and the zero time step
“intercept” is−3848.19(4) Ha. In addition to text output, the previous command will result in a plot of the fit with the
zero time step value shown as a red dot, as shown in the top panel of Fig. 12.9.

Different fitting functions are supported via the -f option. Currently supported options include linear (𝑎 + 𝑏𝑡),
quadratic (𝑎+ 𝑏𝑡+ 𝑐𝑡2), and sqrt (𝑎+ 𝑏

√
𝑡+ 𝑐𝑡). Results for a quadratic fit are shown subsequently and in the

bottom panel of Fig. 12.9.

>qmc-fit ts -f quadratic -e30 -b4 -s2 -t '0.00125 0.0025 0.005 0.01 0.02 0.04' ./qmc*/
→˓*scalar*
fit function : quadratic
fitted formula: (-3848.245 +/- 0.047) + (-7.25 +/- 8.33)*t + (-285.00 +/- 202.39)*t^2
intercept : -3848.245 +/- 0.047 Ha
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In this case, we find a zero time step estimate of −3848.25(5) Ha−1. A time step of 0.04 Ha−1 might be on the large
side to include in time step extrapolation, and it is likely to have an outsize influence in the case of linear extrapolation.
Upon excluding this point, linear extrapolation yields a zero timestep value of−3848.22(4) Ha−1. Note that quadratic
extrapolation can result in intrinsically larger uncertainty in the extrapolated value. For example, when the 0.04 Ha−1

point is excluded, the uncertainty grows by 50% and we obtain an estimated value of −3848.28(7) instead.

Fig. 12.9: Linear (top) and quadratic (bottom) time step fits to DMC data for a 32-atom supercell of MnO obtained
with qmc-fit. Zero time step estimates are indicated by the red data point on the left side of either panel.
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12.3 Using the qdens tool to obtain electron densities

The qdens tool is provided to post-process the heavy density data produced by QMCPACK and output the mean
density (with and without errorbars) in file formats viewable with, e.g., XCrysDen or VESTA. The tool currently
works only with the SpinDensity estimator in QMCPACK.

Note: this tool is provisional and may be changed or replaced at any time. The planned successor to this tool (qstat)
will expand access to other observables and will retain at least the non-plotting capabilities of qdens.

To use qdens, Nexus must be installed along with NumPy and H5Py. A short list of example use cases are covered
in the next section. Current input flags are:

>qdens

Usage: qdens [options] [file(s)]

Options:
--version show program's version number and exit
-h, --help Print help information and exit (default=False).
-v, --verbose Print detailed information (default=False).
-f FORMATS, --formats=FORMATS

Format or list of formats for density file output.
Options: dat, xsf, chgcar (default=None).

-e EQUILIBRATION, --equilibration=EQUILIBRATION
Equilibration length in blocks (default=0).

-r REBLOCK, --reblock=REBLOCK
Block coarsening factor; use estimated autocorrelation
length (default=None).

-a, --average Average over files in each series (default=False).
-w WEIGHTS, --weights=WEIGHTS

List of weights for averaging (default=None).
-i INPUT, --input=INPUT

QMCPACK input file containing structure and grid
information (default=None).

-s STRUCTURE, --structure=STRUCTURE
File containing atomic structure (default=None).

-g GRID, --grid=GRID Density grid dimensions (default=None).
-c CELL, --cell=CELL Simulation cell axes (default=None).
--lineplot=LINEPLOT Produce a line plot along the selected dimension: 0,

1, or 2 (default=None).
--noplot Do not show plots interactively (default=False).

12.3.1 Usage examples

Process a single file, excluding the first 40 blocks, and produce XSF files:

qdens -v -e 40 -f xsf -i qmc.in.xml qmc.s000.stat.h5

Process files for all available series:

qdens -v -e 40 -f xsf -i qmc.in.xml *stat.h5

Combine groups of 10 adjacent statistical blocks together (appropriate if the estimated autocorrelation time is about
10 blocks):
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qdens -v -e 40 -r 10 -f xsf -i qmc.in.xml qmc.s000.stat.h5

Apply different equilibration lengths and reblocking factors to each series (below is appropriate if there are three
series, e.g. s000, s001, and s002):

qdens -v -e '20 20 40' -r '4 4 8' -f xsf -i qmc.in.xml *stat.h5

Produce twist averaged densities (also works with multiple series and reblocking):

qdens -v -a -e 40 -f xsf -i qmc.g000.twistnum_0.in.xml qmc.g*.s000.stat.h5

Twist averaging with arbitrary weights can be performed via the -w option in a fashion identical to qmca.

12.3.2 Files produced

Look for files with names and extensions similar to:

qmc.s000.SpinDensity_u.xsf
qmc.s000.SpinDensity_u-err.xsf
qmc.s000.SpinDensity_u+err.xsf

qmc.s000.SpinDensity_d.xsf
qmc.s000.SpinDensity_d-err.xsf
qmc.s000.SpinDensity_d+err.xsf

qmc.s000.SpinDensity_u+d.xsf
qmc.s000.SpinDensity_u+d-err.xsf
qmc.s000.SpinDensity_u+d+err.xsf

qmc.s000.SpinDensity_u-d.xsf
qmc.s000.SpinDensity_u-d-err.xsf
qmc.s000.SpinDensity_u-d+err.xsf

Files postfixed with u relate to the up electron density, d to down, u+d to the total charge density, and u-d to the
difference between up and down electron densities.

Files without err in the name contain only the mean, whereas files with +err/-err in the name contain the mean
plus/minus the estimated error bar. Please use caution in interpreting the error bars as their accuracy depends crucially
on a correct estimation of the autocorrelation time by the user (see -r option) and having a sufficient number of blocks
remaining following any reblocking.

When twist averaging, the group tag (e.g. g000 or similar) will be replaced with avg in the names of the outputted
files.
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CHAPTER

THIRTEEN

PERIODIC LCAO FOR SOLIDS

13.1 Introduction

QMCPACK implements the linear combination of atomic orbitals (LCAO) and Gaussian basis sets in periodic bound-
ary conditions. This method uses orders of magnitude less memory than the real-space spline wavefunction. Although
the spline scheme enables very fast evaluation of the wavefunction, it might require too much on-node memory for a
large complex cell. The periodic Gaussian evaluation provides a fallback that will definitely fit in available memory
but at significantly increased computational expense. Well-designed Gaussian basis sets should be used to accurately
represent the wavefunction, typically including both diffuse and high angular momentum functions.

The current implementation is not highly optimized for efficiency but can handle real and complex trial wavefunctions
generated by PySCF [[SBB+18]], but other codes such as Crystal can be interfaced on request. Supercell tiling
is handled outside QMCPACK through a proper PySCF input generated by Nexus and the Supercell geometry and
coefficients of the molecular orbotals are constructed in the converter provided by QMCPACK. This is different from
the plane wave/spline route where the tiling is provided in QMCPACK.

LCAO schemes use physical considerations to construct a highly efficient basis set compared with plane waves. Typi-
cally only a few tens of basis functions per atom are required compared with thousands of plane waves. Many forms
of LCAO schemes exist and are being implemented in QMCPACK. The details of the already-implemented methods
are described in the following section.

GTOs: The Gaussian basis functions follow a radial-angular decomposition of

𝜑(r) = 𝑅𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑) , (13.1)

where 𝑌𝑙𝑚(𝜃, 𝜑) is a spherical harmonic, 𝑙 and 𝑚 are the angular momentum and its 𝑧 component, and 𝑟, 𝜃, 𝜑 are
spherical coordinates. In practice, they are atom centered and the 𝑙 expansion typically includes 1–3 additional chan-
nels compared with the formally occupied states of the atom (e.g., 4–6 for a nickel atom with occupied 𝑠, 𝑝, and 𝑑
electron shells.

The evaluation of GTOs within PBC differs slightly from evaluating GTOs in open boundary conditions (OBCs). The
orbitals are evaluated at a distance 𝑟 in the primitive cell (similar to OBC), and then the contributions of the periodic
images are added by evaluating the orbital at a distance 𝑟 + 𝑇 , where T is a translation of the cell lattice vector.
This requires loops over the periodic images until the contributions are orbitals Φ. In the current implementation, the
number of periodic images is an input parameter named PBCimages, which takes three integers corresponding to the
number of periodic images along the supercell axes (X, Y and Z axes for a cubic cell). By default these parameters are
set to PBCimages= 8 8 8, but they require manual convergence checks. Convergence checks can be performed
by checking the total energy convergence with respect to PBCimages, similar to checks performed for plane wave
cutoff energy and B-spline grids. Use of diffuse Gaussians might require these parameters to be increased, while
sharply localized Gaussians might permit a decrease. The cost of evaluating the wavefunction increases sharply as
PBCimages is increased. This input parameter will be replaced by a tolerance factor and numerical screening in the
future.
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13.2 Generating and using periodic Gaussian-type wavefunctions
using PySCF

Similar to any QMC calculation, using periodic GTOs requires the generation of a periodic trial wavefunction. QM-
CPACK is currently interfaced to PySCF, which is a multipurpose electronic structure written mainly in Python with
key numerical functionality implemented via optimized C and C++ libraries [[SBB+18]]. Such a wavefunction can be
generated according to the following example for a 2× 1× 1 supercell using tiling (kpoints) and a supertwist shifted
away from Γ, leading to a complex wavefunction.

Listing 13.1: Example PySCF input for single k-point calculation for a
2× 1× 1 carbon supercell.

#! /usr/bin/env python3
import numpy
import h5py
from pyscf.pbc import gto, scf, dft, df
from pyscf.pbc import df

cell = gto.Cell()
cell.a = '''

3.37316115 3.37316115 0.00000000
0.00000000 3.37316115 3.37316115
3.37316115 0.00000000 3.37316115'''

cell.atom = '''
C 0.00000000 0.00000000 0.00000000
C 1.686580575 1.686580575 1.686580575

'''
cell.basis = 'bfd-vdz'
cell.ecp = 'bfd'
cell.unit = 'B'
cell.drop_exponent = 0.1
cell.verbose = 5
cell.charge = 0
cell.spin = 0
cell.build()

sp_twist=[0.07761248, 0.07761248, -0.07761248]

kmesh=[2,1,1]
kpts=[[ 0.07761248, 0.07761248, -0.07761248],[ 0.54328733, 0.54328733, -0.54328733]]

mf = scf.KRHF(cell,kpts)
mf.exxdiv = 'ewald'
mf.max_cycle = 200

e_scf=mf.kernel()

ener = open('e_scf','w')
ener.write('%s\n' % (e_scf))
print('e_scf',e_scf)
ener.close()

title="C_diamond-tiled-cplx"
from PyscfToQmcpack import savetoqmcpack

(continues on next page)
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(continued from previous page)

savetoqmcpack(cell,mf,title=title,kmesh=kmesh,kpts=kpts,sp_twist=sp_twist)

Note that the last three lines of the file

title="C_diamond-tiled-cplx"
from PyscfToQmcpack import savetoqmcpack
savetoqmcpack(cell,mf,title=title,kmesh=kmesh,kpts=kpts,sp_twist=sp_twist)

contain the title (name of the HDF5 to be used in QMCPACK) and the call to the converter. The title vari-
able will be the name of the HDF5 file where all the data needed by QMCPACK will be stored. The func-
tion savetoqmcpack will be called at the end of the calculation and will generate the HDF5 similarly to the non-
periodic PySCF calculation in convert4qmc. The function is distributed with QMCPACK and is located in the
qmcpack/src/QMCTools directory under the name PyscfToQmcpack.py. Note that you need to specify the super-
twist coordinates that was used with the provided kpoints. The supertwist must match the coordinates of the K-
points otherwise the phase factor for the atomic orbital will be incorrect and incorrect results will be obtained.
(For more details on how to generate tiling with PySCF and Nexus, refer to the Nexus guide or the 2019 QMC-
PACK Workshop material available on github: https://github.com/QMCPACK/qmcpack_workshop_2019 under qmc-
pack_workshop_2019/day2_nexus/pyscf/04_pyscf_diamond_hf_qmc/

For the converter in the script to be called properly, you need to specify the path to the file in your PYTHONPATH
such as

export PYTHONPATH=QMCPACK_PATH/src/QMCTools:$PYTHONPATH

To generate QMCPACK input files, you will need to run convert4qmc exactly as specified in convert4qmc for both
cases:

convert4qmc -pyscf C_diamond-tiled-cplx

This tool can be used with any option described in convert4qmc. Since the HDF5 contains all the information needed,
there is no need to specify any other specific tag for periodicity. A supercell at Γ-point or using multiple k-points will
work without further modification.

Running convert4qmc will generate 3 input files:

Listing 13.2: C_diamond-tiled-cplx.structure.xml. This file contains the
geometry of the system.

<?xml version="1.0"?>
<qmcsystem>

<simulationcell>
<parameter name="lattice">

6.74632230000000e+00 6.74632230000000e+00 0.00000000000000e+00
0.00000000000000e+00 3.37316115000000e+00 3.37316115000000e+00
3.37316115000000e+00 0.00000000000000e+00 3.37316115000000e+00

</parameter>
<parameter name="bconds">p p p</parameter>
<parameter name="LR_dim_cutoff">15</parameter>

</simulationcell>
<particleset name="ion0" size="4">
<group name="C">

<parameter name="charge">4</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">6</parameter>

</group>
<attrib name="position" datatype="posArray">

(continues on next page)
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0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
1.6865805750e+00 1.6865805750e+00 1.6865805750e+00
3.3731611500e+00 3.3731611500e+00 0.0000000000e+00
5.0597417250e+00 5.0597417250e+00 1.6865805750e+00

</attrib>
<attrib name="ionid" datatype="stringArray">

C C C C
</attrib>

</particleset>
<particleset name="e" random="yes" randomsrc="ion0">
<group name="u" size="8">

<parameter name="charge">-1</parameter>
</group>
<group name="d" size="8">

<parameter name="charge">-1</parameter>
</group>

</particleset>
</qmcsystem>

As one can see, for both examples, the two-atom primitive cell has been expanded to contain four atoms in a 2× 1× 1
carbon cell.

Listing 13.3: C_diamond-tiled-cplx.wfj.xml. This file contains the trial
wavefunction.

<?xml version="1.0"?>
<qmcsystem>

<wavefunction name="psi0" target="e">
<determinantset type="MolecularOrbital" name="LCAOBSet" source="ion0" transform=

→˓"yes" twist="0.07761248 0.07761248 -0.07761248" href="C_diamond-tiled-cplx.h5"
→˓PBCimages="8 8 8">

<slaterdeterminant>
<determinant id="updet" size="8">
<occupation mode="ground"/>
<coefficient size="52" spindataset="0"/>

</determinant>
<determinant id="downdet" size="8">
<occupation mode="ground"/>
<coefficient size="52" spindataset="0"/>

</determinant>

</slaterdeterminant>
</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">

<correlation size="10" speciesA="u" speciesB="u">
<coefficients id="uu" type="Array"> 0 0 0 0 0 0 0 0 0 0</coefficients>

</correlation>
<correlation size="10" speciesA="u" speciesB="d">

<coefficients id="ud" type="Array"> 0 0 0 0 0 0 0 0 0 0</coefficients>
</correlation>

</jastrow>
<jastrow name="J1" type="One-Body" function="Bspline" source="ion0" print="yes">

<correlation size="10" cusp="0" elementType="C">
<coefficients id="eC" type="Array"> 0 0 0 0 0 0 0 0 0 0</coefficients>

</correlation>
</jastrow>

(continues on next page)
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</wavefunction>
</qmcsystem>

This file contains information related to the trial wavefunction. It is identical to the input file from an OBC calculation
to the exception of the following tags:

*.wfj.xml specific tags:

tag tag
type

de-
fault

description

twist 3 dou-
bles

(0 0 0) Coordinate of the twist to compute

href string default Name of the HDF5 file generated by PySCF and used for con-
vert4qmc

PBCimages 3 Inte-
ger

8 8 8 Number of periodic images to evaluate the orbitals

Other files containing QMC methods (such as optimization, VMC, and DMC blocks) will be generated and will behave
in a similar fashion regardless of the type of SPO in the trial wavefunction.
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SELECTED CONFIGURATION INTERACTION

A direct path towards improving the accuracy of a QMC calculation is through a better trial wavefunction. Although
using a multireference wavefunction can be straightforward in theory, in actual practice methods such as CASSCF are
not always intuitive and often require being an expert in either the method or the code generating the wavefunction.
An alternative is to use a selected configuration of interaction method (selected CI) such as CIPSI (configuration
interaction using a perturbative selection done iteratively). This provides a direct route to systematically improving
the wavefunction.

14.1 Theoretical background

The principle behind selected CI is rather simple and was first published in 1955 by R. K. Nesbet [[Nes55]]. The first
calculations on atoms were performed by Diner, Malrieu, and Claverie [[DMC67]] in 1967 and became computation-
ally viable for larger molecules in 2013 by Caffarel et al. [[EG13]].

As described by Caffarel et al. in [[EG13]], multideterminantal expansions of the ground-state wavefunction Ψ𝑇 are
written as a linear combination of Slater determinants∑︁

𝑘

𝑐𝑘
∑︁
𝑞

𝑑𝑘,𝑞𝐷𝑘,𝑞↑(𝑟↑)𝐷𝑘,𝑞↓(𝑟↓) , (14.1)

where each determinant corresponds to a given occupation by the 𝑁𝛼 and 𝑁𝛽 electrons of 𝑁 = 𝑁𝛼 + 𝑁𝛽 orbitals
among a set of M spin-orbitals {𝜑1, ., 𝜑𝑀} (restricted case). When no symmetries are considered, the maximum
number of such determinants is (︂

𝑀
𝑁𝛼

)︂
.

(︂
𝑀
𝑁𝛽

)︂
, (14.2)

a number that grows factorially with M and N. The best representation of the exact wavefunction in the determinantal
basis is the full configuration interaction (FCI) wavefunction written as

|Ψ0⟩ =
∑︁
𝑖

𝑐𝑖|𝐷𝑖⟩ , (14.3)

where 𝑐𝑖 are the ground-state coefficients obtained by diagonalizing the matrix, 𝐻𝑖𝑗 = ⟨𝐷𝑖|𝐻|𝐷𝑗⟩, within the full
orthonormalized set ⟨𝐷𝑖||𝐷𝑗⟩ = 𝛿𝑖𝑗 of determinants |𝐷𝑖⟩. CIPSI provides a convenient method to build up to this full
wavefunction with a single criteria.

A CIPSI wavefunction is built iteratively starting from a reference wavefunction, usually Hartree-Fock or CASSCF, by
adding all single and double excitations and then iteratively selecting relevant determinants according to some criteria.
Detailed iterative steps can be found in the reference by Caffarel et al. and references within [[EG13]], [[SAGC16]],
[[SGCL0]] and [[GSLC17]] and are summarized as follows:

• Step 1: Define a reference wavefunction:

179



QMCPACK Manual

|Ψ⟩ =
∑︁
𝑖∈𝐷

𝑐𝑖|𝑖⟩ 𝐸𝑣𝑎𝑟 =
⟨Ψ|�̂�|Ψ⟩
⟨Ψ||Ψ⟩

. (14.4)

• Step 2: Generate external determinants |𝛼⟩: New determinants are added by generating all single and double
excitations from determinants 𝑖 ∈ 𝐷 such as:

⟨Ψ(𝑛)
0 |𝐻|𝐷𝑖𝑐⟩ ≠ 0 . (14.5)

• Step 3: Evaluate the second-order perturbative contribution to each determinant |𝛼⟩:

∆𝐸 =
⟨Ψ|�̂�|𝛼⟩⟨𝛼|�̂�|Ψ⟩
𝐸𝑣𝑎𝑟 − ⟨𝛼|�̂�|𝛼⟩

. (14.6)

• Step 4: Select the determinants with the largest contributions and add them to the Hamiltonian.

• Step 5: Diagonalize the Hamiltonian within the new added determinants and update the wavefunction and the
the value of 𝐸𝑣𝑎𝑟.

• Step 6: Iterate until reaching convergence.

Repeating this process leads to a multireference trial wavefunction of high quality that can be used in QMC.

Ψ𝑇 (𝑟) = 𝑒𝐽(𝑟)
∑︁
𝑘

𝑐𝑘
∑︁
𝑞

𝑑𝑘,𝑞𝐷𝑘,𝑞↑(𝑟↑)𝐷𝑘,𝑞↓(𝑟↓) . (14.7)

The linear coefficients 𝑐𝑘 are then optimized with the presence of the Jastrow function.

Note the following:

• When all determinants |𝛼⟩ are selected, the full configuration interaction result is obtained.

• CIPSI can be seen as a deterministic counterpart of FCIQMC.

• In practice, any wavefunction method can be made multireference with CIPSI. For instance, a multireference
coupled cluster (MRCC) with CIPSI is implemented in QP. [[GGMS17]]

• At any time, with CIPSI selection, 𝐸𝑃𝑇2 =
∑︀
𝛼 ∆𝐸𝛼 estimates the distance to the FCI solution.

14.1.1 CIPSI wavefunction interface

The CIPSI method is implemented in the QP code:cite:QP developed by the Caffarel group. Once the trial wavefunc-
tion is generated, QP is able to produce output readable by the QMCPACK converter as described in convert4qmc. QP
can be installed with multiple plugins for different levels of theory in quantum chemistry. When installing the “QMC”
plugin, QP can save the wavefunction in a format readable by the QMCPACK converter.

In the following we use the 𝐶2𝑂2𝐻3𝑁 molecule (Fig. 14.1) as an example of how to run a multireference calculation
with CIPSI as a trial wavefunction for . The choice of this molecule is motivated by its multireference nature. Although
the molecule remains small enough for CCSD(T) calculations with aug-cc-pVTZ basis set, the D1 diagnostic shows a
very high value for 𝐶2𝑂2𝐻3𝑁 , suggesting a multireference character. Therefore, an accurate reference for the system
is not available, and it becomes difficult to trust the quality of a single-determinant wavefunction even when using
the DFT-B3LYP exchange and correlation functional. Therefore, in the following, we show an example of how to
systematically improve the nodal surface by increasing the number of determinants in the trial wavefunction.

The following steps show how to run from Hartree-Fock to selected CI using QP2, convert the wavefunction to a
QMCPACK trial wavefunction, and analyze the result.

• Step 1: Generate the QP input file. QP takes for input an XYZ file containing the geometry of the molecule such
as:
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Fig. 14.1: 𝐶2𝑂2𝐻3𝑁 molecule.

8
C2O2H3N
C 1.067070 -0.370798 0.020324
C -1.115770 -0.239135 0.081860
O -0.537581 1.047619 -0.091020
N 0.879629 0.882518 0.046830
H -1.525096 -0.354103 1.092299
H -1.868807 -0.416543 -0.683862
H 2.035229 -0.841662 0.053363
O -0.025736 -1.160835 -0.084319

The input file is generated through the following command line:

qp_create_ezfio C2O2H3N.xyz -b cc-pvtz

This means that we will be simulating the molecule in all electrons within the cc-pVTZ basis set. Other options
are, of course, possible such as using ECPs, different spin multiplicities, etc. For more details, see the QP
tutorial at https://quantumpackage.github.io/qp2/

A directory called C2O2H3N.ezfio is created and contains all the relevant data to run the SCF Hartree-Fock
calculation. Note that because of the large size of molecular orbitals (MOs) (220), it is preferable to run QP in
parallel. QP parallelization is based on a master/slave process that allows a master node to manage the work load
between multiple MPI processes through the LibZMQ library. In practice, the run is submitted to one master
node and is then submitted to as many nodes as necessary to speed up the calculations. If a slave node dies
before the end of its task, the master node will resubmit the workload to another available node. If more nodes
are added at any time during the simulation, the master node will use them to reduce the time to solution.

• Step 2: Run Hartree-Fock. To save the integrals on disk and avoid recomputing them later, edit the ezfio
directory with the following command:

qp_edit C2O2H3N.ezfio

This will generate a temporary file showing all the contents of the simulation and opens an editor to allow
modification of their values. Look for io_ao_one_e_integrals and modify its value from None to
Write.

To run a simulation with QP, use the binary texttt{qp_run} with the desired level of theory, in this case Hartree-
Fock (scf).
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mpirun -np 1 qp_run scf C2O2H3N.ezfio &> C2O2H3N-SCF.out

If run in serial, the evaluation of the integrals and the Hamiltonian diagonalization would take a substantial
amount of computer time. We recommend adding a few more slave nodes to help speed up the calculation.

mpirun -np 20 qp_run -s scf C2O2H3N.ezfio &> C2O2H3N-SCF-Slave.out

The total Hartree-Fock energy of the system in cc-pVTZ is :math:`E_{HF}=-283.0992`Ha.

• Step 3: Freeze core electrons. To avoid making excitation from the core electrons, freeze the core electrons and
do only the excitations from the valence electrons.

qp_set_frozen_core C2O2H3N.ezfio

This will will automatically freeze the orbitals from 1 to 5, leaving the remaining orbitals active.

• Step 4: Transform atomic orbitals (AOs) to MOs. This step is the most costly, especially given that its imple-
mentation in QP is serial. We recommend completing it in a separate run and on one node.

qp_run four_idx_transform C2O2H3N.ezfio

The MO integrals are now saved on disk, and unless the orbitals are changed, they will not be recomputed.

• Step 5: CIPSI At this point the wavefunction is ready for the selected CI. By default, QP has two convergence
criteria: the number of determinants (set by default to 1M) or the value of PT2 (set by default to 1.10−4Ha).
For this molecule, the total number of determinants in the FCI space is 2.07𝑒+ 88 determinants. Although this
number is completely out of range of what is possible to compute, we will set the limit of determinants in QP to
5M determinants and see whether the nodal surface of the wavefunction is converged enough for the DMC. At
this point it is important to remember that the main value of CIPSI compared with other selected CI methods, is
that the value of PT2 is evaluated directly at each step, giving a good estimate of the error to the FCI energy. This
allows us to conclude that when the E+PT2 energy is converged, the nodal surface is also probably converged.
Similar to the SCF runs, FCI runs have to be submitted in parallel with a master/slave process:

mpirun -np 1 qp_run fci C2O2H3N.ezfio &> C2O2H3N-FCI.out &
sleep 300
mpirun -np 199 qp_run -s fci C2O2H3N.ezfio &> C2O2H3N-FCI-Slave.out
wait

• Step 6 (optional): Natural orbitals Although this step is optional, it is important to note that using natural
orbitals instead of Hartree-Fock orbitals will always improve the quality of the wavefunction and the nodal
surface by reducing the number of needed determinants for the same accuracy. When a full convergence to the
FCI limit is attainable, this step will not lead to any change in the energy but will only reduce the total number
of determinants. However, if a full convergence is not possible, this step can significantly increase the accuracy
of the calculation at the same number of determinants.

qp_run save_natorb C2O2H3N.ezfio

At this point, the orbitals are modified, a new AO→MO transformation is required, and steps 3 and 4 need to
be run again.

• Step 7: Analyze the CIPSI results. Fig. 14.2 shows the evolution of the variational energy and the energy
corrected with PT2 as a function of the number of determinants up to 4M determinants. Although it is clear
that the raw variational energy is far from being converged, the Energy + PT2 appears converged around 0.4M
determinants.

• Step 8: Truncate the number of determinants. Although using all the 4M determinants from CIPSI always
guarantees that all important determinants are kept in the wavefunction, practically, such a large number of
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Fig. 14.2: Evolution of the variational energy and the Energy + PT2 as a function of the number of determinants for
the 𝐶2𝑂2𝐻3𝑁 molecule.

determinants would make any QMC calculation prohibitively expensive because the cost of evaluating a de-
terminant in DMC grows as

√
𝑁𝑑𝑒𝑡, where 𝑁𝑑𝑒𝑡 is the number of determinants in the trial wavefunction. To

truncate the number of determinants, we follow the method described by Scemama et al. [[SGCL0]] where the
wavefunction is truncated by independently removing spin-up and spin-down determinants whose contribution
to the norm of the wavefunction is below a user-defined threshold, 𝜖. For this step, we choose to truncate the
determinants whose coefficients are below, 1.10−3, 1.10−4, 1.10−5, and 1.10−6, translating to 239, 44539,
541380, and 908128 determinants, respectively.

To truncate the determinants in QP, edit the ezfio file as follows:

qp_edit C2O2H3N.ezfio

Then look for ci\_threshold and modify the value according to the desired threshold. Use the following
run to truncate the determinants:

qp_run truncate_wf_spin C2O2H3N.ezfio

Method N_det Energy
Hartree-Fock 1 -281.6729
Natural orbitals 1 -281.6735
E_Variational 438,753 -282.2951
E_Variational 4,068,271 -282.4882
E+PT2 438,753 -282.6809
E+PT2 4,068,271 -282.6805

Table 14.1.1 Energies of 𝐶2𝑂2𝐻3𝑁 using orbitals from Hartree-Fock, natural orbitals, and 0.4M and 4M
determinants

• Save the wavefunction for QMCPACK. The wavefunction in QP is now ready to be converted to QMC-
PACK format. Save the wavefunction into QMCPACK format and then convert the wavefunction using the
convert4qmc tool.

qp_run save_for_qmcpack C2O2H3N.ezfio
convert4qmc -orbitals QP2QMCPACK.h5 -multidets QP2QMCPACK.h5 -addCusp -production

Note that QP2 produces an HDF5 file in the QMCPACK format, named QP2QMCPACK. Such file can be
used fir single determinants or multideterminants calculations. Since we are running all-electron calculations,
orbitals in QMC need to be corrected for the electron-nuclearcusp condition. This is done by adding the option
-addCusp to convert4qmc, which adds a tag forcing QMCPACK to run the correction or read them from a
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file if pre-computed. When running multiple DMC runs with different truncation thresholds, only the number of
determinants is varied and the orbitals remain unchanged from one calculation to another and the cusp correction
needs to be run only once.

• Step 10: Run QMCPACK. At this point, running a multideterminant DMC becomes identical to running a
regular DMC with QMCPACK; After correcting the orbitals for the cusp, optimize the Jastrow functions and
then run the DMC. It is important, however, to note a few items:

(1) QMCPACK allows reoptimization of the coefficients of the determinants during the Jastrow optimization
step. Although this has proven to lower the energy significantly when the number of determinants is below
10k, a large number of determinants from CIPSI is often too large to optimize conveniently. Keeping the
coefficients of the determinants from CIPSI unoptimized is an alternative strategy.

(2) The large determinant expansion and the Jastrows are both trying to recover the missing correlations from
the system. When optimizing the Jastrows, we recommend first optimizing J1 and J2 without the J3, and
then with the added J3. Trying to initially optimize J1, J2, and J3 at the same time could lead to numerical
instabilities.

(3) The parameters of the Jastrow function will need to be optimized for each truncation scheme and usually
cannot be reused efficiently from one truncation scheme to another.

• Step 11: Analyze the DMC results from QMCPACK. From Table 14.1.1, we can see that increasing the number
of determinants from 0.5M to almost 1M keeps the energy within error bars and does not improve the quality
of the nodal surface. We can conclude that the DMC energy is converged at 0.54M determinants. Note that this
number of determinants also corresponds to the convergence of E+PT2 in CIPSI calculations, confirming for
this case that the convergence of the nodal surface can follow the convergence of E+PT2 instead of the more
difficult variational energy.

N_det DMC CISPI
1 -283.0696 (6) -283.0063
239 -283.0730 (9) -282.9063
44,539 -283.078 (1) -282.7339
541,380 -283.088 (1) -282.6772
908,128 -283.089 (1) -282.6775

Table 12 DMC Energies and CIPSI(E+PT2) of 𝐶2𝑂2𝐻3𝑁 in function of the number of determinants in the trial
wavefunction.

As mentioned in previous sections, DMC is variational relative to the exact nodal surface. A nodal surface is “better”
if it lowers DMC energy. To assess the quality of the nodal surface from CIPSI, we compare these DMC results to
other single-determinant calculations from multiple nodal surfaces and theories. Fig. 14.3 shows the energy of the
𝐶2𝑂2𝐻3𝑁 molecule as a function of different single-determinant trial wavefunctions with an aug-cc-pVTZ basis set,
including Hartree-Fock, DFT-PBE, and hybrid functionals B3LYP and PBE0. The last four points in the plot show the
systematic improvement of the nodal surface as a function of the number of determinants.

When the DMC-CIPSI energy is converged with respect to the number of determinants, its nodal surface is still lower
than the best SD-DMC (B3LYP) by 6(1) mHa. When compared with CCSD(T) with the same basis set, 𝐸𝐶𝐶𝑆𝐷(𝑇 )

is 4 mHa higher than DMC-CIPSI and 2 mHa lower than DMC-B3LYP. Although 6 (1) mHa can seem very small, it
is important to remember that CCSD(T) cannot correctly describe multireference systems; therefore, it is impossible
to assess the correctness of the single-determinant–DMC result, making CIPSI-DMC calculations an ideal benchmark
tool for multireference systems.
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Fig. 14.3: DMC energy of the 𝐶2𝑂2𝐻3𝑁 molecule as a function of different single-determinant trial wavefunctions
with aug-ccp-VTZ basis set using nodal surfaces from Hartree-Fock, DFT-PBE, and DFT with hybrid functionals
PBE0 and P3LYP. As indicated, the CIPSI trial wavefunction contains 239, 44539, 514380, and 908128 determinants
(D).
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SPIN-ORBIT CALCULATIONS IN QMC

15.1 Introduction

In order to introduce relativistic effects in real materials, in principle the full Dirac equation must be solved where
the resulting wave function is a four-component spinor. For the valence electrons that participate in chemistry, the
single particle spinors can be well approximated by two-component spinors as two of the components are negligible.
Note that this is not true for the deeper core electrons, where all four components contribute. In light of this fact,
relativistic pseudopotentials have been developed to remove the core electrons while providing an effective potential
for the valence electrons [[DC12]]. This allows relativistic effects to be studied in QMC methods using two-component
spinor wave functions.

In QMCPACK, spin-orbit interactions have been implemented following the methodology described in [[MZG+16]]
and [[MBM16]]. We briefly describe some of the details below.

15.2 Single-Particle Spinors

The single particle spinors used in QMCPACK take the form

𝜑(r, 𝑠) =

𝜑↑(r)𝜒↑(𝑠) + 𝜑↓(r)𝜒↓(𝑠)

=

𝜑↑(r)𝑒𝑖𝑠 + 𝜑↓(r)𝑒−𝑖𝑠 ,

(15.1)

where 𝑠 is the spin variable and using the complex spin representation. In order to carry out spin-orbit calculations
in solids, the single-particle spinors can be obtained using Quantum ESPRESSO. After carrying out the spin-orbit
calculation in QE (with flags noncolin = .true., lspinorb = .true., and a relativistic .UPF pseudopotential), the
spinors can be obtained by using the converter convertpw4qmc:

convertpw4qmc data-file-schema.xml

where the data-file-schema.xml file is output from your QE calculation. This will produce an eshdf.h5 file
which contains the up and down components of the spinors per k-point.
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15.3 Trial Wavefunction

Using the generated single particle spinors, we build the many-body wavefunction in a similar fashion to the normal
non-relativistic calculations, namely

Ψ𝑇 (R,S) = 𝑒𝐽
∑︁
𝛼

𝑐𝛼 det
𝛼

[𝜑𝑖(r𝑗 , 𝑠𝑗)] , (15.2)

where we now utilize determinants of spinors, as opposed to the usual product of up and down determinants. An
example xml input block for the trial wave function is show below:

Listing 15.1: wavefunction specification for a single determinant trial
wave function

<?xml version="1.0"?>
<qmcsystem>

<wavefunction name="psi0" target="e">
<sposet_builder name="spo_builder" type="bspline" href="eshdf.h5" tilematrix=

→˓"100010001" twistnum="0" source="ion0" size="10">
<sposet type="bspline" name="myspo" size="10">

<occupation mode="ground"/>
</sposet>

</sposet_builder>
<determinantset>

<slaterdeterminant>
<determinant id="det" group="u" sposet="myspo" size="10"/>

</slaterdeterminant>
</determinantset>
<jastrow type="One-Body" name="J1" function="bspline" source="ion0" print="yes">

<correlation elementType="O" size="8" cusp="0.0">
<coefficients id="eO" type="Array">
</coefficients>

</correlation>
</jastrow>

<jastrow type="Two-Body" name="J2" function="bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="8">

<coefficients id="uu" type="Array">
</coefficients>

</correlation>
</jastrow>

</wavefunction>
</qmcsystem>

We note that we only specify an “up” determinant, since we no longer need a product of up and down determinants. In
the Jastrow specification, we only need to provide the jastrow terms for the same spin as there is no longer a distinction
between the up and down spins.

We also make a small modification in the particleset specification:

Listing 15.2: specification for the electron particle when performing
spin-orbit calculations

<particleset name="e" random="yes" randomsrc="ion0" spinor="yes">
<group name="u" size="10" mass="1.0">

<parameter name="charge" > -1 </parameter>
<parameter name="mass" > 1.0 </parameter>

</group>
</particleset>
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Note that we only provide a single electron group to represent all electrons in the system, as opposed to the usual
separation of up and down electrons. The additional keyword spinor=yes is the only required keyword for spinors.
This will be used internally to determine which movers to use in QMC drivers (e.g. VMCUpdatePbyP vs SOVMCUp-
datePbyP) and which SPOSets to use in the trial wave function (spinors vs. normal orbitals)

note: In the current implementation, spinor wavefunctions are only supported at the single determinant level. Multi-
determinant spinor wave functions will be supported in a future release.

15.4 QMC Methods

In this formalism, the spin degree of freedom becomes a continuous variable similar to the spatial degrees of freedom.
In order to sample the spins, we introduce a spin kinetic energy operator

𝑇𝑠 =

𝑁𝑒∑︁
𝑖=1

− 1

2𝜇𝑠

[︂
𝜕2

𝜕𝑠2𝑖
+ 1

]︂
, (15.3)

where 𝜇𝑠 is a spin mass. This operator vanishes when acting on an arbitrary spinor or anti-symmetric product of
spinors due to the offset. This avoids any unphysical contribution to the local energy. However, this does contribute to
the Green’s function in DMC,

𝐺(R′S′ ← RS; 𝜏, 𝜇𝑠) ∝ 𝐺(R′ ← R; 𝜏) exp

[︃
−𝜇𝑠

2𝜏

⃒⃒⃒⃒
S′ − S− 𝜏

𝜇𝑠
vS(S)

⃒⃒⃒⃒2]︃
, (15.4)

where 𝐺(R′ ← R; 𝜏) is the usual Green’s function for the spatial evolution and the spin kinetic energy operator
introduces a Green’s function for the spin variables. Note that this includes a contribution from the spin drift vS(S) =
∇S ln Ψ𝑇 (S).

In both the VMC and DMC methods, there are no required changes to a typical input

<qmc method="vmc/dmc">
<parameter name="steps" > 50 </parameter>
<parameter name="blocks" > 50 </parameter>
<parameter name="walkers" > 10 </parameter>
<parameter name="timestep" > 0.01 </parameter>

</qmc>

Whether or not spin moves are used is determined internally by the spinor=yes flag in particleset.

By default, the spin mass 𝜇𝑠 (which controls the rate of spin sampling relative to the spatial sampling) is set to 1.0.
This can be changed by adding an additional parameter to the QMC input

<parameter name="spinMass" > 0.25 </parameter>

A larger/smaller spin mass corresponds to slower/faster spin sampling relative to the spatial coordinates.

15.5 Spin-Orbit Effective Core Potentials

The spin-orbit contribution to the Hamiltonian can be introduced through the use of Effective Core Potentials (ECPs).
As described in [[MBM16]], the relativistic (semilocal) ECPs take the general form

𝑊RECP = 𝑊𝐿𝐽(𝑟) +
∑︁
ℓ𝑗𝑚𝑗

𝑊ℓ𝑗(𝑟)|ℓ𝑗𝑚𝑗⟩⟨ℓ𝑗𝑚𝑗 | , (15.5)
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where the projectors |ℓ𝑗𝑚𝑗⟩ are the so-called spin spherical harmonics. An equivalent formulation is to decouple
the fully relativistic effective core potential (RECP) into averaged relativistic (ARECP) and spin-orbit (SORECP)
contributions:

𝑊RECP =

𝑊ARECP +𝑊 SOECP

𝑊ARECP =

𝑊ARECP
𝐿 (𝑟) +

∑︁
ℓ𝑚ℓ

𝑊𝐴𝑅𝐸𝐶𝑃
ℓ (𝑟)|ℓ𝑚ℓ⟩⟨ℓ𝑚ℓ|

𝑊 SORECP =∑︁
ℓ

2

2ℓ+ 1
∆𝑊 SORECP

ℓ (𝑟)
∑︁
𝑚ℓ,𝑚′

ℓ

|ℓ𝑚ℓ⟩⟨ℓ𝑚ℓ|ℓ⃗ · �⃗�|ℓ𝑚′
ℓ⟩⟨ℓ𝑚′

ℓ| .

(15.6)

Note that the 𝑊ARECP takes exactly the same form as the semilocal pseudopotentials used in standard QMC calcula-
tions. In the pseudopotential .xml file format, the 𝑊ARECP

ℓ (𝑟) terms are tabulated as usual. If spin-orbit terms are
included in the .xml file, the file must tabulate the entire radial spin-orbit prefactor 2

2ℓ+1∆𝑊 SORECP
ℓ (𝑟). We note

the following relations between the two representations of the relativistic potentials

𝑊ARECP
ℓ (𝑟) =

ℓ+ 1

2ℓ+ 1
𝑊RECP
ℓ,𝑗=ℓ+1/2(𝑟) +

ℓ

2ℓ+ 1
𝑊RECP
ℓ,𝑗=ℓ−1/2(𝑟)

∆𝑊 SORECP
ℓ (𝑟) =

𝑊RECP
ℓ,𝑗=ℓ+1/2(𝑟)−𝑊RECP

ℓ,𝑗=ℓ−1/2(𝑟)

(15.7)

The structure of the spin-orbit .xml is

<?xml version="1.0" encoding="UTF-8"?>
<pseudo>

<header ... relativistic="yes" ... />
<grid ... />
<semilocal units="hartree" format="r*V" npots-down="4" npots-up="0" l-local="3"

→˓npots="2">
<vps l="s" .../>
<vps l="p" .../>
<vps l="d" .../>
<vps l="f" .../>
<vps_so l="p" .../>
<vps_so l="d" .../>

</semilocal>
</pseudo>

This is included in the Hamiltonian in the same way as the usual pseudopotentials. If the <vps_so> elements are
found, the spin-orbit contributions will be present in the calculation. By default, the spin-orbit terms will be included
in the local energy. In order to accumulate the spin-orbit energy, but exclude it from the local energy (and therefore
will not be propogated into the walker weights in DMC for example), the physicalSO flag should be set to no in the
Hamiltonian input. A typical application will include the SOC terms in the local energy, and an example input block
is given as

<hamiltonian name="h0" type="generic" target="e">
<pairpot name="ElecElec" type="coulomb" source="e" target="e" physical="true"/>
<pairpot name="IonIon" type="coulomb" source=ion0" target="ion0" physical="true"/>
<pairpot name="PseudoPot" type="pseudo" source="i" wavefunction="psi0" format="xml">
<pseudo elementType="Pb" href="Pb.xml"/>

</pairpot>
</hamiltonian>
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The contribution from the spin-orbit will be printed to the .stat.h5 and .scalar.dat files for post-processing.
An example output is shown below

LocalEnergy = -3.4419 +/- 0.0014
Variance = 0.1132 +/- 0.0013
Kinetic = 1.1252 +/- 0.0027
LocalPotential = -4.5671 +/- 0.0028
ElecElec = 1.6881 +/- 0.0025
LocalECP = -6.5021 +/- 0.0062
NonLocalECP = 0.3286 +/- 0.0025
LocalEnergy_sq = 11.9601 +/- 0.0086
SOECP = -0.08163 +/- 0.0003

The NonLocalECP represents the 𝑊ARECP, SOECP represents the 𝑊 SORECP, and the sum is the full 𝑊RECP

contribution.
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The AFQMC method is an orbital-space formulation of the imaginary-time propagation algorithm. We refer the reader
to one of the review articles on the method [[PZ04], [Zha13], [ZK03]] for a detailed description of the algorithm. It
uses the Hubbard-Stratonovich transformation to express the imaginary-time propagator, which is inherently a 2-body
operator, as an integral over 1-body propagators, which can be efficiently applied to an arbitrary Slater determinant.
This transformation allows us to represent the interacting many-body system as an average over a noninteracting
system (e.g., Slater determinants) in a time-dependent fluctuating external field (the Auxiliary fields). The walkers
in this case represent nonorthogonal Slater determinants, whose time average represents the desired quantum state.
QMCPACK currently implements the phaseless AFQMC algorithm of Zhang and Krakauer [[ZK03]], where a trial
wavefunction is used to project the simulation to the real axis, controlling the fermionic sign problem at the expense
of a bias. This approximation is similar in spirit to the fixed-node approximation in real-space DMC but applied in the
Hilbert space where the AFQMC random walk occurs.

16.1 Input

The input for an AFQMC calculation is fundamentally different to the input for other real-space algorithms in QM-
CPACK. The main source of input comes from the Hamiltonian matrix elements in an appropriate single particle
basis. This must be evaluated by an external code and saved in a format that QMCPACK can read. More details
about file formats follow. The input file has six basic xml-blocks: AFQMCInfo, Hamiltonian, Wavefunction,
WalkerSet, Propagator, and execute. The first five define input structures required for various types of calcu-
lations. The execute block represents actual calculations and takes as input the other blocks. Nonexecution blocks
are parsed first, followed by a second pass where execution blocks are parsed (and executed) in order. Listing 51
shows an example of a minimal input file for an AFQMC calculation. Table 16.5 shows a brief description of the most
important parameters in the calculation. All xml sections contain a “name” argument used to identify the resulting
object within QMCPACK. For example, in the example, multiple Hamiltonian objects with different names can be
defined. The one actually used in the calculation is the one passed to “execute” as ham.

Listing 16.1: Sample input file for AFQMC.

<?xml version="1.0"?>
<simulation method="afqmc">

<project id="Carbon" series="0"/>

<AFQMCInfo name="info0">
<parameter name="NMO">32</parameter>
<parameter name="NAEA">16</parameter>
<parameter name="NAEB">16</parameter>

</AFQMCInfo>

<Hamiltonian name="ham0" info="info0">
<parameter name="filename">fcidump.h5</parameter>

(continues on next page)
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(continued from previous page)

</Hamiltonian>

<Wavefunction name="wfn0" type="MSD" info="info0">
<parameter name="filetype">hdf5</parameter>
<parameter name="filename">wfn.h5</parameter>

</Wavefunction>

<WalkerSet name="wset0">
<parameter name="walker_type">closed</parameter>

</WalkerSet>

<Propagator name="prop0" info="info0">
</Propagator>

<execute wset="wset0" ham="ham0" wfn="wfn0" prop="prop0" info="info0">
<parameter name="timestep">0.005</parameter>
<parameter name="blocks">10000</parameter>
<parameter name="nWalkers">20</parameter>
<Estimator name="back_propagation">

<parameter name="naverages">4</parameter>
<parameter name="nsteps">400</parameter>
<parameter name="path_restoration">true</parameter>
<onerdm/>
<diag2rdm/>
<twordm/>
<ontop2rdm/>
<realspace_correlators/>
<correlators/>
<genfock/>

</Estimator>
</execute>

</simulation>

The following list includes all input sections for AFQMC calculations, along with a detailed explanation of accepted
parameters. Since the code is under active development, the list of parameters and their interpretation might change in
the future.

AFQMCInfo: Input block that defines basic information about the calculation. It is passed to all other input blocks to
propagate the basic information: <AFQMCInfo name="info0">

• NMO. Number of molecular orbitals, i.e., number of states in the single particle basis.

• NAEA. Number of active electrons-alpha, i.e., number of spin-up electrons.

• NAEB. Number of active electrons-beta, i.e., number of spin-down electrons.

Hamiltonian: Controls the object that reads, stores, and manages the hamiltonian. <Hamiltonian
name="ham0" type="SparseGeneral" info="info0">

• filename. Name of file with the Hamiltonian. This is a required parameter.

• cutoff_1bar. Cutoff applied to integrals during reading. Any term in the Hamiltonian smaller than this value is
set to zero. (For filetype=“hdf5”, the cutoff is applied only to the 2-electron integrals). Default: 1e-8

• cutoff_decomposition. Cutoff used to stop the iterative cycle in the generation of the Cholesky decomposition
of the 2-electron integrals. The generation of Cholesky vectors is stopped when the maximum error in the diago-
nal reaches this value. In case of an eigenvalue factorization, this becomes the cutoff applied to the eigenvalues.
Only eigenvalues above this value are kept. Default: 1e-6
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• nblocks. This parameter controls the distribution of the 2-electron integrals among processors. In the default
behavior (nblocks=1), all nodes contain the entire list of integrals. If nblocks > 1, the of nodes in the calcu-
lation will be split in nblocks groups. Each node in a given group contains the same subset of integrals and
subsequently operates on this subset during any further operation that requires the hamiltonian. The maximum
number of groups is NMO. Currently only works for filetype=“hdf5” and the file must contain integrals. Not yet
implemented for input hamiltonians in the form of Cholesky vectors or for ASCII input. Coming soon! Default:
No distribution

• printEig. If “yes”, prints additional information during the Cholesky decomposition. Default: no

• fix_2eint. If this is set to “yes”, orbital pairs that are found not to be positive definite are ignored in the generation
of the Cholesky factorization. This is necessary if the 2-electron integrals are not positive definite because of
round-off errors in their generation. Default: no

Wavefunction: controls the object that manages the trial wavefunctions. This block expects a list of xml-blocks
defining actual trial wavefunctions for various roles. <Wavefunction name="wfn0" type="MSD/PHMSD"
info="info0">

• filename. Name of file with wavefunction information.

• cutoff. cutoff applied to the terms in the calculation of the local energy. Only terms in the Hamiltonian above
this cutoff are included in the evaluation of the energy. Default: 1e-6

• nnodes. Defines the parallelization of the local energy evaluation and the distribution of the Hamiltonian
matrix (not to GPU)

• nbatch_qr. This turns on(>=1)/off(==0) batched QR calculation. -1 means all the walkers in the batch. Default:
0 (CPU) / -1 (GPU)

WalkerSet: Controls the object that handles the set of walkers. <WalkerSet name="wset0">

• walker_type. Type of walker set: closed or collinear. Default: collinear

• pop_control. Population control algorithm. Options: “simple”: Uses a simple branching scheme with a
fluctuating population. Walkers with weight above max_weight are split into multiple walkers of weight re-
set_weight. Walkers with weight below min_weight are killed with probability (weight/min_weight); “pair”:
Fixed-population branching algorithm, based on QWalk’s branching algorithm. Pairs of walkers with weight
above/below max_weight/min_weight are combined into 2 walkers with weights equal to (𝑤1 + 𝑤2)/2. The
probability of replicating walker w1 (larger weight) occurs with probability 𝑤1/(𝑤1 + 𝑤2), otherwise walker
w2 (lower weight) is replicated; “comb”: Fixed-population branching algorithm based on the Comb method.
Will be available in the next release. Default: “pair”

• min_weight. Weight at which walkers are possibly killed (with probability weight/min_weight). Default: 0.05

• max_weight. Weight at which walkers are replicated. Default: 4.0

• reset_weight. Weight to which replicated walkers are reset to. Default: 1.0

Propagator: Controls the object that manages the propagators. <Propagator name="prop0"
info="info0">

• cutoff. Cutoff applied to Cholesky vectors. Elements of the Cholesky vectors below this value are set to zero.
Only meaningful with sparse hamiltonians. Default: 1e-6

• substractMF. If “yes”, apply mean-field subtraction based on the ImpSamp trial wavefunction. Must set to
“no” to turn it off. Default: yes

• vbias_bound. Upper bound applied to the vias potential. Components of the vias potential above this value are
truncated there. The bound is currently applied to

√
𝜏𝑣𝑏𝑖𝑎𝑠, so a larger value must be used as either the time step

or the fluctuations increase (e.g. from running a larger system or using a poor trial wavefunction). Default: 3.0

• apply_constrain. If “yes”, apply the phaseless constrain to the walker propagation. Currently, setting this to
“no” produces unknown behavior, since free propagation algorithm has not been tested. Default: yes
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• hybrid. If “yes”, use hybrid propagation algorithm. This propagation scheme doesn’t use the local energy
during propagation, leading to significant speed ups when its evaluation cost is high. The local energy of the
ImpSamp trial wavefunction is never evaluated. To obtain energy estimates in this case, you must define an
Estimator xml-block with the Wavefunction block. The local energy of this trial wavefunction is evaluated
and printed. It is possible to use a previously defined trial wavefunction in the Estimator block, just set its
“name” argument to the name of a previously defined wavefunction. In this case, the same object is used for
both roles. Default: no

• nnodes. Controls the parallel propagation algorithm. If nnodes > 1, the nodes in the simulation are split
into groups of nnodes nodes, each group working collectively to propagate their walkers. Default: 1 (Serial
algorithm)

• nbatch. This turns on(>=1)/off(==0) batched calculation of density matrices and overlaps. -1 means all the
walkers in the batch. Default: 0 (CPU) / -1 (GPU)

• nbatch_qr. This turns on(>=1)/off(==0) batched QR calculation. -1 means all the walkers in the batch. Default:
0 (CPU) / -1 (GPU)

execute: Defines an execution region. <execute wset="wset0" ham="ham0" wfn="wfn0"
prop="prop0" info="info0">

• nWalkers. Initial number of walkers per core group (see ncores). This sets the number of walkers for a given
group of “ncores” on a node; the total number of walkers in the simulation depends on the total number of nodes
and on the total number of cores on a node in the following way: #𝑤𝑎𝑙𝑘𝑒𝑟𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑊𝑎𝑙𝑘𝑒𝑟𝑠 * #𝑛𝑜𝑑𝑒𝑠 *
#𝑐𝑜𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙/𝑛𝑐𝑜𝑟𝑒𝑠. Default: 5

• timestep. Time step in 1/a.u. Default: 0.01

• blocks. Number of blocks. Slow operations occur once per block (e.g., write to file, slow observables, check-
points), Default: 100

• step. Number of steps within a block. Operations that occur at the step level include load balance, orthogonal-
ization, branching, etc. Default: 1

• substep. Number of substeps within a step. Only walker propagation occurs in a substep. Default: 1

• ortho. Number of steps between orthogonalization. Default: 1

• ncores. Number of nodes in a task group. This number defines the number of cores on a node that share the
parallel work associated with a distributed task. This number is used in the Wavefunction and Propagator
task groups. The walker sets are shares by the ncores on a given node in the task group.

• checkpoint. Number of blocks between checkpoint files are generated. If a value smaller than 1 is given, no file
is generated. If hdf_write_file is not set, a default name is used. Default: 0

• hdf_write_file. If set (and checkpoint>0), a checkpoint file with this name will be written.

• hdf_read_file. If set, the simulation will be restarted from the given file.

Within the Estimators xml block has an argument name: the type of estimator we want to measure. Currently
available estimators include: “basic”, “energy”, “mixed_one_rdm”, and “back_propagation”.

The basic estimator has the following optional parameters:

• timers. print timing information. Default: true

The back_propagation estimator has the following parameters:

• ortho. Number of back-propagation steps between orthogonalization. Default: 10

• nsteps. Maximum number of back-propagation steps. Default: 10

• naverages. Number of back propagation calculations to perform. The number of steps will be chosed equally
distributed in the range 0,nsteps. Default: 1
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• block_size. Number of blocks to use in the internal average of the back propagated estimator. This is used to
block data and reduce the size of the output. Default: 1

• nskip. Number of blocks to skip at the start of the calculation for equilibration purposes. Default: 0

• path_restoration. Use full path restoration. Can result in better back propagated results. Default false.

The following observables can be computed with the back_propagated estimator

• onerdm. One-particle reduced density matrix.

• twordm. Full Two-particle reduced density matrix.

• diag2rdm. Diagonal part of the two-particle reduced density matrix.

• ontop2rdm. On top two-particle reduced density matrix.

• realspace_correlators. Charge-Charge, and spin-spin correlation functions in real space.

• correlators. Charge-Charge, and spin-spin correlation functions in real space centered about atomic sites.

• genfock. Generalized Fock matrix.

Real space correlation functions require a real space grid. Details coming soon..

16.2 Hamiltonian File formats

QMCPACK offers three factorization approaches which are appropriate in different settings. The most generic
approach implemented is based on the modified-Cholesky factorization [[ADVFerre+09], [BL77], [KdMerasP03],
[PKVZ11], [PZK13]] of the ERI tensor:

𝑣𝑝𝑞𝑟𝑠 = 𝑉(𝑝𝑟),(𝑠𝑞) ≈
𝑁chol∑︁
𝑛

𝐿𝑝𝑟,𝑛𝐿
*
𝑠𝑞,𝑛, (16.1)

where the sum is truncated at 𝑁chol = 𝑥𝑐𝑀 , 𝑥𝑐 is typically between 5 and 10, 𝑀 is the number of basis func-
tions and we have assumed that the single-particle orbitals are in general complex. The storage requirement is thus
naively 𝒪(𝑀3). Note we follow the usual definition of 𝑣𝑝𝑞𝑟𝑠 = ⟨𝑝𝑞|𝑟𝑠⟩ = (𝑝𝑟|𝑞𝑠). With this form of factorization
QMCPACK allows for the integrals to be stored in either dense or sparse format.

The dense case is the simplest and is only implemented for Hamiltonians with real integrals (and basis functions, i.e.
not the homegeneous electron gas which has complex orbitals but real integrals). The file format is given as follows:

Listing 16.2: Sample Dense Cholesky QMCPACK Hamtiltonian.

$ h5dump -n afqmc.h5
HDF5 "afqmc.h5" {

FILE_CONTENTS {
group /
group /Hamiltonian
group /Hamiltonian/DenseFactorized
dataset /Hamiltonian/DenseFactorized/L
dataset /Hamiltonian/dims
dataset /Hamiltonian/hcore
dataset /Hamiltonian/Energies

}
}

where the datasets are given by the following

• /Hamiltonian/DenseFactorized/L Contains the [𝑀2, 𝑁nchol] dimensional matrix representatation of
𝐿𝑝𝑟,𝑛.
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• /Hamiltonian/dims Descriptor array of length 8 containing [0, 0, 0,𝑀,𝑁𝛼, 𝑁𝛽 , 0, 𝑁nchol]. Note that 𝑁𝛼
and 𝑁𝛽 are somewhat redundant and will be read from the input file and wavefunction. This allows for the
Hamiltonian to be used with different (potentially spin polarized) wavefunctions.

• /Hamiltonian/hcore Contains the [𝑀,𝑀 ] dimensional one-body Hamiltonian matrix elements ℎ𝑝𝑞 .

• /Hamiltonian/Energies Array containing [𝐸𝐼𝐼 , 𝐸core]. 𝐸𝐼𝐼 should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy. 𝐸core is deprecated and not used.

Typically the Cholesky matrix is sparse, particularly if written in the non-orthogonal AO basis (not currently supported
in QMCPACK). In this case only a small number of non-zero elements (denoted 𝑛𝑛𝑧 below) need to be stored which
can reduce the memory overhead considerably. Internally QMCPACK stores this matrix in the CSR format, and the
HDF5 file format is reflective of this. For large systems and, more generally when running in parallel, it is convenient
to chunk the writing/reading of the Cholesky matrix into blocks of size [𝑀2, 𝑁chol

𝑁blocks
] (if interpreted as a dense array).

This is achieved by writing these blocks to different data sets in the file. For the sparse case the Hamtiltonian file
format is given as follows:

Listing 16.3: Sample Sparse Cholesky QMCPACK Hamtiltonian.

$ h5dump -n afqmc.h5
HDF5 "afqmc.h5" {

FILE_CONTENTS {
group /
group /Hamiltonian
group /Hamiltonian/Factorized
dataset /Hamiltonian/Factorized/block_sizes
dataset /Hamiltonian/Factorized/index_0
dataset /Hamiltonian/Factorized/vals_0
dataset /Hamiltonian/ComplexIntegrals
dataset /Hamiltonian/dims
dataset /Hamiltonian/hcore
dataset /Hamiltonian/Energies

}
}

• /Hamiltonian/Factorized/block_sizes Contains the number of elements in each block of the
sparse representation of the Cholesky matrix 𝐿𝑝𝑟,𝑛. In this case there is 1 block.

• /Hamiltonian/Factorized/index_0 [2 × 𝑛𝑛𝑧] dimensional array, containing the indices of the non-
zero values of 𝐿𝑖𝑘,𝑛. The row indices are stored in the even entries, and the column indices in the odd entries.

• /Hamiltonian/Factorized/vals_0 [𝑛𝑛𝑧] length array containing non-zero values of 𝐿𝑝𝑟,𝑛 for chunk
0.

• /Hamiltonian/dims Descriptor array of length 8 containing [0, 𝑛𝑛𝑧,𝑁block,𝑀,𝑁𝛼, 𝑁𝛽 , 0, 𝑁nchol].

• /Hamiltonian/ComplexIntegrals Length 1 array that specifies if integrals are complex valued. 1 for
complex integrals, 0 for real integrals.

• /Hamiltonian/hcore Contains the [𝑀,𝑀 ] dimensional one-body Hamiltonian matrix elements ℎ𝑝𝑞 . Due
to its small size this is written as a dense 2D-array.

• /Hamiltonian/Energies Array containing [𝐸𝐼𝐼 , 𝐸core]. 𝐸𝐼𝐼 should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy. 𝐸core is deprecated and not used.

To reduce the memory overhead of storing the three-index tensor we recently adapted the tensor-hypercontraction
[[HPMartinez12], [HPSMartinez12], [PHMartinezS12]] (THC) approach for use in AFQMCcite{MaloneISDF2019}.
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Within the THC approach we can approximate the orbital products entering the ERIs as

𝜙*
𝑝(r)𝜙𝑟(r) ≈

𝑁𝜇∑︁
𝜇

𝜁𝜇(r)𝜙*
𝑝(r𝜇)𝜙𝑟(r𝜇), (16.2)

where 𝜙𝑝(r) are the one-electron orbitals and r𝜇 are a set of specially selected interpolating points, 𝜁𝜇(r) are a set of
interpolating vectors and 𝑁𝜇 = 𝑥𝜇𝑀 . We can then write the ERI tensor as a product of rank-2 tensors

𝑣𝑝𝑞𝑟𝑠 ≈
∑︁
𝜇𝜈

𝜙*
𝑝(r𝜇)𝜙𝑟(r𝜇)𝑀𝜇𝜈𝜙

*
𝑞(r𝜈)𝜙𝑠(r𝜈), (16.3)

where

𝑀𝜇𝜈 =

∫︁
𝑑r𝑑r′𝜁𝜇(r)

1

|r− r′|
𝜁*𝜈 (r′). (16.4)

We also require the half-rotated versions of these quantities which live on a different set of �̃�𝜇 interpolating points r̃𝜇
(see [[MZM19]]). The file format for THC factorization is as follows:

Listing 16.4: Sample Sparse Cholesky QMCPACK Hamtiltonian.

$ h5dump -n afqmc.h5
HDF5 "afqmc.h5" {

FILE_CONTENTS {
group /
group /Hamiltonian
group /Hamiltonian/THC
dataset /Hamiltonian/THC/Luv
dataset /Hamiltonian/THC/Orbitals
dataset /Hamiltonian/THC/HalfTransformedMuv
dataset /Hamiltonian/THC/HalfTransformedFullOrbitals
dataset /Hamiltonian/THC/HalfTransformedOccOrbitals
dataset /Hamiltonian/THC/dims
dataset /Hamiltonian/ComplexIntegrals
dataset /Hamiltonian/dims
dataset /Hamiltonian/hcore
dataset /Hamiltonian/Energies

}
}

• /Hamiltonian/THC/Luv Cholesky factorization of the 𝑀𝜇𝜈 matrix given in (16.4).

• /Hamiltonian/THC/Orbitals [𝑀,𝑁𝜇] dimensional array of orbitals evaluated at chosen interpolating
points 𝜙𝑖(r𝜇).

• /Hamiltonian/THC/HalfTransformedMuv [�̃�𝜇, �̃�𝜇] dimensional array containing half-transformed
�̃�𝜇𝜈 .

• /Hamiltonian/THC/HalfTransformedFullOrbitals [𝑀, �̃�𝜇] dimensional array containing or-
bital set computed at half-transformed interpolating points 𝜙𝑖(r̃𝜇).

• /Hamiltonian/THC/HalfTransformedOccOrbitals [𝑁𝛼 + 𝑁𝛽 , �̃�𝜇] dimensional array containing
half-rotated orbital set computed at half-transformed interpolating points 𝜙𝑎(r̃𝜇) =

∑︀
𝑝𝐴

*
𝑝𝑎𝜙𝑝(r̃𝜇), where A

is the Slater-Matrix of the (currently single-determinant) trial wavefunction.

• /Hamiltonian/THC/dims Descriptor array containing [𝑀,𝑁𝜇, �̃�𝜇].

• /Hamiltonian/ComplexIntegrals Length 1 array that specifies if integrals are complex valued. 1 for
complex integrals, 0 for real integrals.
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• /Hamiltonian/dims Descriptor array of length 8 containing [0, 0, 0,𝑀,𝑁𝛼, 𝑁𝛽 , 0, 0].

• /Hamiltonian/hcore Contains the [𝑀,𝑀 ] dimensional one-body Hamiltonian matrix elements ℎ𝑖𝑗 .

• /Hamiltonian/Energies Array containing [𝐸𝐼𝐼 , 𝐸core]. 𝐸𝐼𝐼 should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy (such as the electron-electron interaction
Madelung contribution of 1

2𝑁𝜉). 𝐸core is deprecated and not used.

Finally, we have implemented an explicitly 𝑘-point dependent factorization for periodic systems [[MZM20], [MZC19]]

(k𝑝𝑝k𝑟𝑟|k𝑞𝑞k𝑠𝑠) =
∑︁
𝑛

𝐿Q,k
𝑝𝑟,𝑛𝐿

Q,k′

𝑠𝑞,𝑛

*
(16.5)

where k, k′ and Q are vectors in the first Brillouin zone. The one-body Hamiltonian is block diagonal in k and in
(16.5) we have used momentum conservation (k𝑝 − k𝑟 + k𝑞 − k𝑠) = G with G being some vector in the reciprocal
lattice of the simulation cell. The convention for the Cholesky matrix 𝐿Q,k

𝑝𝑟,𝛾 is as follows: k𝑟 = k𝑝 −Q, so the vector
k labels the k-point of the first band index, p, while the k-point vector of the second band index, r, is given by k−Q.
Electron repulsion integrals at different Q vectors are zero by symmetry, resulting in a reduction in the number of
required Q vectors. For certain Q vectors that satisfy Q ̸= −Q (this is not satisfied at the origin and at high symmetry
points on the edge of the 1BZ), we have 𝐿Q,k

𝑠𝑞,𝛾
*

= 𝐿−Q,k−Q
𝑞𝑠,𝛾 , which requires us to store Cholesky vectors for either

one of the (Q,−Q) pair, but not both.

In what follows let 𝑚k denote the number of basis functions for basis functions of a given 𝑘-point (these can in
principle differ for different 𝑘-points due to linear dependencies), 𝑛𝛼k the number of 𝛼 electrons in a given 𝑘-point and
𝑛Q𝑛

chol the number of Cholesky vectors for momentum transfer Q𝑛. The file format for this factorization is as follows
(for a 2× 2× 2 𝑘-point mesh, for denser meshes generally there will be far fewer symmetry inequivalent momentum
transfer vectors than there are 𝑘-points):

Listing 16.5: Sample Dense 𝑘-point dependent Cholesky QMCPACK
Hamtiltonian.

$ h5dump -n afqmc.h5
HDF5 "afqmc.h5" {

FILE_CONTENTS {
group /
group /Hamiltonian
group /Hamiltonian/KPFactorized
dataset /Hamiltonian/KPFactorized/L0
dataset /Hamiltonian/KPFactorized/L1
dataset /Hamiltonian/KPFactorized/L2
dataset /Hamiltonian/KPFactorized/L3
dataset /Hamiltonian/KPFactorized/L4
dataset /Hamiltonian/KPFactorized/L5
dataset /Hamiltonian/KPFactorized/L6
dataset /Hamiltonian/KPFactorized/L7
dataset /Hamiltonian/NCholPerKP
dataset /Hamiltonian/MinusK
dataset /Hamiltonian/NMOPerKP
dataset /Hamiltonian/QKTok2
dataset /Hamiltonian/H1_kp0
dataset /Hamiltonian/H1_kp1
dataset /Hamiltonian/H1_kp2
dataset /Hamiltonian/H1_kp3
dataset /Hamiltonian/H1_kp4
dataset /Hamiltonian/H1_kp5
dataset /Hamiltonian/H1_kp6
dataset /Hamiltonian/H1_kp7
dataset /Hamiltonian/ComplexIntegrals

(continues on next page)
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(continued from previous page)

dataset /Hamiltonian/KPoints
dataset /Hamiltonian/dims
dataset /Hamiltonian/Energies

}
}

• /Hamiltonian/KPFactorized/L[n] This series of datasets store elements of the Cholesky tensors
𝐿[Q𝑛,k, 𝑝𝑟, 𝑛]. Each data set is of dimension [𝑁𝑘,𝑚k × 𝑚k′ , 𝑛Q𝑛

chol], where, again, 𝑘 is the 𝑘-point associ-
ated with basis function 𝑝, the 𝑘-point of basis function 𝑟 is defined via the mapping QKtok2.

• /Hamiltonian/NCholPerKP 𝑁𝑘 length array giving number of Cholesky vectors per 𝑘-point.

• /Hamiltonian/MinusK:𝑁𝑘 length array mapping a 𝑘-point to its inverse: k𝑖+MinusK[i]= 0 mod G.

• /Hamiltonian/NMOPerKP: 𝑁𝑘 length array listing number of basis functions per 𝑘-point.

• /Hamiltonian/QKTok2: [𝑁𝑘, 𝑁𝑘] dimensional array. QKtok2[i,j] yields the 𝑘 point index satisfying
k = Q𝑖 − k𝑗 + G.

• /Hamiltonian/dims: Descriptor array of length 8 containing [0, 0, 0,𝑀,𝑁𝛼, 𝑁𝛽 , 0, 0].

• /Hamiltonian/H1_kp[n] Contains the [𝑚k𝑛
,𝑚k𝑛

] dimensional one-body Hamiltonian matrix elements
ℎ(k𝑛𝑝)(k𝑛𝑞).

• /Hamiltonian/ComplexIntegrals Length 1 array that specifies if integrals are complex valued. 1 for
complex integrals, 0 for real integrals.

• /Hamiltonian/KPoints [𝑁𝑘, 3] Dimensional array containing 𝑘-points used to sample Brillouin zone.

• /Hamiltonian/dims Descriptor array of length 8 containing [0, 0, 𝑁𝑘,𝑀,𝑁𝛼, 𝑁𝛽 , 0, 𝑁nchol]. Note that𝑀
is the total number of basis functions, i.e. 𝑀 =

∑︀
k𝑚k, and likewise for the number of electrons.

• /Hamiltonian/Energies Array containing [𝐸𝐼𝐼 , 𝐸core]. 𝐸𝐼𝐼 should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy (such as the electron-electron interaction
Madelung contribution of 1

2𝑁𝜉). 𝐸core is deprecated and not used.

Complex integrals should be written as an array with an additional dimension, e.g., a 1D array should be written
as a 2D array with array_hdf5[:,0]=real(1d_array) and array_hdf5[:,1]=imag(1d_array).
The functions afqmctools.utils.misc.from_qmcpack_complex and afqmctools.utils.misc.
to_qmcpack_complex can be used to transform qmcpack format to complex valued numpy arrays of the ap-
propriate shape and vice versa.

Finally, if using external tools to generate this file format, we provide a sanity checker script in utils/
afqmctools/bin/test_afqmc_input.py which will raise errors if the format does not conform to what
is being used internally.

16.3 Wavefunction File formats

AFQMC allows for two types of multi-determinant trial wavefunctions: non-orthogonal multi Slater determinants
(NOMSD) or SHCI/CASSCF style particle-hole multi Slater determinants (PHMSD).

The file formats are described below
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16.3.1 NOMSD

h5dump -n wfn.h5

HDF5 "wfn.h5" {
FILE_CONTENTS {

group /
group /Wavefunction
group /Wavefunction/NOMSD
dataset /Wavefunction/NOMSD/Psi0_alpha
dataset /Wavefunction/NOMSD/Psi0_beta
group /Wavefunction/NOMSD/PsiT_0
dataset /Wavefunction/NOMSD/PsiT_0/data_
dataset /Wavefunction/NOMSD/PsiT_0/dims
dataset /Wavefunction/NOMSD/PsiT_0/jdata_
dataset /Wavefunction/NOMSD/PsiT_0/pointers_begin_
dataset /Wavefunction/NOMSD/PsiT_0/pointers_end_
group /Wavefunction/NOMSD/PsiT_1
dataset /Wavefunction/NOMSD/PsiT_1/data_
dataset /Wavefunction/NOMSD/PsiT_1/dims
dataset /Wavefunction/NOMSD/PsiT_1/jdata_
dataset /Wavefunction/NOMSD/PsiT_1/pointers_begin_
dataset /Wavefunction/NOMSD/PsiT_1/pointers_end_
dataset /Wavefunction/NOMSD/ci_coeffs
dataset /Wavefunction/NOMSD/dims

}
}

Note that the 𝛼 components of the trial wavefunction are stored under PsiT_{2n} and the 𝛽 components are stored
under PsiT_{2n+1}.

• /Wavefunction/NOMSD/Psi0_alpha [𝑀,𝑁𝛼] dimensional array 𝛼 component of initial walker wave-
function.

• /Wavefunction/NOMSD/Psi0_beta [𝑀,𝑁𝛽 ] dimensional array for 𝛽 initial walker wavefunction.

• /Wavefunction/NOMSD/PsiT_{2n}/data_ Array of length 𝑛𝑛𝑧 containing non-zero elements of 𝑛-th
𝛼 component of trial wavefunction walker wavefunction. Note the conjugate transpose of the Slater matrix is
stored.

• /Wavefunction/NOMSD/PsiT_{2n}/dimsArray of length 3 containing [𝑀,𝑁𝛼, 𝑛𝑛𝑧] where 𝑛𝑛𝑧 is the
number of non-zero elements of this Slater matrix

• /Wavefunction/NOMSD/PsiT_{2n}/jdata_ CSR indices array.

• /Wavefunction/NOMSD/PsiT_{2n}/pointers_begin_ CSR format begin index pointer array.

• /Wavefunction/NOMSD/PsiT_{2n}/pointers_end_ CSR format end index pointer array.

• /Wavefunction/NOMSD/ci_coeffs 𝑁𝐷 length array of ci coefficients. Stored as complex numbers.

• /Wavefunction/NOMSD/dims Integer array of length 5 containing [𝑀,𝑁𝛼, 𝑁𝛽 , walker_type , 𝑁𝐷]
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16.3.2 PHMSD

h5dump -n wfn.h5

HDF5 "wfn.h5" {
FILE_CONTENTS {

group /
group /Wavefunction
group /Wavefunction/PHMSD
dataset /Wavefunction/PHMSD/Psi0_alpha
dataset /Wavefunction/PHMSD/Psi0_beta
dataset /Wavefunction/PHMSD/ci_coeffs
dataset /Wavefunction/PHMSD/dims
dataset /Wavefunction/PHMSD/occs
dataset /Wavefunction/PHMSD/type

}
}

• /Wavefunction/NOMSD/Psi0_alpha [𝑀,𝑁𝛼] dimensional array 𝛼 component of initial walker wave-
function.

• /Wavefunction/NOMSD/Psi0_beta [𝑀,𝑁𝛽 ] dimensional array for 𝛽 initial walker wavefunction.

• /Wavefunction/PHMSD/ci_coeffs 𝑁𝐷 length array of ci coefficients. Stored as complex numbers.

• /Wavefunction/PHMSD/dims Integer array of length 5 containing [𝑀,𝑁𝛼, 𝑁𝛽 , walker_type , 𝑁𝐷]

• /Wavefunction/PHMSD/occs Integer array of length (𝑁𝛼 +𝑁𝛽) *𝑁𝐷 describing the determinant occu-
pancies. For example if (𝑁𝛼 = 𝑁𝛽 = 2) and 𝑁𝐷 = 2, 𝑀 = 4, and if |Ψ𝑇 ⟩ = |0, 1⟩|0, 1⟩+ |0, 1⟩|0, 2⟩ > then
occs = [0, 1, 4, 5, 0, 1, 4, 6]. Note that 𝛽 occupancies are displacd by 𝑀 .

• /Wavefunction/PHMSD/type integer 0/1. 1 implies trial wavefunction is written in different basis than
the underlying basis used for the integrals. If so a matrix of orbital coefficients is required to be written in the
NOMSD format. If 0 then assume wavefunction is in same basis as integrals.

16.4 Current Feature Implementation Status

The current status of features available in QMCPACK is as follows:

Table 16.1: Code features available on CPU
Hamiltonian SD NOMSD PHMSD Real Build Complex Build
Sparse Yes Yes Yes Yes Yes
Dense Yes Yes No Yes No
k-point Yes No No No Yes
THC Yes No No Yes Yes

Table 16.2: Code features available on GPU
Hamiltonian SD NOMSD PHMSD Real Build Complex Build
Sparse No No No No No
Dense Yes No No Yes No
k-point Yes No No No Yes
THC Yes No No Yes Yes
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16.5 Advice/Useful Information

AFQMC calculations are computationally expensive and require some care to obtain reasonable performance. The
following is a growing list of useful advice for new users, followed by a sample input for a large calculation.

• Generate Cholesky-decomposed integrals with external codes instead of the 2-electron integrals directly. The
generation of the Cholesky factorization is faster and consumes less memory.

• Use the hybrid algorithm for walker propagation. Set steps/substeps to adequate values to reduce the number of
energy evaluations. This is essential when using large multideterminant expansions.

• Adjust cutoffs in the wavefunction and propagator bloxks until desired accuracy is reached. The cost of the
calculation will depend on these cutoffs.

• Adjust ncores/nWalkers to obtain better efficiency. Larger nWalkers will lead to more efficient linear algebra
operations but will increase the time per step. Larger ncores will reduce the time per step but will reduce
efficiency because of inefficiencies in the parallel implementation. For large calculations, values between 6–12
for both quantities should be reasonable, depending on architecture.

Listing 16.6: Example of sections of an AFQMC input file for a large
calculation.

...

<Hamiltonian name="ham0" type="SparseGeneral" info="info0">
<parameter name="filename">fcidump.h5</parameter>
<parameter name="cutoff_1bar">1e-6</parameter>
<parameter name="cutoff_decomposition">1e-5</parameter>

</Hamiltonian>

<Wavefunction name="wfn0" type="MSD" info="info0">
<parameter name="filetype">ascii</parameter>
<parameter name="filename">wfn.dat</parameter>

</Wavefunction>

<WalkerSet name="wset0">
<parameter name="walker_type">closed</parameter>

</WalkerSet>

<Propagator name="prop0" info="info0">
<parameter name="hybrid">yes</parameter>

</Propagator>

<execute wset="wset0" ham="ham0" wfn="wfn0" prop="prop0" info="info0">
<parameter name="ncores">8</parameter>
<parameter name="timestep">0.01</parameter>
<parameter name="blocks">10000</parameter>
<parameter name="steps">10</parameter>
<parameter name="substeps">5</parameter>
<parameter name="nWalkers">8</parameter>
<parameter name="ortho">5</parameter>

</execute>

afqmc method

parameters in AFQMCInfo
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Name Datatype Values Default Description
NMO integer ≥ 0 no Number of molecular orbitals
NAEA integer ≥ 0 no Number of active electrons of spin-up
NAEB integer ≥ 0 no Number of active electrons of spin-down

parameters in Hamiltonian

Name Datatype Values Default Description
info argument Name of AFQMCInfo block
filename string no Name of file with the hamiltonian
filetype string hdf5 yes Native HDF5-based format of QMCPACK

parameters in Wavefunction

Name Datatype Values De-
fault

Description

info argu-
ment

name of AFQMCInfo block

type argu-
ment

MSD,
PHMSD

no Linear combination of (assumed non-orthogonal) Slater de-
terminants

filetype string ascii, hdf5 no CI-type multi-determinant wave function

parameters in WalkerSet

Name Datatype Values Default Description
walker_type string collinear yes Request a collinear walker set.

closed no Request a closed shell (doubly-occupied) walker set.

parameters in Propagator

Name Datatype Values Default Description
type argument afqmc afqmc Type of propagator
info argument Name of AFQMCInfo block
hybrid string yes Use hybrid propagation algorithm.

no Use local energy based propagation algorithm.

parameters in execute

Name Datatype Values Default Description
wset argument
ham argument
wfn argument
prop argument
info argument Name of AFQMCInfo block
nWalkers integer ≥ 0 5 Initial number of walkers per task group
timestep real > 0 0.01 Time step in 1/a.u.
blocks integer ≥ 0 100 Number of blocks
step integer > 0 1 Number of steps within a block
substep integer > 0 1 Number of substeps within a step
ortho integer > 0 1 Number of steps between walker orthogonalization.
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16.6 AFQMCTOOLS

The afqmctools library found in qmcpack/utils/afqmctools provides a number of tools to interface elec-
tronic structure codes with AFQMC in QMCPACK. Currently PYSCF is the best supported package and is capable of
generating both molecular and solid state input for AFQMC.

In what follows we will document the most useful routines from a user’s perspective.

afqmctools has to be in your PYTHONPATH.

16.6.1 pyscf_to_afqmc.py

This is the main script to convert PYSCF output into QMCPACK input. The command line options are as follows:

> pyscf_to_afqmc.py -h

usage: pyscf_to_afqmc.py [-h] [-i CHK_FILE] [-o HAMIL_FILE] [-w WFN_FILE]
[-q QMC_INPUT] [-t THRESH] [-k] [--density-fit] [-a]
[-c CAS] [-d] [-n NDET_MAX] [-r] [-p]
[--low LOW_THRESH] [--high HIGH_THRESH] [--dense]
[-v]

optional arguments:
-h, --help show this help message and exit
-i CHK_FILE, --input CHK_FILE

Input pyscf .chk file.
-o HAMIL_FILE, --output HAMIL_FILE

Output file name for QMCPACK hamiltonian.
-w WFN_FILE, --wavefunction WFN_FILE

Output file name for QMCPACK wavefunction. By default
will write to hamil_file.

-q QMC_INPUT, --qmcpack-input QMC_INPUT
Generate skeleton QMCPACK input xml file.

-t THRESH, --cholesky-threshold THRESH
Cholesky convergence threshold.

-k, --kpoint Generate explicit kpoint dependent integrals.
--density-fit Use density fitting integrals stored in input pyscf

chkpoint file.
-a, --ao, --ortho-ao Transform to ortho AO basis. Default assumes we work

in MO basis
-c CAS, --cas CAS Specify a CAS in the form of N,M.
-d, --disable-ham Disable hamiltonian generation.
-n NDET_MAX, --num-dets NDET_MAX

Set upper limit on number of determinants to generate.
-r, --real-ham Write integrals as real numbers.
-p, --phdf Use parallel hdf5.
--low LOW_THRESH Lower threshold for non-integer occupanciesto include

in multi-determinant exansion.
--high HIGH_THRESH Upper threshold for non-integer occupanciesto include

in multi-determinant exansion.
--dense Write dense Hamiltonian.
-v, --verbose Verbose output.

examples on how to generate AFQMC input from PYSCF simulations are available in AFQMC Tutorials
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16.6.2 afqmc_to_fcidump.py

This script is useful for converting AFQMC hamiltonians to the FCIDUMP format.

> afqmc_to_fcidump.py

usage: afqmc_to_fcidump.py [-h] [-i INPUT_FILE] [-o OUTPUT_FILE] [-s SYMM]
[-t TOL] [-c] [--complex-paren] [-

→˓v]

optional arguments:
-h, --help show this help message and exit
-i INPUT_FILE, --input INPUT_FILE

Input AFQMC hamiltonian file.
-o OUTPUT_FILE, --output OUTPUT_FILE

Output file for FCIDUMP.
-s SYMM, --symmetry SYMM

Symmetry of integral file (1,4,8).
-t TOL, --tol TOL Cutoff for integrals.
-c, --complex Whether to write integrals as complex numbers.
--complex-paren Whether to write FORTRAN format complex numbers.
-v, --verbose Verbose output.

16.6.3 fcidump_to_afqmc.py

This script is useful for converting Hamiltonians in the FCIDUMP format to the AFQMC file format.

> fcidump_to_afqmc.py -h

usage: fcidump_to_afqmc.py [-h] [-i INPUT_FILE] [-o OUTPUT_FILE]
[--write-complex] [-t THRESH] [-s

→˓SYMM] [-v]

optional arguments:
-h, --help show this help message and exit
-i INPUT_FILE, --input INPUT_FILE

Input FCIDUMP file.
-o OUTPUT_FILE, --output OUTPUT_FILE

Output file name for PAUXY data.
--write-complex Output integrals in complex format.
-t THRESH, --cholesky-threshold THRESH

Cholesky convergence threshold.
-s SYMM, --symmetry SYMM

Symmetry of integral file (1,4,8).
-v, --verbose Verbose output.
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16.6.4 Writing a Hamiltonian

write_qmcpack_sparse and write_qmcpack_dense can be used to write either sparse or dense qmcpack
Hamiltonians.

import numpy
from afqmctools.hamiltonian.io import write_qmcpack_sparse, write_qmcpack_dense

nmo = 50
nchol = 37
nelec = (3,3)
enuc = -108.3
# hcore and eri should obey the proper symmetry in real applications
# h_ij
hcore = numpy.random.random((nmo,nmo))
# L_{(ik),n}
chol = numpy.random.random((nmo*nmo, nchol))
write_qmcpack_dense(hcore, chol, nelec, nmo, enuc,

real_chol=True,
filename='hamil_dense.h5')

write_qmcpack_sparse(hcore, chol, nelec, nmo, enuc,
real_chol=True,
filename='hamil_sparse.h5')

Note the real_chol parameter controls whether the integrals are written as real or complex numbers. Complex
numbers should be used if -DENABLE_QMC_COMPLEX=1, while the dense Hamiltonian is only available for real
builds.

16.6.5 Writing a wavefunction

write_qmcpack_wfn can be used to write either NOMSD or PHMSD wavefunctions:

import numpy
from afqmctools.wavefunction.mol import write_qmcpack_wfn

# NOMSD
ndet = 100
nmo = 50
nelec = (3, 7)
wfn = numpy.array(numpy.random.random((ndet, nmo, sum(nelec))), dtype=numpy.
→˓complex128)
coeffs = numpy.array(numpy.random.random((ndet)), dtype=numpy.complex128)
uhf = True
write_qmcpack_wfn('wfn.h5', (coeffs, wfn), uhf, nelec, nmo)

By default the first term in the expansion will be used as the initial walker wavefunction. To use another wavefunction
we can pass a value to the init parameter:

init = numpy.array(numpy.random.random((nmo,sum(nelec)), dtype=numpy.complex128)
write_qmcpack_wfn('wfn.h5', (coeffs, wfn), uhf, nelec, nmo, init=[init,init])

Particle-hole wavefunction (PHMSD) from SHCI or CASSCF calculations are also written using the same function:

import numpy
from afqmctools.wavefunction.mol import write_qmcpack_wfn

(continues on next page)
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# PHMSD
ndet = 2
nmo = 4
nelec = (2,2)
uhf = True
# |psi_T> = 1/sqrt(2)(|0,1>|0,1> + |0,1>|0,2>)
coeffs = numpy.array([0.707,0.707], dtype=numpy.complex128)
occa = numpy.array([(0,1), (0,1)])
occb = numpy.array([(0,1), (0,2)])
write_qmcpack_wfn('wfn.h5', (coeffs, occa, occb), uhf, nelec, nmo)

16.6.6 Analyzing Estimators

The afqmctools.analysis.average module can be used to perform simple error analysis for estimators com-
puted with AFQMC.

Warning: Autocorrelation is not accounted for. Use with caution.

average_one_rdm Returns P[s,i,j] = ⟨𝑐†𝑖𝑠𝑐𝑗𝑠⟩ as a (nspin, M, M) dimensional array.

average_two_rdm Gamma[s1s2,i,k,j,l] = ⟨𝑐†𝑖 𝑐
†
𝑗𝑐𝑙𝑐𝑘⟩. For closed shell systems, returns [(a,a,a,a),(a,a,b,b)]. For

collinear systems, returns [(a,a,a,a),(a,a,b,b),(b,b,b,b)].

average_diag_two_rdm Returns ⟨𝑐+𝑖𝑠𝑐
+
𝑗𝑡𝑐𝑗𝑡𝑐𝑖𝑠⟩ as a (2M,2M) dimensional array.

average_on_top_pdm Returns 𝑛2(r, r) for a given real space grid.

average_realspace_correlations Returns ⟨𝐶(r1)𝐶(r2)⟩ and ⟨𝑆(r1)𝑆(r2)⟩ for a given set of points in real space.
𝐶 = (�̂�↑ + �̂�↓), 𝑆 = (�̂�↑ − �̂�↓)

average_atom_correlations Returns ⟨𝐶(𝐼)⟩, ⟨𝑆(𝐼)⟩, ⟨𝐶(𝐼)𝐶(𝐽)⟩, ⟨𝑆(𝐼)𝑆(𝐽)⟩ for a given set of atomic sites 𝐼, 𝐽 .
𝐶 = (�̂�↑ + �̂�↓), 𝑆 = (�̂�↑ − �̂�↓)

average_gen_fock Returns generalized Fock matrix 𝐹±. The parameter fock_type is used to specify 𝐹+

(fock_type='plus') or 𝐹− (fock_type='minus')

get_noons Get natural orbital occupation numbers from one-rdm.

As an example the following will extract the back propagated one rdm for the maximum propagation time, and skip
10 blocks as the equilibration phase.

from afqmctools.analysis.average import average_one_rdm

P, Perr = average_one_rdm('qmc.s000.stat.h5', estimator='back_propagated', eqlb=10)
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CHAPTER

SEVENTEEN

EXAMPLES

WARNING: THESE EXAMPLES ARE NOT CONVERGED! YOU MUST CONVERGE PARAMETERS
(SIMULATION CELL SIZE, JASTROW PARAMETER NUMBER/CUTOFF, TWIST NUMBER, DMC TIME
STEP, DFT PLANE WAVE CUTOFF, DFT K-POINT MESH, ETC.) FOR REAL CALCUATIONS!

The following examples should run in serial on a modern workstation in a few hours.

17.1 Using QMCPACK directly

In examples/molecules are the following examples. Each directory also contains a README file with more
details.

Directory Description
H20 H2O molecule from GAMESS orbitals
He Helium atom with simple wavefunctions

17.2 Using Nexus

For more information about Nexus, see the User Guide in nexus/documentation.

For Python to find the Nexus library, the PYTHONPATH environment variable should be set to <QMCPACK
source>/nexus/library. For these examples to work properly, the executables for QE and QMCPACK ei-
ther need to be on the path, or the paths in the script should be adjusted.

These examples can be found under the nexus/examples/qmcpack directory.

Directory Description
diamond Bulk diamond with VMC
graphene Graphene sheet with DMC
c20 C20 cage molecule
oxygen_dimer Binding curve for O2 molecule
H2O H2O molecule with QE orbitals
LiH LiH crystal with QE orbitals
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CHAPTER

EIGHTEEN

LAB 1: MC STATISTICAL ANALYSIS

18.1 Topics covered in this lab

This lab focuses on the basics of analyzing data from MC calculations. In this lab, participants will use data from
VMC calculations of a simple 1-electron system with an analytically soluble system (the ground state of the hydrogen
atom) to understand how to interpret an MC situation. Most of these analyses will also carry over to DMC simulations.
Topics covered include:

• Averaging MC variables

• The statisical error bar of mean values

• The effects of autocorrelation and variance on the error bar

• The relationship between MC time step and autocorrelation

• The use of blocking to reduce autocorrelation

• The significance of the acceptance ratio

• The significance of the sample size

• How to determine whether an MC run was successful

• The relationship between wavefunction quality and variance

• Gauging the efficiency of MC runs

• The cost of scaling up to larger system sizes

18.2 Lab directories and files

labs/lab1_qmc_statistics/

atom - H atom VMC calculation
H.s000.scalar.dat - H atom VMC data
H.xml - H atom VMC input file

autocorrelation - varying autocorrelation
H.dat - data for gnuplot
H.plt - gnuplot for time step vs. E_L, tau_c
H.s000.scalar.dat - H atom VMC data: time step = 10
H.s001.scalar.dat - H atom VMC data: time step = 5
H.s002.scalar.dat - H atom VMC data: time step = 2
H.s003.scalar.dat - H atom VMC data: time step = 1

(continues on next page)
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H.s004.scalar.dat - H atom VMC data: time step = 0.5
H.s005.scalar.dat - H atom VMC data: time step = 0.2
H.s006.scalar.dat - H atom VMC data: time step = 0.1
H.s007.scalar.dat - H atom VMC data: time step = 0.05
H.s008.scalar.dat - H atom VMC data: time step = 0.02
H.s009.scalar.dat - H atom VMC data: time step = 0.01
H.s010.scalar.dat - H atom VMC data: time step = 0.005
H.s011.scalar.dat - H atom VMC data: time step = 0.002
H.s012.scalar.dat - H atom VMC data: time step = 0.001
H.s013.scalar.dat - H atom VMC data: time step = 0.0005
H.s014.scalar.dat - H atom VMC data: time step = 0.0002
H.s015.scalar.dat - H atom VMC data: time step = 0.0001
H.xml - H atom VMC input file

average - Python scripts for average/std. dev.
average.py - average five E_L from H atom VMC
stddev2.py - standard deviation using (E_L)^2
stddev.py - standard deviation around the mean

basis - varying basis set for orbitals
H__exact.s000.scalar.dat - H atom VMC data using STO basis
H_STO-2G.s000.scalar.dat - H atom VMC data using STO-2G basis
H_STO-3G.s000.scalar.dat - H atom VMC data using STO-3G basis
H_STO-6G.s000.scalar.dat - H atom VMC data using STO-6G basis

blocking - varying block/step ratio
H.dat - data for gnuplot
H.plt - gnuplot for N_block vs. E, tau_c
H.s000.scalar.dat - H atom VMC data 50000:1 blocks:steps
H.s001.scalar.dat - " " " " 25000:2 blocks:steps
H.s002.scalar.dat - " " " " 12500:4 blocks:steps
H.s003.scalar.dat - " " " " 6250: 8 blocks:steps
H.s004.scalar.dat - " " " " 3125:16 blocks:steps
H.s005.scalar.dat - " " " " 2500:20 blocks:steps
H.s006.scalar.dat - " " " " 1250:40 blocks:steps
H.s007.scalar.dat - " " " " 1000:50 blocks:steps
H.s008.scalar.dat - " " " " 500:100 blocks:steps
H.s009.scalar.dat - " " " " 250:200 blocks:steps
H.s010.scalar.dat - " " " " 125:400 blocks:steps
H.s011.scalar.dat - " " " " 100:500 blocks:steps
H.s012.scalar.dat - " " " " 50:1000 blocks:steps
H.s013.scalar.dat - " " " " 40:1250 blocks:steps
H.s014.scalar.dat - " " " " 20:2500 blocks:steps
H.s015.scalar.dat - " " " " 10:5000 blocks:steps
H.xml - H atom VMC input file

blocks - varying total number of blocks
H.dat - data for gnuplot
H.plt - gnuplot for N_block vs. E
H.s000.scalar.dat - H atom VMC data 500 blocks
H.s001.scalar.dat - " " " " 2000 blocks
H.s002.scalar.dat - " " " " 8000 blocks
H.s003.scalar.dat - " " " " 32000 blocks
H.s004.scalar.dat - " " " " 128000 blocks
H.xml - H atom VMC input file

dimer - comparing no and simple Jastrow factor
(continues on next page)
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H2_STO___no_jastrow.s000.scalar.dat - H dimer VMC data without Jastrow
H2_STO_with_jastrow.s000.scalar.dat - H dimer VMC data with Jastrow

docs - documentation
Lab_1_MC_Analysis.pdf - this document
Lab_1_Slides.pdf - slides presented in the lab

nodes - varying number of computing nodes
H.dat - data for gnuplot
H.plt - gnuplot for N_node vs. E
H.s000.scalar.dat - H atom VMC data with 32 nodes
H.s001.scalar.dat - H atom VMC data with 128 nodes
H.s002.scalar.dat - H atom VMC data with 512 nodes

problematic - problematic VMC run
H.s000.scalar.dat - H atom VMC data with a problem

size - scaling with number of particles
01________H.s000.scalar.dat - H atom VMC data
02_______H2.s000.scalar.dat - H dimer " "
06________C.s000.scalar.dat - C atom " "
10______CH4.s000.scalar.dat - methane " "
12_______C2.s000.scalar.dat - C dimer " "
16_____C2H4.s000.scalar.dat - ethene "
18___CH4CH4.s000.scalar.dat - methane dimer VMC data
32_C2H4C2H4.s000.scalar.dat - ethene dimer " "
nelectron_tcpu.dat - data for gnuplot
Nelectron_tCPU.plt - gnuplot for N_elec vs. t_CPU

18.3 Atomic units

QMCPACK operates in Ha atomic units to reduce the number of factors in the Schrödinger equation. Thus, the unit of
length is the bohr (5.291772 ×10−11 m = 0.529177 Å); the unit of energy is the Ha (4.359744 ×10−18 J = 27.211385
eV). The energy of the ground state of the hydrogen atom in these units is -0.5 Ha.

18.4 Reviewing statistics

We will practice taking the average (mean) and standard deviation of some MC data by hand to review the basic
definitions.

Enter Python’s command line by typing python [Enter]. You will see a prompt “>>>.”

The mean of a dataset is given by:

𝑥 =
1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 . (18.1)

To calculate the average of five local energies from an MC calculation of the ground state of an electron in the hydrogen
atom, input (truncate at the thousandths place if you cannot copy and paste; script versions are also available in the
average directory):
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(
(-0.45298911858) +
(-0.45481953564) +
(-0.48066105923) +
(-0.47316713469) +
(-0.46204733302)
)/5.

Then, press [Enter] to get:

>>> ((-0.45298911858) + (-0.45481953564) + (-0.48066105923) +
(-0.47316713469) + (-0.4620473302))/5.
-0.46473683566800006

To understand the significance of the mean, we also need the standard deviation around the mean of the data (also
called the error bar), given by:

𝜎 =

⎯⎸⎸⎷ 1

𝑁(𝑁 − 1)

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2 . (18.2)

To calculate the standard deviation around the mean (-0.464736835668) of these five data points, put in:

( (1./(5.*(5.-1.))) * (
(-0.45298911858-(-0.464736835668))**2 + \\
(-0.45481953564-(-0.464736835668))**2 +
(-0.48066105923-(-0.464736835668))**2 +
(-0.47316713469-(-0.464736835668))**2 +
(-0.46204733302-(-0.464736835668))**2 )
)**0.5

Then, press [Enter] to get:

>>> ( (1./(5.*(5.-1.))) * ( (-0.45298911858-(-0.464736835668))**2 +
(-0.45481953564-(-0.464736835668))**2 + (-0.48066105923-(-0.464736835668))**2 +
(-0.47316713469-(-0.464736835668))**2 + (-0.46204733302-(-0.464736835668))**2
) )**0.5
0.0053303187464332066

Thus, we might report this data as having a value -0.465 +/- 0.005 Ha. This calculation of the standard deviation
assumes that the average for this data is fixed, but we can continually add MC samples to the data, so it is better to use
an estimate of the error bar that does not rely on the overall average. Such an estimate is given by:

�̃� =

⎯⎸⎸⎷ 1

𝑁 − 1

𝑁∑︁
𝑖=1

[(𝑥2)𝑖 − (𝑥𝑖)2] . (18.3)

To calculate the standard deviation with this formula, input the following, which includes the square of the local energy
calculated with each corresponding local energy:

( (1./(5.-1.)) * (
(0.60984565298-(-0.45298911858)**2) + \\
(0.61641291630-(-0.45481953564)**2) +
(1.35860151160-(-0.48066105923)**2) + \\
(0.78720769003-(-0.47316713469)**2) +
(0.56393677687-(-0.46204733302)**2) )
)**0.5
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and press [Enter] to get:

>>> ((1./(5.-1.))*((0.60984565298-(-0.45298911858)**2)+
(0.61641291630-(-0.45481953564)**2)+(1.35860151160-(-0.48066105923)**2)+
(0.78720769003-(-0.47316713469)**2)+(0.56393677687-(-0.46204733302)**2))
)**0.5
0.84491636672906634

This much larger standard deviation, acknowledging that the mean of this small data set is not the average in the limit
of infinite sampling, more accurately reports the value of the local energy as -0.5 +/- 0.8 Ha.

Type quit() and press [Enter] to exit the Python command line.

18.5 Inspecting MC Data

QMCPACK outputs data from MC calculations into files ending in scalar.dat. Several quantities are calculated
and written for each block of MC steps in successive columns to the right of the step index.

Change directories to atom, and open the file ending in scalar.dat with a text editor (e.g., vi *.scalar.dat or
emacs *.scalar.dat. If possible, adjust the terminal so that lines do not wrap. The data will begin as follows (broken
into three groups to fit on this page):

# index LocalEnergy LocalEnergy_sq LocalPotential ...
0 -4.5298911858e-01 6.0984565298e-01 -1.1708693521e+00
1 -4.5481953564e-01 6.1641291630e-01 -1.1863425644e+00
2 -4.8066105923e-01 1.3586015116e+00 -1.1766446209e+00
3 -4.7316713469e-01 7.8720769003e-01 -1.1799481122e+00
4 -4.6204733302e-01 5.6393677687e-01 -1.1619244081e+00
5 -4.4313854290e-01 6.0831516179e-01 -1.2064503041e+00
6 -4.5064926960e-01 5.9891422196e-01 -1.1521370176e+00
7 -4.5687452611e-01 5.8139614676e-01 -1.1423627617e+00
8 -4.5018503739e-01 8.4147849706e-01 -1.1842075439e+00
9 -4.3862013841e-01 5.5477715836e-01 -1.2080979177e+00

The first line begins with a #, indicating that this line does not contain MC data but rather the labels of the columns.
After a blank line, the remaining lines consist of the MC data. The first column, labeled index, is an integer indicating
which block of MC data is on that line. The second column contains the quantity usually of greatest interest from
the simulation: the local energy. Since this simulation did not use the exact ground state wavefunction, it does not
produce -0.5 Ha as the local energy although the value lies within about 10%. The value of the local energy fluctuates
from block to block, and the closer the trial wavefunction is to the ground state the smaller these fluctuations will be.
The next column contains an important ingredient in estimating the error in the MC average—the square of the local
energy—found by evaluating the square of the Hamiltonian.

... Kinetic Coulomb BlockWeight ...
7.1788023352e-01 -1.1708693521e+00 1.2800000000e+04
7.3152302871e-01 -1.1863425644e+00 1.2800000000e+04
6.9598356165e-01 -1.1766446209e+00 1.2800000000e+04
7.0678097751e-01 -1.1799481122e+00 1.2800000000e+04
6.9987707508e-01 -1.1619244081e+00 1.2800000000e+04
7.6331176120e-01 -1.2064503041e+00 1.2800000000e+04
7.0148774798e-01 -1.1521370176e+00 1.2800000000e+04
6.8548823555e-01 -1.1423627617e+00 1.2800000000e+04
7.3402250655e-01 -1.1842075439e+00 1.2800000000e+04
7.6947777925e-01 -1.2080979177e+00 1.2800000000e+04
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The fourth column from the left consists of the values of the local potential energy. In this simulation, it is identical to
the Coulomb potential (contained in the sixth column) because the one electron in the simulation has only the potential
energy coming from its interaction with the nucleus. In many-electron simulations, the local potential energy contains
contributions from the electron-electron Coulomb interactions and the nuclear potential or pseudopotential. The fifth
column contains the local kinetic energy value for each MC block, obtained from the Laplacian of the wavefunction.
The sixth column shows the local Coulomb interaction energy. The seventh column displays the weight each line of
data has in the average (the weights are identical in this simulation).

... BlockCPU AcceptRatio
6.0178991748e-03 9.8515625000e-01
5.8323097461e-03 9.8562500000e-01
5.8213412744e-03 9.8531250000e-01
5.8330412549e-03 9.8828125000e-01
5.8108362256e-03 9.8625000000e-01
5.8254170264e-03 9.8625000000e-01
5.8314813086e-03 9.8679687500e-01
5.8258469971e-03 9.8726562500e-01
5.8158433545e-03 9.8468750000e-01
5.7959401123e-03 9.8539062500e-01

The eighth column shows the CPU time (in seconds) to calculate the data in that line. The ninth column from the left
contains the acceptance ratio (1 being full acceptance) for MC steps in that line’s data. Other than the block weight,
all quantities vary from line to line.

Exit the text editor ([Esc] :q! [Enter] in vi, [Ctrl]-x [Ctrl]-c in emacs).

18.6 Averaging quantities in the MC data

QMCPACK includes the qmca Python tool to average quantities in the scalar.dat file (and also the dmc.dat
file of DMC simulations). Without any flags, qmca will output the average of each column with a quantity in the
scalar.dat file as follows.

Execute qmca by qmca *.scalar.dat, which for this data outputs:

H series 0
LocalEnergy = -0.45446 +/- 0.00057
Variance = 0.529 +/- 0.018
Kinetic = 0.7366 +/- 0.0020
LocalPotential = -1.1910 +/- 0.0016
Coulomb = -1.1910 +/- 0.0016
LocalEnergy_sq = 0.736 +/- 0.018
BlockWeight = 12800.00000000 +/- 0.00000000
BlockCPU = 0.00582002 +/- 0.00000067
AcceptRatio = 0.985508 +/- 0.000048
Efficiency = 0.00000000 +/- 0.00000000

After one blank, qmca prints the title of the subsequent data, gleaned from the data file name. In this case, H.s000.
scalar.dat became “H series 0.” Everything before the first “.s” will be interpreted as the title, and the number
between “.s” and the next “.” will be interpreted as the series number.

The first column under the title is the name of each quantity qmca averaged. The column to the right of the equal signs
contains the average for the quantity of that line, and the column to the right of the plus-slash-minus is the statistical
error bar on the quantity. All quantities calculated from MC simulations have and must be reported with a statistical
error bar!

Two new quantities not present in the scalar.dat file are computed by qmca from the data—variance and effi-
ciency. We will look at these later in this lab.
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To view only one value, qmca takes the -q (quantity) flag. For example, the output of qmca -q LocalEnergy

*.scalar.dat in this directory produces a single line of output:

H series 0 LocalEnergy = -0.454460 +/- 0.000568

Type qmca --help to see the list of all quantities and their abbreviations.

18.7 Evaluating MC simulation quality

There are several aspects of a MC simulation to consider in deciding how well it went. Besides the deviation of the
average from an expected value (if there is one), the stability of the simulation in its sampling, the autocorrelation
between MC steps, the value of the acceptance ratio (accepted steps over total proposed steps), and the variance in the
local energy all indicate the quality of an MC simulation. We will look at these one by one.

18.7.1 Tracing MC quantities

Visualizing the evolution of MC quantities over the course of the simulation by a trace offers a quick picture of whether
the random walk had the expected behavior. qmca plots traces with the -t flag.

Type qmca -q e -t H.s000.scalar.dat, which produces a graph of the trace of the local energy:

The solid black line connects the values of the local energy at each MC block (labeled “samples”). The average value
is marked with a horizontal, solid red line. One standard deviation above and below the average are marked with
horizontal, dashed red lines.

The trace of this run is largely centered on the average with no large-scale oscillations or major shifts, indicating a
good-quality MC run.

Try tracing the kinetic and potential energies, seeing that their behavior is comparable with the total local energy.
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Change to directory problematic and type qmca -q e -t H.s000.scalar.dat to produce this graph:

Here, the local energy samples cluster around the expected -0.5 Ha for the first 150 samples or so and then begin to
oscillate more wildly and increase erratically toward 0, indicating a poor-quality MC run.

Again, trace the kinetic and potential energies in this run and see how their behavior compares with the total local
energy.

18.7.2 Blocking away autocorrelation

Autocorrelation occurs when a given MC step biases subsequent MC steps, leading to samples that are not statistically
independent. We must take this autocorrelation into account to obtain accurate statistics. qmca outputs autocorrelation
when given the –sac flag.

Change to directory autocorrelation and type qmca -q e --sac H.s000.scalar.dat.

H series 0 LocalEnergy = -0.454982 +/- 0.000430 1.0

The value after the error bar on the quantity is the autocorrelation (1.0 in this case).

Proposing too small a step in configuration space, the MC time step, can lead to autocorrelation since the new samples
will be in the neighborhood of previous samples. Type grep timestep H.xml to see the varying time step values
in this QMCPACK input file (H.xml):

<parameter name="timestep">10</parameter>
<parameter name="timestep">5</parameter>
<parameter name="timestep">2</parameter>
<parameter name="timestep">1</parameter>
<parameter name="timestep">0.5</parameter>
<parameter name="timestep">0.2</parameter>
<parameter name="timestep">0.1</parameter>

(continues on next page)
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<parameter name="timestep">0.05</parameter>
<parameter name="timestep">0.02</parameter>
<parameter name="timestep">0.01</parameter>
<parameter name="timestep">0.005</parameter>
<parameter name="timestep">0.002</parameter>
<parameter name="timestep">0.001</parameter>
<parameter name="timestep">0.0005</parameter>
<parameter name="timestep">0.0002</parameter>
<parameter name="timestep">0.0001</parameter>

Generally, as the time step decreases, the autocorrelation will increase (caveat: very large time steps will also have
increasing autocorrelation). To see this, type qmca -q e --sac *.scalar.dat to see the energies and auto-
correlation times, then plot with gnuplot by inputting gnuplot H.plt:

The error bar also increases with the autocorrelation.

Press q [Enter] to quit gnuplot.

To get around the bias of autocorrelation, we group the MC steps into blocks, take the average of the data in the
steps of each block, and then finally average the averages in all the blocks. QMCPACK outputs the block averages as
each line in the scalar.dat file. (For DMC simulations, in addition to the scalar.dat, QMCPACK outputs the
quantities at each step to the dmc.dat file, which permits reblocking the data differently from the specification in the
input file.)

Change directories to blocking. Here we look at the time step of the last dataset in the autocorrelation
directory. Verify this by typing grep timestep H.xml to see that all values are set to 0.001. Now to see how
we will vary the blocking, type grep -A1 blocks H.xml. The parameter “steps” indicates the number of steps
per block, and the parameter “blocks” gives the number of blocks. For this comparison, the total number of MC steps
(equal to the product of “steps” and “blocks”) is fixed at 50,000. Now check the effect of blocking on autocorrela-
tion—type qmca -q e --sac *scalar.dat to see the data and gnuplot H.plt to visualize the data:
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The greatest number of steps per block produces the smallest autocorrelation time. The larger number of blocks
over which to average at small step-per-block number masks the corresponding increase in error bar with increasing
autocorrelation.

Press q [Enter] to quit gnuplot.

18.7.3 Balancing autocorrelation and acceptance ratio

Adjusting the time step value also affects the ratio of accepted steps to proposed steps. Stepping nearby in configuration
space implies that the probability distribution is similar and thus more likely to result in an accepted move. Keeping
the acceptance ratio high means the algorithm is efficiently exploring configuration space and not sticking at particular
configurations. Return to the autocorrelation directory. Refresh your memory on the time steps in this set of
simulations by grep timestep H.xml. Then, type qmca -q ar *scalar.dat to see the acceptance ratio
as it varies with decreasing time step:

H series 0 AcceptRatio = 0.047646 +/- 0.000206
H series 1 AcceptRatio = 0.125361 +/- 0.000308
H series 2 AcceptRatio = 0.328590 +/- 0.000340
H series 3 AcceptRatio = 0.535708 +/- 0.000313
H series 4 AcceptRatio = 0.732537 +/- 0.000234
H series 5 AcceptRatio = 0.903498 +/- 0.000156
H series 6 AcceptRatio = 0.961506 +/- 0.000083
H series 7 AcceptRatio = 0.985499 +/- 0.000051
H series 8 AcceptRatio = 0.996251 +/- 0.000025
H series 9 AcceptRatio = 0.998638 +/- 0.000014
H series 10 AcceptRatio = 0.999515 +/- 0.000009
H series 11 AcceptRatio = 0.999884 +/- 0.000004
H series 12 AcceptRatio = 0.999958 +/- 0.000003
H series 13 AcceptRatio = 0.999986 +/- 0.000002

(continues on next page)
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H series 14 AcceptRatio = 0.999995 +/- 0.000001
H series 15 AcceptRatio = 0.999999 +/- 0.000000

By series 8 (time step = 0.02), the acceptance ratio is in excess of 99%.

Considering the increase in autocorrelation and subsequent increase in error bar as time step decreases, it is important
to choose a time step that trades off appropriately between acceptance ratio and autocorrelation. In this example, a
time step of 0.02 occupies a spot where the acceptance ratio is high (99.6%) and autocorrelation is not appreciably
larger than the minimum value (1.4 vs. 1.0).

18.7.4 Considering variance

Besides autocorrelation, the dominant contributor to the error bar is the variance in the local energy. The variance
measures the fluctuations around the average local energy, and, as the fluctuations go to zero, the wavefunction reaches
an exact eigenstate of the Hamiltonian. qmca calculates this from the local energy and local energy squared columns
of the scalar.dat.

Type qmca -q v H.s009.scalar.dat to calculate the variance on the run with time step balancing autocorre-
lation and acceptance ratio:

H series 9 Variance = 0.513570 +/- 0.010589

Just as the total energy does not tell us much by itself, neither does the variance. However, comparing the ratio of the
variance with the energy indicates how the magnitude of the fluctuations compares with the energy itself. Type qmca
-q ev H.s009.scalar.dat to calculate the energy and variance on the run side by side with the ratio:

LocalEnergy Variance ratio
H series 0 -0.454460 +/- 0.000568 0.529496 +/- 0.018445 1.1651

The very high ration of 1.1651 indicates the square of the fluctuations is on average larger than the value itself. In the
next section, we will approach ways to improve the variance that subsequent labs will build on.

18.8 Reducing statistical error bars

18.8.1 Increasing MC sampling

Increasing the number of MC samples in a dataset reduces the error bar as the inverse of the square root of the number
of samples. There are two ways to increase the number of MC samples in a simulation: (1) running more samples in
parallel and (2) increasing the number of blocks (with fixed number of steps per block, this increases the total number
of MC steps).

To see the effect of running more samples in parallel, change to the directory nodes. The series here increases the
number of nodes by factors of four from 32 to 128 to 512. Type qmca -q ev *scalar.dat and note the change
in the error bar on the local energy as the number of nodes. Visualize this with gnuplot H.plt:
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Increasing the number of blocks, unlike running in parallel, increases the total CPU time of the simulation.

Press q [Enter] to quit gnuplot.

To see the effect of increasing the block number, change to the directory blocks. To see how we will vary the number
of blocks, type grep -A1 blocks H.xml. The number of steps remains fixed, thus increasing the total number
of samples. Visualize the tradeoff by inputting gnuplot H.plt:
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Press q [Enter] to quit gnuplot.

18.8.2 Improving the basis sets

In all of the previous examples, we are using the sum of two Gaussian functions (STO-2G) to approximate what
should be a simple decaying exponential for the wavefunction of the ground state of the hydrogen atom. The sum of
multiple copies of a function varying each copy’s width and amplitude with coefficients is called a basis set. As we
add Gaussians to the basis set, the approximation improves, the variance goes toward zero, and the energy goes to -0.5
Ha. In nearly every other case, the exact function is unknown, and we add basis functions until the total energy does
not change within some threshold.

Change to the directory basis and look at the total energy and variance as we change the wavefunction by typing
qmca -q ev H_:

LocalEnergy Variance ratio
H_STO-2G series 0 -0.454460 +/- 0.000568 0.529496 +/- 0.018445 1.1651
H_STO-3G series 0 -0.465386 +/- 0.000502 0.410491 +/- 0.010051 0.8820
H_STO-6G series 0 -0.471332 +/- 0.000491 0.213919 +/- 0.012954 0.4539
H__exact series 0 -0.500000 +/- 0.000000 0.000000 +/- 0.000000 -0.0000

qmca also puts out the ratio of the variance to the local energy in a column to the right of the variance error bar. A
typical high-quality value for this ratio is lower than 0.1 or so—none of these few-Gaussian wavefunctions satisfy that
rule of thumb.

Use qmca to plot the trace of the local energy, kinetic energy, and potential energy of H__exact. The total energy is
constantly -0.5 Ha even though the kinetic and potential energies fluctuate from configuration to configuration.

18.8. Reducing statistical error bars 225



QMCPACK Manual

18.8.3 Adding a Jastrow factor

Another route to reducing the variance is the introduction of a Jastrow factor to account for electron-electron correla-
tion (not the statistical autocorrelation of MC steps but the physical avoidance that electrons have of one another). To
do this, we will switch to the hydrogen dimer with the exact ground state wavefunction of the atom (STO basis)—this
will not be exact for the dimer. The ground state energy of the hydrogen dimer is -1.174 Ha.

Change directories to dimer and put in qmca -q ev *scalar.dat to see the result of adding a simple, one-
parameter Jastrow to the STO basis for the hydrogen dimer at experimental bond length:

LocalEnergy Variance
H2_STO___no_jastrow series 0 -0.876548 +/- 0.005313 0.473526 +/- 0.014910
H2_STO_with_jastrow series 0 -0.912763 +/- 0.004470 0.279651 +/- 0.016405

The energy reduces by 0.044 +/- 0.006 HA and the variance by 0.19 +/- 0.02. This is still 20% above the ground state
energy, and subsequent labs will cover how to improve on this with improved forms of the wavefunction that capture
more of the physics.

18.9 Scaling to larger numbers of electrons

18.9.1 Calculating the efficiency

The inverse of the product of CPU time and the variance measures the efficiency of an MC calculation. Use qmca to
calculate efficiency by typing qmca -q eff *scalar.dat to see the efficiency of these two H 2 calculations:

H2_STO___no_jastrow series 0 Efficiency = 16698.725453 +/- 0.000000
H2_STO_with_jastrow series 0 Efficiency = 52912.365609 +/- 0.000000

The Jastrow factor increased the efficiency in these calculations by a factor of three, largely through the reduction in
variance (check the average block CPU time to verify this claim).

18.9.2 Scaling up

To see how MC scales with increasing particle number, change directories to size. Here are the data from runs of
increasing numbers of electrons for H, H2, C, CH4, C2, C2H4, (CH4)2, and (C2H4)2 using the STO-6G basis set for
the orbitals of the Slater determinant. The file names begin with the number of electrons simulated for those data.

Use qmca -q bc *scalar.dat to see that the CPU time per block increases with the number of electrons in the
simulation; then plot the total CPU time of the simulation by gnuplot Nelectron_tCPU.plt:
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The green pluses represent the CPU time per block at each electron number. The red line is a quadratic fit to those
data. For a fixed basis set size, we expect the time to scale quadratically up to 1,000s of electrons, at which point a
cubic scaling term may become dominant. Knowing the scaling allows you to roughly project the calculation time for
a larger number of electrons.

Press q [Enter] to quit gnuplot.

This is not the whole story, however. The variance of the energy also increases with a fixed basis set as the number of
particles increases at a faster rate than the energy decreases. To see this, type qmca -q ev *scalar.dat:

LocalEnergy Variance
01________H series 0 -0.471352 +/- 0.000493 0.213020 +/- 0.012950
02_______H2 series 0 -0.898875 +/- 0.000998 0.545717 +/- 0.009980
06________C series 0 -37.608586 +/- 0.020453 184.322000 +/- 45.481193
10______CH4 series 0 -38.821513 +/- 0.022740 169.797871 +/- 24.765674
12_______C2 series 0 -72.302390 +/- 0.037691 491.416711 +/- 106.090103
16_____C2H4 series 0 -75.488701 +/- 0.042919 404.218115 +/- 60.196642
18___CH4CH4 series 0 -58.459857 +/- 0.039309 498.579645 +/- 92.480126
32_C2H4C2H4 series 0 -91.567283 +/- 0.048392 632.114026 +/- 69.637760

The increase in variance is not uniform, but the general trend is upward with a fixed wavefunction form and basis set.
Subsequent labs will address how to improve the wavefunction to keep the variance manageable.
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CHAPTER

NINETEEN

LAB 2: QMC BASICS

19.1 Topics covered in this lab

This lab focuses on the basics of performing quality QMC calculations. As an example, participants test an oxygen
pseudopotential within DMC by calculating atomic and dimer properties, a common step prior to production runs.
Topics covered include:

• Converting pseudopotentials into QMCPACK’s FSATOM format

• Generating orbitals with QE

• Converting orbitals into QMCPACK’s ESHDF format with pw2qmcpack

• Optimizing Jastrow factors with QMCPACK

• Removing DMC time step errors via extrapolation

• Automating QMC workflows with Nexus

• Testing pseudopotentials for accuracy

19.2 Lab outline

1. Download and conversion of oxygen atom pseudopotential

2. DMC time step study of the neutral oxygen atom

1. DFT orbital generation with QE

2. Orbital conversion with

3. Optimization of Jastrow correlation factor with QMCPACK

4. DMC run with multiple time steps

3. DMC time step study of the first ionization potential of oxygen

1. Repetition of a-d above for ionized oxygen atom

4. Automated DMC calculations of the oxygen dimer binding curve
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19.3 Lab directories and files

%
labs/lab2_qmc_basics/

oxygen_atom - oxygen atom calculations
O.q0.dft.in - Quantum ESPRESSO input for DFT run
O.q0.p2q.in - pw2qmcpack.x input for orbital conversion run
O.q0.opt.in.xml - QMCPACK input for Jastrow optimization run
O.q0.dmc.in.xml - QMCPACK input file for neutral O DMC
ip_conv.py - tool to fit oxygen IP vs timestep
reference - directory w/ completed runs

oxygen_dimer - oxygen dimer calculations
dimer_fit.py - tool to fit dimer binding curve
O_dimer.py - automation script for dimer calculations
pseudopotentials - directory for pseudopotentials
reference - directory w/ completed runs

your_system - performing calculations for an arbitrary system (yours)
example.py - example nexus file for periodic diamond
pseudopotentials - directory containing C pseudopotentials
reference - directory w/ completed runs

19.4 Obtaining and converting a pseudopotential for oxygen

First enter the oxygen_atom directory:

cd labs/lab2_qmc_basics/oxygen_atom/

Throughout the rest of the lab, locations are specified with respect to labs/lab2_qmc_basics (e.g.,
oxygen_atom).

We use a potential from the Burkatzki-Filippi-Dolg pseudopotential database. Although the full database is available
in QMCPACK distribution (trunk/pseudopotentials/BFD/), we use a BFD pseudopotential to illustrate the
process of converting and testing an external potential for use with QMCPACK. To obtain the pseudopotential, go
to http://www.burkatzki.com/pseudos/index.2.html and click on the “Select Pseudopotential” button. Next click on
oxygen in the periodic table. Click on the empty circle next to “V5Z” (a large Gaussian basis set) and click on “Next.”
Select the Gamess format and click on “Retrive Potential.” Helpful information about the pseudopotential will be
displayed. The desired portion is at the bottom (the last 7 lines). Copy this text into the editor of your choice (e.g.,
emacs or vi) and save it as O.BFD.gamess (be sure to include a new line at the end of the file). To transform the
pseudopotential into the FSATOM XML format used by QMCPACK, use the ppconvert tool:

ppconvert --gamess_pot O.BFD.gamess --s_ref "1s(2)2p(4)" \
--p_ref "1s(2)2p(4)" --d_ref "1s(2)2p(4)" --xml O.BFD.xml

Observe the notation used to describe the reference valence configuration for this helium-core PP: 1s(2)2p(4). The
ppconvert tool uses the following convention for the valence states: the first $s$ state is labeled 1s (1s, 2s, 3s,
. . .), the first 𝑝 state is labeled 2p (2p, 3p, . . .), and the first 𝑑 state is labeled 3d (3d, 4d, . . .). Copy the resulting
xml file into the oxygen_atom directory.

Note: The command to convert the PP into QE’s UPF format is similar (both formats are required):
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ppconvert --gamess_pot O.BFD.gamess --s_ref "1s(2)2p(4)" \
--p_ref "1s(2)2p(4)" --d_ref "1s(2)2p(4)" --log_grid --upf O.BFD.upf

For reference, the text of O.BFD.gamess should be:

O-QMC GEN 2 1
3
6.00000000 1 9.29793903
55.78763416 3 8.86492204
-38.81978498 2 8.62925665
1
38.41914135 2 8.71924452

The full QMCPACK pseudopotential is also included in oxygen_atom/reference/O.BFD.*.

19.5 DFT with QE to obtain the orbital part of the wavefunction

With the pseudopotential in hand, the next step toward a QMC calculation is to obtain the Fermionic part of the
wavefunction, in this case a single Slater determinant constructed from DFT-LDA orbitals for a neutral oxygen atom.
If you had trouble with the pseudopotential conversion step, preconverted pseudopotential files are located in the
oxygen_atom/reference directory.

QE input for the DFT-LDA ground state of the neutral oxygen atom can be found in O.q0.dft.in and also in
Listing 58. Setting wf_collect=.true. instructs QE to write the orbitals to disk at the end of the run. Option
wf_collect=.true. could be a potential problem in large simulations; therefore, we recommend avoiding it and
using the converter pw2qmcpack in parallel (see details in pw2qmcpack.x). Note that the plane-wave energy cutoff has
been set to a reasonable value of 300 Ry here (ecutwfc=300). This value depends on the pseudopotentials used,
and, in general, should be selected by running DFT → (orbital conversion) → VMC with increasing energy cutoffs
until the lowest VMC total energy and variance is reached.

Listing 19.1: QE input file for the neutral oxygen atom (O.q0.dft.
in)

&CONTROL
calculation = 'scf'
restart_mode = 'from_scratch'
prefix = 'O.q0'
outdir = './'
pseudo_dir = './'
disk_io = 'low'
wf_collect = .true.

/

&SYSTEM
celldm(1) = 1.0
ibrav = 0
nat = 1
ntyp = 1
nspin = 2
tot_charge = 0
tot_magnetization = 2
input_dft = 'lda'
ecutwfc = 300
ecutrho = 1200
nosym = .true.

(continues on next page)
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occupations = 'smearing'
smearing = 'fermi-dirac'
degauss = 0.0001

/

&ELECTRONS
diagonalization = 'david'
mixing_mode = 'plain'
mixing_beta = 0.7
conv_thr = 1e-08
electron_maxstep = 1000

/

ATOMIC_SPECIES
O 15.999 O.BFD.upf

ATOMIC_POSITIONS alat
O 9.44863067 9.44863161 9.44863255

K_POINTS automatic
1 1 1 0 0 0

CELL_PARAMETERS cubic
18.89726133 0.00000000 0.00000000
0.00000000 18.89726133 0.00000000
0.00000000 0.00000000 18.89726133

Run QE by typing

mpirun -np 4 pw.x -input O.q0.dft.in >&O.q0.dft.out&

The DFT run should take a few minutes to complete. If desired, you can track the progress of the DFT run by typing
“tail -f O.q0.dft.out.” Once finished, you should check the LDA total energy in O.q0.dft.out by typing
“grep '! ' O.q0.dft.out.” The result should be close to

! total energy = -31.57553905 Ry

The orbitals have been written in a format native to QE in the O.q0.save directory. We will convert them into the
ESHDF format expected by QMCPACK by using the pw2qmcpack.x tool. The input for pw2qmcpack.x can be
found in the file O.q0.p2q.in and also in Listing 59.

Listing 19.2: pw2qmcpack.x input file for orbital conversion (O.q0.
p2q.in)

&inputpp
prefix = 'O.q0'
outdir = './'
write_psir = .false.

/

Perform the orbital conversion now by typing the following:

mpirun -np 1 pw2qmcpack.x<O.q0.p2q.in>&O.q0.p2q.out&

Upon completion of the run, a new file should be present containing the orbitals for QMCPACK: O.q0.pwscf.h5.
Template XML files for particle (O.q0.ptcl.xml) and wavefunction (O.q0.wfs.xml) inputs to QMCPACK
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should also be present.

19.6 Optimization with QMCPACK to obtain the correlated part of the
wavefunction

The wavefunction we have obtained to this point corresponds to a noninteracting Hamiltonian. Once the Coulomb pair
potential is switched on between particles, it is known analytically that the exact wavefunction has cusps whenever
two particles meet spatially and, in general, the electrons become correlated. This is represented in the wavefunction
by introducing a Jastrow factor containing at least pair correlations:

Ψ𝑆𝑙𝑎𝑡𝑒𝑟−𝐽𝑎𝑠𝑡𝑟𝑜𝑤 = 𝑒−𝐽Ψ𝑆𝑙𝑎𝑡𝑒𝑟 (19.1)

𝐽 =
∑︁
𝜎𝜎′

∑︁
𝑖<𝑗

𝑢𝜎𝜎
′

2 (|𝑟𝑖 − 𝑟𝑗 |) +
∑︁
𝜎

∑︁
𝑖𝐼

𝑢𝜎𝐼1 (|𝑟𝑖 − 𝑟𝐼 |) . (19.2)

Here 𝜎 is a spin variable while 𝑟𝑖 and 𝑟𝐼 represent electron and ion coordinates, respectively. The introduction of 𝐽
into the wavefunction is similar to F12 methods in quantum chemistry, though it has been present in essentially all
QMC studies since the first applications the method (circa 1965).

How are the functions 𝑢𝜎𝜎
′

2 and 𝑢𝜎1 obtained? Generally, they are approximated by analytical functions with several
unknown parameters that are determined by minimizing the energy or variance directly within VMC. This is effective
because the energy and variance reach a global minimum only for the true ground state wavefunction (Energy = 𝐸 ≡
⟨Ψ|�̂�|Ψ⟩, Variance = 𝑉 ≡ ⟨Ψ|(�̂� − 𝐸)2|Ψ⟩). For this exercise, we will focus on minimizing the variance.

First, we need to update the template particle and wavefunction information in O.q0.ptcl.xml and O.q0.wfs.
xml. We want to simulate the O atom in open boundary conditions (the default is periodic). To do this, open `O.q0.
ptcl.xml with your favorite text editor (e.g., emacs or vi) and replace

<parameter name="bconds">
p p p

</parameter>
<parameter name="LR_dim_cutoff">

15
</parameter>

with

<parameter name="bconds">
n n n

</parameter>

Next we will select Jastrow factors appropriate for an atom. In open boundary conditions, the B-spline Jastrow
correlation functions should cut off to zero at some distance away from the atom. Open O.q0.wfs.xml and add the
following cutoffs (rcut in Bohr radii) to the correlation factors:

...
<correlation speciesA="u" speciesB="u" size="8" rcut="10.0">
...
<correlation speciesA="u" speciesB="d" size="8" rcut="10.0">
...
<correlation elementType="O" size="8" rcut="5.0">
...

These terms correspond to 𝑢↑↑2 /𝑢
↓↓
2 , 𝑢↑↓2 , and 𝑢↑𝑂1 /𝑢↓𝑂1 , respectively. In each case, the correlation function (𝑢*) is

represented by piecewise continuous cubic B-splines. Each correlation function has eight parameters, which are just
the values of 𝑢 on a uniformly spaced grid up to rcut. Initially the parameters (coefficients) are set to zero:
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<correlation speciesA="u" speciesB="u" size="8" rcut="10.0">
<coefficients id="uu" type="Array">

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
</coefficients>

</correlation>

Finally, we need to assemble particle, wavefunction, and pseudopotential information into the main QMCPACK input
file (O.q0.opt.in.xml) and specify inputs for the Jastrow optimization process. Open O.q0.opt.in.xml and
write in the location of the particle, wavefunction, and pseudopotential files (“<!-- ... -->” are comments):

...
<!-- include simulationcell and particle information from pw2qmcpqack -->
<include href="O.q0.ptcl.xml"/>
...
<!-- include wavefunction information from pw2qmcpqack -->
<include href="O.q0.wfs.xml"/>
...
<!-- O pseudopotential read from "O.BFD.xml" -->
<pseudo elementType="O" href="O.BFD.xml"/>
...

The relevant portion of the input describing the linear optimization process is

<loop max="MAX">
<qmc method="linear" move="pbyp" checkpoint="-1">
<cost name="energy" > ECOST </cost>
<cost name="unreweightedvariance"> UVCOST </cost>
<cost name="reweightedvariance" > RVCOST </cost>
<parameter name="timestep" > TS </parameter>
<parameter name="samples" > SAMPLES </parameter>
<parameter name="warmupSteps" > 50 </parameter>
<parameter name="blocks" > 200 </parameter>
<parameter name="subSteps" > 1 </parameter>
<parameter name="nonlocalpp" > yes </parameter>
<parameter name="useBuffer" > yes </parameter>
...

</qmc>
</loop>

An explanation of each input variable follows. The remaining variables control specialized internal details of the linear
optimization algorithm. The meaning of these inputs is beyond the scope of this lab, and reasonable results are often
obtained keeping these values fixed.

energy Fraction of trial energy in the cost function.

unreweightedvariance Fraction of unreweighted trial variance in the cost function. Neglecting the weights can be
more robust.

reweightedvariance Fraction of trial variance (including the full weights) in the cost function.

timestep Time step of the VMC random walk, determines spatial distance moved by each electron during MC steps.
Should be chosen such that the acceptance ratio of MC moves is around 50% (30–70% is often acceptable).
Reasonable values are often between 0.2 and 0.6 Ha−1.

samples Total number of MC samples collected for optimization; determines statistical error bar of cost function. It
is often efficient to start with a modest number of samples (50k) and then increase as needed. More samples
may be required if the wavefunction contains a large number of variational parameters. MUST be be a multiple
of the number of threads/cores.
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warmupSteps Number of MC steps discarded as a warmup or equilibration period of the random walk. If this is too
small, it will bias the optimization procedure.

blocks Number of average energy values written to output files. Should be greater than 200 for meaningful statistical
analysis of output data (e.g., via qmca).

subSteps Number of MC steps in between energy evaluations. Each energy evaluation is expensive, so taking a few
steps to decorrelate between measurements can be more efficient. Will be less efficient with many substeps.

nonlocalpp,useBuffer If nonlocalpp="no," then the nonlocal part of the pseudopotential is not included when
computing the cost function. If useBuffer="yes," then temporary data is stored to speed up nonlocal
pseudopotential evaluation at the expense of memory consumption.

loop max Number of times to repeat the optimization. Using the resulting wavefunction from the previous optimiza-
tion in the next one improves the results. Typical choices range between 8 and 16.

The cost function defines the quantity to be minimized during optimization. The three components of the cost function,
energy, unreweighted variance, and reweighted variance should sum to one. Dedicating 100% of the cost function to
unreweighted variance is often a good choice. Another common choice is to try 90/10 or 80/20 mixtures of reweighted
variance and energy. Using 100% energy minimization is desirable for reducing DMC pseudopotential localization
errors, but the optimization process is less stable and should be attempted only after first performing several cycles
of, for example, variance minimization (the entire loop section can be duplicated with a different cost function each
time).

Replace MAX, EVCOST, UVCOST, RVCOST, TS, and SAMPLES in the loop with appropriate starting values in the
O.q0.opt.in.xml input file. Perform the optimization run by typing

mpirun -np 4 qmcpack O.q0.opt.in.xml >&O.q0.opt.out&

The run should take only a few minutes for reasonable values of loop max and samples.

The log file output will appear in O.q0.opt.out. The beginning of each linear optimization will be marked with
text similar to

=========================================================
Start QMCFixedSampleLinearOptimize
File Root O.q0.opt.s011 append = no

=========================================================

At the end of each optimization section the change in cost function, new values for the Jastrow parameters, and elapsed
wall clock time are reported:

OldCost: 7.0598901869e-01 NewCost: 7.0592576381e-01 Delta Cost:-6.3254886314e-05
...
<optVariables href="O.q0.opt.s011.opt.xml">

uu_0 6.9392504232e-01 1 1 ON 0
uu_1 4.9690781460e-01 1 1 ON 1
uu_2 4.0934542375e-01 1 1 ON 2
uu_3 3.7875640157e-01 1 1 ON 3
uu_4 3.7308380014e-01 1 1 ON 4
uu_5 3.5419786809e-01 1 1 ON 5
uu_6 4.3139019377e-01 1 1 ON 6
uu_7 1.9344371667e-01 1 1 ON 7
ud_0 3.9219009713e-01 1 1 ON 8
ud_1 1.2352664647e-01 1 1 ON 9
ud_2 4.4048945133e-02 1 1 ON 10
ud_3 2.1415676741e-02 1 1 ON 11
ud_4 1.5201803731e-02 1 1 ON 12
ud_5 2.3708169445e-02 1 1 ON 13

(continues on next page)
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(continued from previous page)

ud_6 3.4279064930e-02 1 1 ON 14
ud_7 4.3334583596e-02 1 1 ON 15
eO_0 -7.8490123937e-01 1 1 ON 16
eO_1 -6.6726618338e-01 1 1 ON 17
eO_2 -4.8753453838e-01 1 1 ON 18
eO_3 -3.0913993774e-01 1 1 ON 19
eO_4 -1.7901872177e-01 1 1 ON 20
eO_5 -8.6199000697e-02 1 1 ON 21
eO_6 -4.0601160841e-02 1 1 ON 22
eO_7 -4.1358075061e-03 1 1 ON 23
</optVariables>

...
QMC Execution time = 2.8218972974e+01 secs

The cost function should decrease during each linear optimization (Delta cost < 0). Try “grep OldCost

*opt.out.” You should see something like this:

OldCost: 1.2655186572e+00 NewCost: 7.2443875597e-01 Delta Cost:-5.4107990118e-01
OldCost: 7.2229830632e-01 NewCost: 6.9833678217e-01 Delta Cost:-2.3961524143e-02
OldCost: 8.0649629434e-01 NewCost: 8.0551871147e-01 Delta Cost:-9.7758287036e-04
OldCost: 6.6821241388e-01 NewCost: 6.6797703487e-01 Delta Cost:-2.3537901148e-04
OldCost: 7.0106275099e-01 NewCost: 7.0078055426e-01 Delta Cost:-2.8219672877e-04
OldCost: 6.9538522411e-01 NewCost: 6.9419186712e-01 Delta Cost:-1.1933569922e-03
OldCost: 6.7709626744e-01 NewCost: 6.7501251165e-01 Delta Cost:-2.0837557922e-03
OldCost: 6.6659923822e-01 NewCost: 6.6651737755e-01 Delta Cost:-8.1860671682e-05
OldCost: 7.7828995609e-01 NewCost: 7.7735482525e-01 Delta Cost:-9.3513083900e-04
OldCost: 7.2717974404e-01 NewCost: 7.2715201115e-01 Delta Cost:-2.7732880747e-05
OldCost: 6.9400639873e-01 NewCost: 6.9257183689e-01 Delta Cost:-1.4345618444e-03
OldCost: 7.0598901869e-01 NewCost: 7.0592576381e-01 Delta Cost:-6.3254886314e-05

Blocked averages of energy data, including the kinetic energy and components of the potential energy, are written to
scalar.dat files. The first is named “O.q0.opt.s000.scalar.dat,” with a series number of zero (s000).
In the end there will be MAX of them, one for each series.

When the job has finished, use the qmca tool to assess the effectiveness of the optimization process. To look at just
the total energy and the variance, type “qmca -q ev O.q0.opt*scalar*.” This will print the energy, variance,
and the variance/energy ratio in Hartree units:

LocalEnergy Variance ratio
O.q0.opt series 0 -15.739585 +/- 0.007656 0.887412 +/- 0.010728 0.0564
O.q0.opt series 1 -15.848347 +/- 0.004089 0.318490 +/- 0.006404 0.0201
O.q0.opt series 2 -15.867494 +/- 0.004831 0.292309 +/- 0.007786 0.0184
O.q0.opt series 3 -15.871508 +/- 0.003025 0.275364 +/- 0.006045 0.0173
O.q0.opt series 4 -15.865512 +/- 0.002997 0.278056 +/- 0.006523 0.0175
O.q0.opt series 5 -15.864967 +/- 0.002733 0.278065 +/- 0.004413 0.0175
O.q0.opt series 6 -15.869644 +/- 0.002949 0.273497 +/- 0.006141 0.0172
O.q0.opt series 7 -15.868397 +/- 0.003838 0.285451 +/- 0.007570 0.0180
...

Plots of the data can also be obtained with the “-p” option (“qmca -p -q ev O.q0.opt*scalar*”).

Identify which optimization series is the “best” according to your cost function. It is likely that multiple series are
similar in quality. Note the opt.xml file corresponding to this series. This file contains the final value of the
optimized Jastrow parameters to be used in the DMC calculations of the next section of the lab.

Questions and Exercises

1. What is the acceptance ratio of your optimization runs? (use “texttqmca -q ar O.q0.opt*scalar*”) Do you expect
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the MC sampling to be efficient?

2. How do you know when the optimization process has converged?

3. (optional) Optimization is sometimes sensitive to initial guesses of the parameters. If you have time, try varying
the initial parameters, including the cutoff radius (rcut) of the Jastrow factors (remember to change id in the
<project/> element). Do you arrive at a similar set of final Jastrow parameters? What is the lowest variance
you are able to achieve?

19.7 DMC timestep extrapolation I: neutral oxygen atom

The DMC algorithm contains two biases in addition to the fixed node and pseudopotential approximations that are
important to control: time step and population control bias. In this section we focus on estimating and removing time
step bias from DMC calculations. The essential fact to remember is that the bias vanishes as the time step goes to zero,
while the needed computer time increases inversely with the time step.

In the same directory you used to perform wavefunction optimization (oxygen_atom) you will find a sample DMC
input file for the neutral oxygen atom named O.q0.dmc.in.xml. Open this file in a text editor and note the
differences from the optimization case. Wavefunction information is no longer included from pw2qmcpack but
instead should come from the optimization run:

<!-- OPT_XML is from optimization, e.g. O.q0.opt.s008.opt.xml -->
<include href="OPT_XML"/>

Replace “OPT_XML” with the opt.xml file corresponding to the best Jastrow parameters you found in the last section
(this is a file name similar to O.q0.opt.s008.opt.xml).

The QMC calculation section at the bottom is also different. The linear optimization blocks have been replaced with
XML describing a VMC run followed by DMC. Descriptions of the input keywords follow.

timestep Time step of the VMC/DMC random walk. In VMC choose a time step corresponding to an acceptance
ratio of about 50%. In DMC the acceptance ratio is often above 99%.

warmupSteps Number of MC steps discarded as a warmup or equilibration period of the random walk.

steps Number of MC steps per block. Physical quantities, such as the total energy, are averaged over walkers and
steps.

blocks Number of blocks. This is also the number of average energy values written to output files. The number should
be greater than 200 for meaningful statistical analysis of output data (e.g., via qmca). The total number of MC
steps each walker takes is blocks×steps.

samples VMC only. This is the number of walkers used in subsequent DMC runs. Each DMC walker is initialized
with electron positions sampled from the VMC random walk.

nonlocalmoves DMC only. If yes/no, use the locality approximation/T-moves for nonlocal pseudopotentials. T-moves
generally improve the stability of the algorithm and restore the variational principle for small systems (T-moves
version 1).

The purpose of the VMC run is to provide initial electron positions for each DMC walker. Setting walkers = 1
in the VMC block ensures there will be only one VMC walker per execution thread. There will be a total of 4 VMC
walkers in this case (see O.q0.dmc.qsub.in). We want the electron positions used to initialize the DMC walkers
to be decorrelated from one another. A VMC walker will often decorrelate from its current position after propagating
for a few Ha −1 in imaginary time (in general, this is system dependent). This leads to a rough rule of thumb for
choosing blocks and steps for the VMC run (vwalkers = 4 here):

VBLOCKS× VSTEPS ≥ DWALKERS

VWALKERS

5 Ha−1

VTIMESTEP
(19.3)
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Fill in the VMC XML block with appropriate values for these parameters. There should be more than one DMC walker
per thread and enough walkers in total to avoid population control bias. The general rule of thumb is to have more
than ∼ 2, 000 walkers, although the dependence of the total energy on population size should be explicitly checked
from time to time.

To study time step bias, we will perform a sequence of DMC runs over a range of time steps (0.1 Ha−1 is too large,
and time steps below 0.002 Ha−1 are probably too small). A common approach is to select a fairly large time step
to begin with and then decrease the time step by a factor of two in each subsequent DMC run. The total amount of
imaginary time the walker population propagates should be the same for each run. A simple way to accomplish this is
to choose input parameters in the following way

timestep𝑛 = timestep𝑛−1/2

warmupSteps𝑛 = warmupSteps𝑛−1 × 2

blocks𝑛 = blocks𝑛−1

steps𝑛 = steps𝑛−1 × 2

Each DMC run will require about twice as much computer time as the one preceding it. Note that the number of
blocks is kept fixed for uniform statistical analysis. blocks×steps×timestep ∼ 60 Ha−1 is sufficient for this
system.

Choose an initial DMC time step and create a sequence of 𝑁 time steps according to (19.4). Make 𝑁 copies of the
DMC XML block in the input file.

<qmc method="dmc" move="pbyp">
<parameter name="warmupSteps" > DWARMUP </parameter>
<parameter name="blocks" > DBLOCKS </parameter>
<parameter name="steps" > DSTEPS </parameter>
<parameter name="timestep" > DTIMESTEP </parameter>
<parameter name="nonlocalmoves" > yes </parameter>

</qmc>

Fill in DWARMUP, DBLOCKS, DSTEPS, and DTIMESTEP for each DMC run according to (19.4). Start the DMC time
step extrapolation run by typing:

mpirun -np 4 qmcpack O.q0.dmc.in.xml >&O.q0.dmc.out&

The run should take only a few minutes to complete.

QMCPACK will create files prefixed with O.q0.dmc. The log file is O.q0.dmc.out. As before, block-averaged
data is written to scalar.dat files. In addition, DMC runs produce dmc.dat files, which contain energy data
averaged only over the walker population (one line per DMC step). The dmc.dat files also provide a record of the
walker population at each step.

Use the PlotTstepConv.pl to obtain a linear fit to the time step data (type “PlotTstepConv.pl O.q0.
dmc.in.xml 40”). You should see a plot similar to Fig. 19.1. The tail end of the text output displays the parameters
for the linear fit. The “a” parameter is the total energy extrapolated to zero time step in Hartree units.

...
Final set of parameters Asymptotic Standard Error
======================= ==========================

a = -15.8925 +/- 0.0007442 (0.004683%)
b = -0.0457479 +/- 0.0422 (92.24%)
...

Questions and Exercises

1. What is the 𝜏 → 0 extrapolated value for the total energy?
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Fig. 19.1: Linear fit to DMC timestep data from PlotTstepConv.pl.

2. What is the maximum time step you should use if you want to calculate the total energy to an accuracy of 0.05
eV? For convenience, 1 Ha = 27.2113846 eV.

3. What is the acceptance ratio for this (bias < 0.05 eV) run? Does it follow the rule of thumb for sensible DMC
(acceptance ratio > 99%) ?

4. Check the fluctuations in the walker population (qmca -t -q nw O.q0.dmc*dmc.dat -noac). Does
the population seem to be stable?

5. (Optional) Study population control bias for the oxygen atom. Select a few population sizes. Copy O.q0.
dmc.in.xml to a new file and remove all but one DMC run (select a single time step). Make one copy of
the new file for each population, set “textttsamples,” and choose a unique id in <project/>. Use qmca to
study the dependence of the DMC total energy on the walker population. How large is the bias compared with
time step error? What bias is incurred by following the “rule of thumb” of a couple thousand walkers? Will
population control bias generally be an issue for production runs on modern parallel machines?

19.8 DMC time step extrapolation II: oxygen atom ionization potential

In this section, we will repeat the calculations of the previous two sections (optimization, time step extrapolation) for
the +1 charge state of the oxygen atom. Comparing the resulting first ionization potential (IP) with experimental data
will complete our first test of the BFD oxygen pseudopotential. In actual practice, higher IPs could also be tested
before performing production runs.

Obtaining the time step extrapolated DMC total energy for ionized oxygen should take much less (human) time than
for the neutral case. For convenience, the necessary steps are summarized as follows.

1. Obtain DFT orbitals with QE.

(a) Copy the DFT input (O.q0.dft.in) to O.q1.dft.in
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(b) Edit O.q1.dft.in to match the +1 charge state of the oxygen atom.

...
prefix = 'O.q1'
...
tot_charge = 1
tot_magnetization = 3
...

(c) Perform the DFT run: mpirun -np 4 pw.x -input O.q1.dft.in >&O.q1.dft.
out&

2. Convert the orbitals to ESHDF format.

(a) Copy the pw2qmcpack input (O.q0.p2q.in) to O.q1.p2q.in

(b) Edit O.q1.p2q.in to match the file prefix used in DFT.

...
prefix = 'O.q1'
...

(c) Perform the orbital conversion run: mpirun -np 1 pw2qmcpack.x<O.q1.p2q.in>&O.
q1.p2q.out&

3. Optimize the Jastrow factor with QMCPACK.

(a) Copy the optimization input (O.q0.opt.in.xml) to O.q1.opt.in.xml

(b) Edit O.q1.opt.in.xml to match the file prefix used in DFT.

...
<project id="O.q1.opt" series="0">
...
<include href="O.q1.ptcl.xml"/>
...
<include href="O.q1.wfs.xml"/>
...

(c) Edit the particle XML file (O.q1.ptcl.xml) to have open boundary conditions.

<parameter name="bconds">
n n n

</parameter>

(d) Add cutoffs to the Jastrow factors in the wavefunction XML file (O.q1.wfs.xml)

...
<correlation speciesA="u" speciesB="u" size="8" rcut="10.0">
...
<correlation speciesA="u" speciesB="d" size="8" rcut="10.0">
...
<correlation elementType="O" size="8" rcut="5.0">
...

(e) Perform the Jastrow optimization run: mpirun -np 4 qmcpack O.q1.opt.in.xml
>&O.q1.opt.out&

(f) Identify the optimal set of parameters with qmca ([your opt.xml]).

4. DMC time step study with QMCPACK
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(a) Copy the DMC input (O.q0.dmc.in.xml) to O.q1.dmc.in.xml

(b) Edit O.q1.dmc.in.xml to use the DFT prefix and the optimal Jastrow.

...
<project id="O.q1.dmc" series="0">
...
<include href="O.q1.ptcl.xml"/>
...
<include href="[your opt.xml]"/>
...

(c) Perform the DMC run: mpirun -np 4 qmcpack O.q1.dmc.in.xml >&O.q1.dmc.
out&

(d) Obtain the DMC total energy extrapolated to zero time step with PlotTstepConv.pl.

The aforementioned process, which excludes additional steps for orbital generation and conversion, can become te-
dious to perform by hand in production settings where many calculations are often required. For this reason, automa-
tion tools are introduced for calculations involving the oxygen dimer in Automated binding curve of the oxygen dimer
of the lab.

Questions and Exercises

1. What is the 𝜏 → 0 extrapolated DMC value for the first ionization potential of oxygen?

2. How does the extrapolated value compare with the experimental IP? Go to http://physics.nist.gov/PhysRefData/
ASD/ionEnergy.html and enter “O I” in the box labeled “Spectra” and click on the “Retrieve Data”
button.

3. What can we conclude about the accuracy of the pseudopotential? What factors complicate this assessment?

4. Explore the sensitivity of the IP to the choice of time step. Type ./ip_conv.py to view three time step
extrapolation plots: two for the 𝑞 = 0, one for total energies, and one for the IP. Is the IP more, less, or similarly
sensitive to time step than the total energy?

5. What is the maximum time step you should use if you want to calculate the ionization potential to an accuracy
of 0.05 eV? What factor of CPU time is saved by assessing time step convergence on the IP (a total energy
difference) vs. a single total energy?

6. Are the acceptance ratio and population fluctuations reasonable for the 𝑞 = 1 calculations?

19.9 DMC workflow automation with Nexus

Production QMC projects are often composed of many similar workflows. The simplest of these is a single DMC
calculation involving four different compute jobs:

1. Orbital generation via QE or GAMESS.

2. Conversion of orbital data via pw2qmcpack.x or convert4qmc.

3. Optimization of Jastrow factors via QMCPACK.

4. DMC calculation via QMCPACK.

Simulation workflows quickly become more complex with increasing costs in terms of human time for the researcher.
Automation tools can decrease both human time and error if used well.

The set of automation tools we will be using is known as Nexus [[Kro16]], which is distributed with QMCPACK.
Nexus is capable of generating input files, submitting and monitoring compute jobs, passing data between simulations
(relaxed structures, orbital files, optimized Jastrow parameters, etc.), and data analysis. The user interface to Nexus
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is through a set of functions defined in the Python programming language. User scripts that execute simple work-
flows resemble input files and do not require programming experience. More complex workflows require only basic
programming constructs (e.g. for loops and if statements). Nexus input files/scripts should be easier to navigate than
QMCPACK input files and more efficient than submitting all the jobs by hand.

Nexus is driven by simple user-defined scripts that resemble keyword-driven input files. An example Nexus input
file that performs a single VMC calculation (with pregenerated orbitals) follows. Take a moment to read it over and
especially note the comments (prefixed with “\#”) explaining most of the contents. If the input syntax is unclear
you may want to consult portions of Appendix A: Basic Python constructs, which gives a condensed summary of
Python constructs. An additional example and details about the inner workings of Nexus can be found in the reference
publication [[Kro16]].

#! /usr/bin/env python3

# import Nexus functions
from nexus import settings,job,get_machine,run_project
from nexus import generate_physical_system
from nexus import generate_qmcpack,vmc

settings( # Nexus settings
pseudo_dir = './pseudopotentials', # location of PP files
runs = '', # root directory for simulations
results = '', # root directory for simulation results
status_only = 0, # show simulation status, then exit
generate_only = 0, # generate input files, then exit
sleep = 3, # seconds between checks on sim. progress
machine = 'ws4', # workstation with 4 cores
)

qmcjob = job( # specify job parameters
cores = 4, # use 4 MPI tasks
threads = 1, # 1 OpenMP thread per node
app = 'qmcpack' # use QMCPACK executable (assumed in PATH)
)

qmc_calcs = [ # list QMC calculation methods
vmc( # VMC

walkers = 1, # 1 walker
warmupsteps = 50, # 50 MC steps for warmup
blocks = 200, # 200 blocks
steps = 10, # 10 steps per block
timestep = .4 # 0.4 1/Ha timestep
)]

dimer = generate_physical_system( # make a dimer system
type = 'dimer', # system type is dimer
dimer = ('O','O'), # dimer is two oxygen atoms
separation = 1.2074, # separated by 1.2074 Angstrom
Lbox = 15.0, # simulation box is 15 Angstrom
units = 'A', # Angstrom is dist. unit
net_spin = 2, # nup-ndown is 2
O = 6 # pseudo-oxygen has 6 valence el.
)

qmc = generate_qmcpack( # make a qmcpack simulation
identifier = 'example', # prefix files with 'example'
path = 'scale_1.0', # run in ./scale_1.0 directory
system = dimer, # run the dimer system

(continues on next page)
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job = qmcjob, # set job parameters
input_type = 'basic', # basic qmcpack inputs given below
pseudos = ['O.BFD.xml'], # list of PP's to use
orbitals_h5 = 'O2.pwscf.h5', # file with orbitals from DFT
bconds = 'nnn', # open boundary conditions
jastrows = [], # no jastrow factors
calculations = qmc_calcs # QMC calculations to perform
)

run_project(qmc) # write input file and submit job

19.10 Automated binding curve of the oxygen dimer

In this section we will use Nexus to calculate the DMC total energy of the oxygen dimer over a series of bond lengths.
The equilibrium bond length and binding energy of the dimer will be determined by performing a polynomial fit to
the data (Morse potential fits should be preferred in production tests). Comparing these values with corresponding
experimental data provides a second test of the BFD pseudopotential for oxygen.

Enter the oxygen_dimer directory. Copy your BFD pseudopotential from the atom runs into oxygen_dimer/
pseudopotentials (be sure to move both files: .upf and .xml). Open O_dimer.py with a text editor. The
overall format is similar to the example file shown in the last section. The main difference is that a full workflow
of runs (DFT orbital generation, orbital conversion, optimization and DMC) are being performed rather than a single
VMC run.

As in the example in the last section, the oxygen dimer is generated with the generate_physical_ system
function:

dimer = generate_physical_system(
type = 'dimer',
dimer = ('O','O'),
separation = 1.2074*scale,
Lbox = 10.0,
units = 'A',
net_spin = 2,
O = 6
)

Similar syntax can be used to generate crystal structures or to specify systems with arbitrary atomic configurations and
simulation cells. Notice that a “scale” variable has been introduced to stretch or compress the dimer.

Next, objects representing a QE (PWSCF) run and subsequent orbital conversion step are constructed with respective
generate_* functions:

dft = generate_pwscf(
identifier = 'dft',
...
input_dft = 'lda',
...
)

sims.append(dft)

# describe orbital conversion run
p2q = generate_pw2qmcpack(

identifier = 'p2q',

(continues on next page)
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...
dependencies = (dft,'orbitals'),
)

sims.append(p2q)

Note the dependencies keyword. This keyword is used to construct workflows out of otherwise separate runs. In
this case, the dependency indicates that the orbital conversion run must wait for the DFT to finish before starting.

Objects representing QMCPACK simulations are then constructed with the generate_qmcpack function:

opt = generate_qmcpack(
identifier = 'opt',
...
jastrows = [('J1','bspline',8,5.0),

('J2','bspline',8,10.0)],
calculations = [

loop(max=12,
qmc=linear(

energy = 0.0,
unreweightedvariance = 1.0,
reweightedvariance = 0.0,
timestep = 0.3,
samples = 61440,
warmupsteps = 50,
blocks = 200,
substeps = 1,
nonlocalpp = True,
usebuffer = True,
walkers = 1,
minwalkers = 0.5,
maxweight = 1e9,
usedrift = False,
minmethod = 'quartic',
beta = 0.025,
exp0 = -16,
bigchange = 15.0,
alloweddifference = 1e-4,
stepsize = 0.2,
stabilizerscale = 1.0,
nstabilizers = 3,
)

)
],

dependencies = (p2q,'orbitals'),
)

sims.append(opt)

qmc = generate_qmcpack(
identifier = 'qmc',
...
jastrows = [],
calculations = [

vmc(
walkers = 1,
warmupsteps = 30,
blocks = 20,
steps = 10,

(continues on next page)
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substeps = 2,
timestep = .4,
samples = 2048
),

dmc(
warmupsteps = 100,
blocks = 400,
steps = 32,
timestep = 0.01,
nonlocalmoves = True,
)

],
dependencies = [(p2q,'orbitals'),(opt,'jastrow')],
)

sims.append(qmc)

Shared details such as the run directory, job, pseudopotentials, and orbital file have been omitted (...). The “opt”
run will optimize a 1-body B-spline Jastrow with 8 knots having a cutoff of 5.0 Bohr and a B-spline Jastrow (for up-up
and up-down correlations) with 8 knots and cutoffs of 10.0 Bohr. The Jastrow list for the DMC run is empty, and the
previous use of dependencies indicates that the DMC run depends on the optimization run for the Jastrow factor.
Nexus will submit the “opt” run first, and upon completion it will scan the output, select the optimal set of parameters,
pass the Jastrow information to the “qmc” run, and then submit the DMC job. Independent job workflows are submitted
in parallel when permitted. No input files are written or job submissions made until the “run_project” function is
reached:

run_project(sims)

All of the simulation objects have been collected into a list (sims) for submission.

As written, O_dimer.py will perform calculations only at the equilibrium separation distance of 1.2074 {AA} since
the list of scaling factors (representing stretching or compressing the dimer) contains only one value (scales =
[1.00]). Modify the file now to perform DMC calculations across a range of separation distances with each DMC
run using the Jastrow factor optimized at the equilibrium separation distance. Specifically, you will want to change the
list of scaling factors to include both compression (scale<1.0) and stretch (scale>1.0):

scales = [1.00,0.90,0.95,1.05,1.10]

Note that “1.00” is left in front because we are going to optimize the Jastrow factor first at the equilibrium separation
and reuse this Jastrow factor for all other separation distances. This procedure is used because it can reduce variations
in localization errors (due to pseudopotentials in DMC) along the binding curve.

Change the status_only parameter in the “settings” function to 1 and type “./O_dimer.py” at the com-
mand line. This will print the status of all simulations:

Project starting
checking for file collisions
loading cascade images
cascade 0 checking in
cascade 10 checking in
cascade 4 checking in
cascade 13 checking in
cascade 7 checking in

checking cascade dependencies
all simulation dependencies satisfied

cascade status

(continues on next page)
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setup, sent_files, submitted, finished, got_output, analyzed
000000 dft ./scale_1.0
000000 p2q ./scale_1.0
000000 opt ./scale_1.0
000000 qmc ./scale_1.0
000000 dft ./scale_0.9
000000 p2q ./scale_0.9
000000 qmc ./scale_0.9
000000 dft ./scale_0.95
000000 p2q ./scale_0.95
000000 qmc ./scale_0.95
000000 dft ./scale_1.05
000000 p2q ./scale_1.05
000000 qmc ./scale_1.05
000000 dft ./scale_1.1
000000 p2q ./scale_1.1
000000 qmc ./scale_1.1
setup, sent_files, submitted, finished, got_output, analyzed

In this case, five simulation “cascades” (workflows) have been identified, each one starting and ending with “dft”
and “qmc” runs, respectively. The six status flags setup, sent_files, submitted, finished, got_output,
analyzed) each shows 0, indicating that no work has been done yet.

Now change “status_only” back to 0, set “generate_only” to 1, and run O_dimer.py again. This will
perform a dry run of all simulations. The dry run should finish in about 20 seconds:

Project starting
checking for file collisions
loading cascade images
cascade 0 checking in
cascade 10 checking in
cascade 4 checking in
cascade 13 checking in
cascade 7 checking in

checking cascade dependencies
all simulation dependencies satisfied

starting runs:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
poll 0 memory 91.03 MB
Entering ./scale_1.0 0

writing input files 0 dft
Entering ./scale_1.0 0

sending required files 0 dft
submitting job 0 dft

...
poll 1 memory 91.10 MB
...
Entering ./scale_1.0 0

Would have executed:
export OMP_NUM_THREADS=1
mpirun -np 4 pw.x -input dft.in

poll 2 memory 91.10 MB
Entering ./scale_1.0 0

copying results 0 dft
Entering ./scale_1.0 0

(continues on next page)
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analyzing 0 dft
...
poll 3 memory 91.10 MB
Entering ./scale_1.0 1

writing input files 1 p2q
Entering ./scale_1.0 1

sending required files 1 p2q
submitting job 1 p2q

...
Entering ./scale_1.0 1

Would have executed:
export OMP_NUM_THREADS=1
mpirun -np 1 pw2qmcpack.x<p2q.in

poll 4 memory 91.10 MB
Entering ./scale_1.0 1

copying results 1 p2q
Entering ./scale_1.0 1

analyzing 1 p2q
...
poll 5 memory 91.10 MB
Entering ./scale_1.0 2

writing input files 2 opt
Entering ./scale_1.0 2

sending required files 2 opt
submitting job 2 opt

...
Entering ./scale_1.0 2

Would have executed:
export OMP_NUM_THREADS=1
mpirun -np 4 qmcpack opt.in.xml

poll 6 memory 91.16 MB
Entering ./scale_1.0 2

copying results 2 opt
Entering ./scale_1.0 2

analyzing 2 opt
...
poll 7 memory 93.00 MB
Entering ./scale_1.0 3

writing input files 3 qmc
Entering ./scale_1.0 3

sending required files 3 qmc
submitting job 3 qmc

...
Entering ./scale_1.0 3

Would have executed:
export OMP_NUM_THREADS=1
mpirun -np 4 qmcpack qmc.in.xml

...
poll 17 memory 93.06 MB

Project finished

Nexus polls the simulation status every 3 seconds and sleeps in between. The “scale_” directories should now
contain several files:
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scale_1.0
dft.in
O.BFD.upf
O.BFD.xml
opt.in.xml
p2q.in
pwscf_output
qmc.in.xml
sim_dft/

analyzer.p
input.p
sim.p

sim_opt/
analyzer.p
input.p
sim.p

sim_p2q/
analyzer.p
input.p
sim.p

sim_qmc/
analyzer.p
input.p
sim.p

Take a minute to inspect the generated input (dft.in, p2q.in, opt.in.xml, qmc.in.xml). The pseudopoten-
tial files (O.BFD.upf and O.BFD.xml) have been copied into each local directory. Four additional directories have
been created: sim_dft, sim_p2q, sim_opt and sim_qmc. The sim.p files in each directory contain the current
status of each simulation. If you run O_dimer.py again, it should not attempt to rerun any of the simulations:

Project starting
checking for file collisions
loading cascade images
cascade 0 checking in
cascade 10 checking in
cascade 4 checking in
cascade 13 checking in
cascade 7 checking in

checking cascade dependencies
all simulation dependencies satisfied

starting runs:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
poll 0 memory 64.25 MB

Project finished

This way you can continue to add to the O_dimer.py file (e.g., adding more separation distances) without worrying
about duplicate job submissions.

Now submit the jobs in the dimer workflow. Reset the state of the simulations by removing the sim.p files (“rm ./
scale*/sim*/sim.p”), set “generate_only” to 0, and rerun O_dimer.py. It should take about 20 minutes
for all the jobs to complete. You may wish to open another terminal to monitor the progress of the individual jobs
while the current terminal runs O_dimer.py in the foreground. You can begin the following first exercise once the
optimization job completes.

Questions and Exercises

1. Evaluate the quality of the optimization at scale=1.0 using the qmca tool. Did the optimization succeed?
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How does the variance compare with the neutral oxygen atom? Is the wavefunction of similar quality to the
atomic case?

2. Evaluate the traces of the local energy and the DMC walker population for each separation distance with the
qmca tool. Are there any anomalies in the runs? Is the acceptance ratio reasonable? Is the wavefunction of
similar quality across all separation distances?

3. Use the dimer_fit.py tool located in oxygen_dimer to fit the oxygen dimer binding curve. To get the
binding energy of the dimer, we will need the DMC energy of the atom. Before performing the fit, answer: What
DMC time step should be used for the oxygen atom results? The tool accepts three arguments (./dimer_fit.
py P N E Eerr), P is the prefix of the DMC input files (should be “qmc” at this point), N is the order of the
fit (use 2 to start),``E`` and Eerr are your DMC total energy and error bar, respectively, for the oxygen atom
(in electron volts). A plot of the dimer data will be displayed, and text output will show the DMC equilibrium
bond length and binding energy as well as experimental values. How accurately does your fit to the DMC data
reproduce the experimental values? What factors affect the accuracy of your results?

4. Refit your data with a fourth-order polynomial. How do your predictions change with a fourth-order fit? Is a
fourth-order fit appropriate for the available data?

5. Add new “scale” values to the list in O_dimer.py that interpolate between the original set (e.g., expand to
). Perform the DMC calculations and redo the fits. How accurately does your fit to the DMC data reproduce the
experimental values? Should this pseudopotential be used in production calculations?

6. (Optional) Perform optimization runs at the extreme separation distances corresponding to scale=[0.90,1.
10]. Are the individually optimized wavefunctions of significantly better quality than the one imported from
scale=1.00? Why? What form of Jastrow factor might give an even better improvement?

19.11 (Optional) Running your system with QMCPACK

This section covers a fairly simple route to get started on QMC calculations of an arbitrary system of interest using the
Nexus workflow management system to set up input files and optionally perform the runs. The example provided in
this section uses QE (PWSCF) to generate the orbitals forming the Slater determinant part of the trial wavefunction.
PWSCF is a natural choice for solid-state systems, and it can be used for surface/slab and molecular systems as well,
albeit at the price of describing additional vacuum space with plane waves.

To start out, you will need PPs for each element in your system in both the UPF (PWSCF) and FSATOM/XML
(QMCPACK) formats. A good place to start is the BFD pseudopotential database (http://www.burkatzki.com/pseudos/
index.2.html), which we have already used in our study of the oxygen atom. The database does not contain PPs for
the fourth and fifth row transition metals or any of the lanthanides or actinides. If you need a PP that is not in the
BFD database, you may need to generate and test one manually (e.g., with OPIUM, http://opium.sourceforge.net/).
Otherwise, use ppconvert as outlined in Obtaining and converting a pseudopotential for oxygen to obtain PPs in
the formats used by PWSCF and QMCPACK. Enter the your_system lab directory and place the converted PPs in
your_system/pseudopotentials.

Before performing production calculations (more than just the initial setup in this section), be sure to converge the
plane-wave energy cutoff in PWSCF as these PPs can be rather hard, sometimes requiring cutoffs in excess of 300 Ry.
Depending on the system under study, the amount of memory required to represent the orbitals (QMCPACK uses 3D
B-splines) can become prohibitive, forcing you to search for softer PPs.

Beyond PPs, all that is required to get started are the atomic positions and the dimensions/shape of the simulation
cell. The Nexus file example.py illustrates how to set up PWSCF and QMCPACK input files by providing minimal
information regarding the physical system (an 8-atom cubic cell of diamond in the example). Most of the contents
should be familiar from your experience with the automated calculations of the oxygen dimer binding curve in Auto-
mated binding curve of the oxygen dimer (if you have skipped ahead you may want to skim that section for relevant
information). The most important change is the expanded description of the physical system:
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# details of your physical system (diamond conventional cell below)
my_project_name = 'diamond_vmc' # directory to perform runs
my_dft_pps = ['C.BFD.upf'] # pwscf pseudopotentials
my_qmc_pps = ['C.BFD.xml'] # qmcpack pseudopotentials

# generate your system
# units : 'A'/'B' for Angstrom/Bohr
# axes : simulation cell axes in cartesian coordinates (a1,a2,a3)
# elem : list of atoms in the system
# pos : corresponding atomic positions in cartesian coordinates
# kgrid : Monkhorst-Pack grid
# kshift : Monkhorst-Pack shift (between 0 and 0.5)
# net_charge : system charge in units of e
# net_spin : # of up spins - # of down spins
# C = 4 : (pseudo) carbon has 4 valence electrons
my_system = generate_physical_system(

units = 'A',
axes = [[ 3.57000000e+00, 0.00000000e+00, 0.00000000e+00],

[ 0.00000000e+00, 3.57000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 3.57000000e+00]],

elem = ['C','C','C','C','C','C','C','C'],
pos = [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],

[ 8.92500000e-01, 8.92500000e-01, 8.92500000e-01],
[ 0.00000000e+00, 1.78500000e+00, 1.78500000e+00],
[ 8.92500000e-01, 2.67750000e+00, 2.67750000e+00],
[ 1.78500000e+00, 0.00000000e+00, 1.78500000e+00],
[ 2.67750000e+00, 8.92500000e-01, 2.67750000e+00],
[ 1.78500000e+00, 1.78500000e+00, 0.00000000e+00],
[ 2.67750000e+00, 2.67750000e+00, 8.92500000e-01]],

kgrid = (1,1,1),
kshift = (0,0,0),
net_charge = 0,
net_spin = 0,
C = 4 # one line like this for each atomic species
)

my_bconds = 'ppp' # ppp/nnn for periodic/open BC's in QMC
# if nnn, center atoms about (a1+a2+a3)/2

If you have a system you would like to try with QMC, make a copy of example.py and fill in the relevant information
about the PPs, simulation cell axes, and atomic species/positions. Otherwise, you can proceed with example.py as
it is.

Set “generate_only” to 1 and type “./example.py” or similar to generate the input files. All files will be
written to “./diamond_vmc” (“./[my_project_name]” if you have changed “my_project_name” in the
file). The input files for PWSCF, pw2qmcpack, and QMCPACK are scf.in, pw2qmcpack.in, and vmc.in.
xml, respectively. Take some time to inspect the generated input files. If you have questions about the file contents,
or run into issues with the generation process, feel free to consult with a lab instructor.

If desired, you can submit the runs directly with example.py. To do this, first reset the Nexus simulation record
by typing “rm ./diamond_vmc/sim*/sim.p” or similar and set “generate_only” back to 0. Next rerun
example.py (you may want to redirect the text output).

Alternatively the runs can be submitted by hand:

mpirun -np 4 pw.x<scf.in>&scf.out&

(wait until JOB DONE appears in scf.out)
(continues on next page)
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mpirun -np 1 pw2qmcpack.x<p2q.in>&p2q.out&

Once the conversion process has finished, the orbitals should be located in the file diamond_vmc/
pwscf_output/pwscf.pwscf.h5. Open diamond_vmc/vmc.in.xml and replace “MISSING.h5” with
“./pwscf_output/pwscf.pwscf.h5”. Next submit the VMC run:

mpirun -np 4 qmcpack vmc.in.xml>&vmc.out&

Note: If your system is large, the preceding process may not complete within the time frame of this lab. Working with
a stripped down (but relevant) example is a good idea for exploratory runs.

Once the runs have finished, you may want to begin exploring Jastrow optimization and DMC for your system. Ex-
ample calculations are provided at the end of example.py in the commented out text.

19.12 Appendix A: Basic Python constructs

Basic Python data types (int, float, str, tuple, list, array, dict, obj) and programming constructs
(if statements, for loops, functions w/ keyword arguments) are briefly overviewed in the following. All examples
can be executed interactively in Python. To do this, type “python” at the command line and paste any of the
shaded text below at the >>> prompt. For more information about effective use of Python, consult the detailed online
documentation: https://docs.python.org/2/.

19.12.1 Intrinsic types: int, float, str

#this is a comment
i=5 # integer
f=3.6 # float
s='quantum/monte/carlo' # string
n=None # represents "nothing"

f+=1.4 # add-assign (-,*,/ also): 5.0
2**3 # raise to a power: 8
str(i) # int to string: '5'
s+'/simulations' # joining strings: 'quantum/monte/carlo/simulations'
'i={0}'.format(i) # format string: 'i=5'

19.12.2 Container types: tuple, list, array, dict, obj

from numpy import array # get array from numpy module
from generic import obj # get obj from Nexus' generic module

t=('A',42,56,123.0) # tuple

l=['B',3.14,196] # list

a=array([1,2,3]) # array

d={'a':5,'b':6} # dict

(continues on next page)
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o=obj(a=5,b=6) # obj

# printing
print(t) # ('A', 42, 56, 123.0)
print(l) # ['B', 3.1400000000000001, 196]
print(a) # [1 2 3]
print(d) # {'a': 5, 'b': 6}
print(o) # a = 5

# b = 6

len(t),len(l),len(a),len(d),len(o) #number of elements: (4, 3, 3, 2, 2)

t[0],l[0],a[0],d['a'],o.a #element access: ('A', 'B', 1, 5, 5)

s = array([0,1,2,3,4]) # slices: works for tuple, list, array
s[:] # array([0, 1, 2, 3, 4])
s[2:] # array([2, 3, 4])
s[:2] # array([0, 1])
s[1:4] # array([1, 2, 3])
s[0:5:2] # array([0, 2, 4])

# list operations
l2 = list(l) # make independent copy
l.append(4) # add new element: ['B', 3.14, 196, 4]
l+[5,6,7] # addition: ['B', 3.14, 196, 4, 5, 6, 7]
3*[0,1] # multiplication: [0, 1, 0, 1, 0, 1]

b=array([5,6,7]) # array operations
a2 = a.copy() # make independent copy
a+b # addition: array([ 6, 8, 10])
a+3 # addition: array([ 4, 5, 6])
a*b # multiplication: array([ 5, 12, 21])
3*a # multiplication: array([3, 6, 9])

# dict/obj operations
d2 = d.copy() # make independent copy
d['c'] = 7 # add/assign element
d.keys() # get element names: ['a', 'c', 'b']
d.values() # get element values: [5, 7, 6]

# obj-specific operations
o.c = 7 # add/assign element
o.set(c=7,d=8) # add/assign multiple elements

An important feature of Python to be aware of is that assignment is most often by reference, that is, new values are not
always created. This point is illustrated with an obj instance in the following example, but it also holds for list,
array, dict, and others.

>>> o = obj(a=5,b=6)
>>>
>>> p=o
>>>
>>> p.a=7
>>>
>>> print(o)
a = 7

(continues on next page)
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b = 6

>>> q=o.copy()
>>>
>>> q.a=9
>>>
>>> print(o)
a = 7
b = 6

Here p is just another name for o, while q is a fully independent copy of it.

19.12.3 Conditional Statements: if/elif/else

a = 5
if a is None:

print('a is None')
elif a==4:

print('a is 4')
elif a<=6 and a>2:

print('a is in the range (2,6]')
elif a<-1 or a>26:

print('a is not in the range [-1,26]')
elif a!=10:

print('a is not 10')
else:

print('a is 10')
#end if

The “\#end if” is not part of Python syntax, but you will see text like this throughout Nexus for clear encapsulation.

19.12.4 Iteration: for

from generic import obj

l = [1,2,3]
m = [4,5,6]
s = 0
for i in range(len(l)): # loop over list indices

s += l[i] + m[i]
#end for

print(s) # s is 21

s = 0
for v in l: # loop over list elements

s += v
#end for

print(s) # s is 6

o = obj(a=5,b=6)
s = 0

(continues on next page)
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for v in o: # loop over obj elements
s += v

#end for

print(s) # s is 11

d = {'a':5,'b':4}
for n,v in o.items():# loop over name/value pairs in obj

d[n] += v
#end for

print(d) # d is {'a': 10, 'b': 10}

19.12.5 Functions: def, argument syntax

def f(a,b,c=5): # basic function, c has a default value
print(a,b,c)

#end def f

f(1,b=2) # prints: 1 2 5

def f(*args,**kwargs): # general function, returns nothing
print(args) # args: tuple of positional arguments
print(kwargs) # kwargs: dict of keyword arguments

#end def f

f('s',(1,2),a=3,b='t') # 2 pos., 2 kw. args, prints:
# ('s', (1, 2))
# {'a': 3, 'b': 't'}

l = [0,1,2]
f(*l,a=6) # pos. args from list, 1 kw. arg, prints:

# (0, 1, 2)
# {'a': 6}

o = obj(a=5,b=6)
f(*l,**o) # pos./kw. args from list/obj, prints:

# (0, 1, 2)
# {'a': 5, 'b': 6}

f( # indented kw. args, prints
blocks = 200, # ()
steps = 10, # {'steps': 10, 'blocks': 200, 'timestep': 0.01}
timestep = 0.01
)

o = obj( # obj w/ indented kw. args
blocks = 100,
steps = 5,
timestep = 0.02
)

f(**o) # kw. args from obj, prints:
# ()
# {'timestep': 0.02, 'blocks': 100, 'steps': 5}
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CHAPTER

TWENTY

LAB 3: ADVANCED MOLECULAR CALCULATIONS

20.1 Topics covered in this lab

This lab covers molecular QMC calculations with wavefunctions of increasing sophistication. All of the trial wave-
functions are initially generated with the GAMESS code. Topics covered include:

• Generating single-determinant trial wavefunctions with GAMESS (HF and DFT)

• Generating multideterminant trial wavefunctions with GAMESS (CISD, CASCI, and SOCI)

• Optimizing wavefunctions (Jastrow factors and CSF coefficients) with QMC

• DMC time step and walker population convergence studies

• Systematic progressions of Jastrow factors in VMC

• Systematic convergence of DMC energies with multideterminant wavefunctions

• Influence of orbitals basis choice on DMC energy

20.2 Lab directories and files

abs/lab3_advanced_molecules/exercises

ex1_first-run-hartree-fock - basic work flow from Hatree-Fock to DMC
gms - Hatree-Fock calculation using GAMESS

h2o.hf.inp - GAMESS input
h2o.hf.dat - GAMESS punch file containing orbitals
h2o.hf.out - GAMESS output with orbitals and other info

convert - Convert GAMESS wavefunction to QMCPACK format
h2o.hf.out - GAMESS output
h2o.ptcl.xml - converted particle positions
h2o.wfs.xml - converted wave function

opt - VMC optimization
optm.xml - QMCPACK VMC optimization input

dmc_timestep - Check DMC timestep bias
dmc_ts.xml - QMCPACK DMC input

dmc_walkers - Check DMC population control bias
dmc_wk.xml - QMCPACK DMC input template

ex2_slater-jastrow-wf-options - explore jastrow and orbital options
jastrow - Jastrow options

12j - no 3-body Jastrow
1j - only 1-body Jastrow

(continues on next page)
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2j - only 2-body Jastrow
orbitals - Orbital options

pbe - PBE orbitals
gms - DFT calculation using GAMESS

h2o.pbe.inp - GAMESS DFT input
pbe0 - PBE0 orbitals
blyp - BLYP orbitals
b3lyp - B3LYP orbitals

ex3_multi-slater-jastrow
cisd - CISD wave function

gms - CISD calculation using GAMESS
h2o.cisd.inp - GAMESS input
h2o.cisd.dat - GAMESS punch file containing orbitals
h2o.cisd.out - GAMESS output with orbitals and other info

convert - Convert GAMESS wavefunction to QMCPACK format
h2o.hf.out - GAMESS output

casci - CASCI wave function
gms - CASCI calculation using GAMESS

soci - SOCI wave function
gms - SOCI calculation using GAMESS
thres0.01 - VMC optimization with few determinants
thres0.0075 - VMC optimization with more determinants

pseudo
H.BFD.gamess - BFD pseudopotential for H in GAMESS format
O.BFD.CCT.gamess - BFD pseudopotential for O in GAMESS format
H.xml - BFD pseudopotential for H in QMCPACK format
O.xml - BFD pseudopotential for H in QMCPACK format

20.3 Exercise #1: Basics

The purpose of this exercise is to show how to generate wavefunctions for QMCPACK using GAMESS and to optimize
the resulting wavefunctions using VMC. This will be followed by a study of the time step and walker population
dependence of DMC energies. The exercise will be performed on a water molecule at the equilibrium geometry.

20.4 Generation of a Hartree-Fock wavefunction with GAMESS

From the top directory, go to “ex1_first-run-hartree-fock/gms.” This directory contains an input file for a
HF calculation of a water molecule using BFD ECPs and the corresponding cc-pVTZ basis set. The input file should be
named: “h2o.hf.inp.” Study the input file. See Section Appendix A: GAMESS input for a more detailed description of
the GAMESS input syntax. However, there will be a better time to do this soon, so we recommend continuing with the
exercise at this point. After you are done, execute GAMESS with this input and store the standard output in a file named
“h2o.hf.output.” Finally, in the “convert” folder, use convert4qmc to generate the QMCPACK particleset and
wavefunction files. It is always useful to rename the files generated by convert4qmc to something meaningful
since by default they are called sample.Gaussian-G2.xml and sample.Gaussian-G2.ptcl.xml. In a
standard computer (without cross-compilation), these tasks can be accomplished by the following commands.

cd ${TRAINING TOP}/ex1_first-run-hartree-fock/gms
jobrun_vesta rungms h2o.hf
cd ../convert

(continues on next page)
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cp ../gms/h2o.hf.output
jobrun_vesta convert4qmc -gamess h2o.hf.output -add3BodyJ
mv sample.Gaussian-G2.xml h2o.wfs.xml
mv sample.Gaussian-G2.ptcl.xml h2o.ptcl.xml

The HF energy of the system is -16.9600590022 Ha. To search for the energy in the output file quickly, you can use

grep "TOTAL ENERGY =" h2o.hf.output

As the job runs on VESTA, it is a good time to review Section :ref`lab-adv-mol-convert4qmc`, “Appendix B: con-
vert4qmc,” which contains a description on the use of the converter.

20.4.1 Optimize the wavefunction

When execution of the previous steps is completed, there should be two new files called h2o.wfs.xml and h2o.
ptcl.xml. Now we will use VMC to optimize the Jastrow parameters in the wavefunction. From the top direc-
tory, go to “ex1_first-run-hartree-fock/opt.” Copy the xml files generated in the previous step to the
current directory. This directory should already contain a basic QMCPACK input file for an optimization calcula-
tion (optm.xml) Open optm.xml with your favorite text editor and modify the name of the files that contain the
wavefunction and particleset XML blocks. These files are included with the commands:

<include href=ptcl.xml/>
<include href=wfs.xml/>

(the particle set must be defined before the wavefunction). The name of the particle set and wavefunction files should
now be h2o.ptcl.xml and h2o.wfs.xml, respectively. Study both files and submit when you are ready. Notice
that the location of the ECPs has been set for you; in your own calculations you have to make sure you obtain the
ECPs from the appropriate libraries and convert them to QMCPACK format using ppconvert. While these calculations
finish is a good time to study Appendix C: Wavefunction optimization XML block, which contains a review of the main
parameters in the optimization XML block. The previous steps can be accomplished by the following commands:

cd ${TRAINING TOP}/ex1_first-run-hartree-fock/opt
cp ../convert/h2o.wfs.xml ./
cp ../convert/h2o.ptcl.xml ./
# edit optm.xml to include the correct ptcl.xml and wfs.xml
jobrun_vesta qmcpack optm.xml

Use the analysis tool qmca to analyze the results of the calculation. Obtain the VMC energy and variance for each
step in the optimization and plot it using your favorite program. Remember that qmca has built-in functions to plot
the analyzed data.

qmca -q e *scalar.dat -p

The resulting energy as a function of the optimization step should look qualitatively similar to Fig. 20.1. The energy
should decrease quickly as a function of the number of optimization steps. After 6–8 steps, the energy should be
converged to ∼2–3 mHa. To improve convergence, we would need to increase the number of samples used during
optimization (You can check this for yourself later.). With optimized wavefunctions, we are in a position to perform
VMC and DMC calculations. The modified wavefunction files after each step are written in a file named ID.sNNN.
opt.xml, where ID is the identifier of the calculation defined in the input file (this is defined in the project XML
block with parameter “id”) and NNN is a series number that increases with every executable xml block in the input
file.
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Fig. 20.1: VMC energy as a function of optimization step.

20.4.2 Time-step study

Now we will study the dependence of the DMC energy with time step. From the top directory, go to
“ex1_first-run-hartree-fock/dmc_timestep.” This folder contains a basic XML input file (dmc_ts.
xml) that performs a short VMC calculation and three DMC calculations with varying time steps (0.1, 0.05, 0.01).
Link the particleset and the last optimization file from the previous folder (the file called jopt-h2o.
sNNN.opt.xml with the largest value of NNN). Rename the optimized wavefunction file to any suitable name
if you wish (for example, h2o.opt.xml) and change the name of the particleset and wavefunction files
in the input file. An optimized wavefunction can be found in the reference files (same location) in case it is needed.

The main steps needed to perform this exercise are:

cd \$\{TRAINING TOP\}/ex1_first-run-hartree-fock/dmc_timestep
cp ../opt/h2o.ptcl.xml ./
cp ../opt/jopt-h2o.s007.opt.xml h2o.opt.wfs.xml
# edit dmc_ts.xml to include the correct ptcl.xml and wfs.xml
jobrun_vesta qmcpack dmc_ts.xml

While these runs complete, go to Appendix D: VMC and DMC XML block and review the basic VMC and DMC input
blocks. Notice that in the current DMC blocks the time step is decreased as the number of blocks is increased. Why is
this?

When the simulations are finished, use qmca to analyze the output files and plot the DMC energy as a function of time
step. Results should be qualitatively similar to those presented in Fig. 20.2; in this case we present more time steps
with well converged results to better illustrate the time step dependence. In realistic calculations, the time step must
be chosen small enough so that the resulting error is below the desired accuracy. Alternatively, various calculations
can be performed and the results extrapolated to the zero time-step limit.
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Fig. 20.2: DMC energy as a function of time step.

20.4.3 Walker population study

Now we will study the dependence of the DMC energy with the number of walkers in the simulation. Remember that,
in principle, the DMC distribution is reached in the limit of an infinite number of walkers. In practice, the energy
and most properties converge to high accuracy with ∼100–1,000 walkers. The actual number of walkers needed in a
calculation will depend on the accuracy of the VMC wavefunction and on the complexity and size of the system. Also
notice that using too many walkers is not a problem; at worse it will be inefficient since it will cost more computer
time than necessary. In fact, this is the strategy used when running QMC calculations on large parallel computers
since we can reduce the statistical error bars efficiently by running with large walker populations distributed across all
processors.

From the top directory, go to “ex1_first-run-hartree-fock/dmc_walkers.” Copy the optimized
wavefunction and particleset files used in the previous calculations to the current folder; these are the files
generated during step 2 of this exercise. An optimized wavefunction file can be found in the reference files (same
location) in case it is needed. The directory contains a sample DMC input file and submission script. Create three
directories named NWx, with x values of 120,240,480, and copy the input file to each one. Go to “NW120,” and, in
the input file, change the name of the wavefunction and particleset files (in this case they will be located
one directory above, so use “../dmc_timestep/h2.opt.xml,” for example); change the PP directory so that it
points to one directory above; change “targetWalkers” to 120; and change the number of steps to 100, the time step
to 0.01, and the number of blocks to 400. Notice that “targetWalkers” is one way to set the desired (average) number
of walkers in a DMC calculation. One can alternatively set “samples” in the <qmc method="vmc" block to carry
over de-correlated VMC configurations as DMC walkers. For your own simulations, we generally recommend setting
∼2*(#threads) walkers per node (slightly smaller than this value).

The main steps needed to perform this exercise are

cd ${TRAINING TOP}/ex1_first-run-hartree-fock/dmc_walkers
cp ../opt/h2o.ptcl.xml ./

(continues on next page)
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cp ../opt/jopt-h2o.s007.opt.xml h2o.opt.wfs.xml
# edit dmc_wk.xml to include the correct ptcl.xml and wfs.xml and
# use the correct pseudopotential directory
mkdir NW120
cp dmc_wk.xml NW120
# edit dmc_wk.xml to use the desired number of walkers,
# and collect the desired amount of statistics
jobrun_vesta qmcpack dmc_wk.xml
# repeat for NW240, NW480

Repeat the same procedure in the other folders by setting (targetWalkers=240, steps=100, timestep=0.01, blocks=200)
in NW240 and (targetWalkers=480, steps=100, timestep=0.01, blocks=100) in NW480. When the simulations com-
plete, use qmca to analyze and plot the energy as a function of the number of walkers in the calculation. As always,
Fig. 20.3 shows representative results of the energy dependence on the number of walkers for a single water molecule.
As shown, less than 240 walkers are needed to obtain an accuracy of 0.1 mHa.

Fig. 20.3: DMC energy as a function of the average number of walkers.

20.5 Exercise #2: Slater-Jastrow wavefunction options

From this point on in the tutorial we assume familiarity with the basic parameters in the optimization, VMC, and
DMC XML input blocks of QMCPACK. In addition, we assume familiarity with the submission system. As a result,
the folder structure will not contain any prepared input or submission files, so you will need to generate them using
input files from exercise 1. In the case of QMCPACK sample files, you will find optm.xml, vmc dmc.xml, and
submit.csh files. Some of the options in these files can be left unaltered, but many of them will need to be
tailored to the particular calculation.

In this exercise we will study the dependence of the DMC energy on the choices made in the wavefunction ansatz.
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In particular, we will study the influence/dependence of the VMC energy with the various terms in the Jastrow. We
will also study the influence of the VMC and DMC energies on the SPOs used to form the Slater determinant in
single-determinant wavefunctions. For this we will use wavefunctions generated with various exchange-correlation
functionals in DFT. Finally, we will optimize a simple multideterminant wavefunction and study the dependence of
the energy on the number of configurations used in the expansion. All of these exercises will be performed on the
water molecule at equilibrium.

20.5.1 Influence of Jastrow on VMC energy with HF wavefunction

In this section we will study the dependence of the VMC energy on the various Jastrow terms (e.g., 1-body, 2-body
and 3-body. From the top directory, go to “ex2_slater-jastrow-wf-options/jastrow.” We will com-
pare the single-determinant VMC energy using a 2-body Jastrow term, both 1- and 2-body terms, and finally 1-, 2-
and 3-body terms. Since we are interested in the influence of the Jastrow, we will use the HF orbitals calculated in
exercise #1. Make three folders named 2j, 12j, and 123j. For both 2j and 12j, copy the input file optm.xml from
“ex1_first-run-hartree-fock/opt.” This input file performs both wavefunction optimization and a VMC
calculation. Remember to correct relative paths to the PP directory. Copy the un-optimized HF wavefunction
and particleset files from “ex1_first-run-hartree-fock/convert”; if you followed the instructions
in exercise #1 these should be named h2o.wfs.xml and h2o.ptcl.xml. Otherwise, you can obtained them
from the REFERENCE files. Modify the h2o.wfs.xml file to remove the appropriate Jastrow blocks. For ex-
ample, for a 2-body Jastrow (only), you need to eliminate the Jastrow blocks named <jastrow name="J1" and
<jastrow name="J3." In the case of 12j, remove only <jastrow name="J3." Recommended settings for
the optimization run are nodes=32, threads=16, blocks=250, samples=128000, time-step=0.5, 8 optimization loops.
Recommended settings in the VMC section are walkers=16, blocks=1000, steps=1, substeps=100. Notice that samples
should always be set to blocks*threads per node*nodes = 32*16*250=128000. Repeat the process in both 2j and 12j
cases. For the 123j case, the wavefunction has already been optimized in the previous exercise. Copy the optimized
HF wavefunction and the particleset from “ex1_first-run-hartree-fock/opt.” Copy the input file from
any of the previous runs and remove the optimization block from the input, just leave the VMC step. In all three cases,
modify the submission script and submit the run.

Because these simulations will take several minutes to complete, this is an excellent opportunity to go to Appendix
E: Wavefunction XML block and review the wavefunction XML block used by QMCPACK. When the simulations are
completed, use qmca to analyze the output files. Using your favorite plotting program (e.g., gnu plot), plot the energy
and variance as a function of the Jastrow form. Fig. 20.4 shows a typical result for this calculation. As can be seen, the
VMC energy and variance depends strongly on the form of the Jastrow. Since the DMC error bar is directly related to
the variance of the VMC energy, improving the Jastrow will always lead to a reduction in the DMC effort. In addition,
systematic approximations (time step, number of walkers, etc.) are also reduced with improved wavefunctions.

20.5.2 Generation of wavefunctions from DFT using GAMESS

In this section we will use GAMESS to generate wavefunctions for QMCPACK from DFT calculations. From the
top folder, go to “ex2_slater-jastrow-wf-options/orbitals.” To demonstrate the variation in DMC
energies with the choice of DFT orbitals, we will choose the following set of exchange-correlation functionals (PBE,
PBE0, BLYP, B3LYP). For each functional, make a directory using your preferred naming convention (e.g., the name
of the functional). Go into each folder and copy a GAMESS input file from “ex1_first-run-hartree-fock/
gms.” Rename the file with your preferred naming convention; we suggest using h2o.[dft].inp, where [dft] is
the name of the functional used in the calculation. At this point, this input file should be identical to the one used
to generate the HF wavefunction in exercise #1. To perform a DFT calculation we only need to add “DFTTYP” to
the $CONTRL ... $END section and set it to the desired functional type, for example, “DFTTYP=PBE” for a PBE
functional. This variable must be set to (PBE, PBE0, BLYP, B3LYP) to obtain the appropriate functional in GAMESS.
For a complete list of implemented functionals, see the GAMESS input manual.
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Fig. 20.4: VMC energy as a function of Jastrow type.

20.5.3 Optimization and DMC calculations with DFT wavefunctions

In this section we will optimize the wavefunction generated in the previous step and perform DMC calculations. From
the top directory, go to “ex2_slater-jastrow-wf-options/orbitals.” The steps required to achieve this
are identical to those used to optimize the wavefunction with HF orbitals. Make individual folders for each cal-
culation and obtain the necessary files to perform optimization, for example, VMC and DMC calculations from
“for ex1_first-run-hartree-fock/opt” and “ex1_first-run-hartree-fock/dmc_ts.” For each
functional, make the appropriate modifications to the input files and copy the particleset and wavefunction
files from the appropriate directory in “ex2_slater-jastrow-wf-options/orbitals/[dft].” We recom-
mend the following settings: nodes=32, threads=16, (in optimization) blocks=250, samples=128000, timestep=0.5, 8
optimization loops, (in VMC) walkers=16, blocks=100, steps=1, substeps=100, (in DMC) blocks 400, targetWalk-
ers=960, and timestep=0.01. Submit the runs and analyze the results using qmca.

How do the energies compare against each other? How do they compare against DMC energies with HF orbitals?

20.6 Exercise #3: Multideterminant wavefunctions

In this exercise we will study the dependence of the DMC energy on the set of orbitals and the type of configurations
included in a multideterminant wavefunction.

262 Chapter 20. Lab 3: Advanced molecular calculations



QMCPACK Manual

20.6.1 Generation of a CISD wavefunctions using GAMESS

In this section we will use GAMESS to generate a multideterminant wavefunction with configuration interaction with
single and double excitations (CISD). In CISD, the Schrodinger equation is solved exactly on a basis of determinants
including the HF determinant and all its single and double excitations.

Go to “ex3_multi-slater-jastrow/cisd/gms” and you will see input and output files named h2o.cisd.
inp and h2o.cisd.out. Because of technical problems with GAMESS in the BGQ architecture of VESTA, we
are unable to use CISD properly in GAMESS. Consequently, the output of the calculation is already provided in the
directory.

There will be time in the next step to study the GAMESS input files and the description in Appendix A: GAMESS
input. Since the output is already provided, the only action needed is to use the converter to generate the appropriate
QMCPACK files.

jobrun_vesta convert4qmc h2o.cisd.out -ci h2o.cisd.out \
-readInitialGuess 57 -threshold 0.0075

We used the PRTMO=.T. flag in the GUESS section to include orbitals in the output file. You should read these orbitals
from the output (-readInitialGuess 40). The highest occupied orbital in any determinant should be 34, so reading 40
orbitals is a safe choice. In this case, it is important to rename the XML files with meaningful names, for example,
h2o.cisd.wfs.xml. A threshold of 0.0075 is sufficient for the calculations in the training.

20.6.2 Optimization of a multideterminant wavefunction

In this section we will optimize the wavefunction generated in the previous step. There is no difference in the op-
timization steps if a single determinant and a multideterminant wavefunction. QMCPACK will recognize the pres-
ence of a multideterminant wavefunction and will automatically optimize the linear coefficients by default. Go to
“ex3_multi-slater-jastrow/cisd” and make a folder called thres0.01. Copy the particleset and
wavefunction files created in the previous step to the current directory. With your favorite text editor, open the
wavefunction file h2o.wfs.xml. Look for the multideterminant XML block and change the “cutoff” param-
eter in detlist to 0.01. Then follow the same steps used in Section 9.4.3, “Optimization and DMC calculations with
DFT wavefunctions” to optimize the wavefunction. Similar to this case, design a QMCPACK input file that performs
wavefunction optimization followed by VMC and DMC calculations. Submit the calculation.

This is a good time to review the GAMESS input file description in Appendix A: GAMESS input, go to the previous
directory and make a new folder named thres0.0075. Repeat the previous steps to optimize the wavefunction
with a cutoff of 0.01, but use a cutoff of 0.0075 this time. This will increase the number of determinants used in the
calculation. Notice that the “cutoff” parameter in the XML should be less than the “-threshold 0.0075” flag passed to
the converted, which is further bounded by the PRTTOL flag in the GAMESS input.

After the wavefunction is generated, we are ready to optimize. Instead of starting from an un-optimized wavefunction,
we can start from the optimized wavefunction from thres0.01 to speed up convergence. You will need to modify the file
and change the cutoff in detlist to 0.0075 with a text editor. Repeat the optimization steps and submit the calculation.

When you are done, use qmca to analyze the results. Compare the energies at these two coefficient cutoffs with the
energies obtained with DFT orbitals. Because of the time limitations of this tutorial, it is not practical to optimize the
wavefunctions with a smaller cutoff since this would require more samples and longer runs due to the larger number
of optimizable parameters. Fig. 20.5 shows the results of such exercise: the DMC energy as a function of the cutoff
in the wavefunction. As can be seen, a large improvement in the energy is obtained as the number of configurations is
increased.

20.6. Exercise #3: Multideterminant wavefunctions 263



QMCPACK Manual

Fig. 20.5: DMC energy as a function of the sum of the square of CI coefficients from CISD.

20.6.3 CISD, CASCI, and SOCI

Go to “ex3_multi-slater-jastrow” and inspect the folders for the remaining wavefunction types: CASCI
and SOCI. Follow the steps in the previous exercise and obtain the optimized wavefunctions for these determinant
choices. Notice that the SOCI GAMESS output is not included because it is large. Already converted XML inputs can
be found in “ex3_multi-slater-jastrow/soci/thres*.”

A CASCI wavefunction is produced from a CI calculation that includes all the determinants in a complete active
space (CAS) calculation, in this case using the orbitals from a previous CASSCF calculation. In this case we used a
CAS(8,8) active space that includes all determinants generated by distributing 8 electrons in the lowest 8 orbitals. A
SOCI calculation is similar to the CAS-CI calculation, but in addition to the determinants in the CAS it also includes
all single and double excitations from all of them, leading to a much larger determinant set. Since you now have
considerable experience optimizing wavefunctions and calculating DMC energies, we will leave it to you to complete
the remaining tasks on your own. If you need help, refer to previous exercises in the tutorial. Perform optimizations
for both wavefunctions using cutoffs in the CI expansion of 0.01 an 0.0075. If you have time, try to optimize the
wavefunctions with a cutoff of 0.005. Analyze the results and plot the energy as a function of cutoff for all three cases:
CISD, CAS-CI, and SOCI.

Fig. 20.5 shows the result of similar calculations using more samples and smaller cutoffs. The results should be similar
to those produced in the tutorial. For reference, the exact energy of the water molecule with ECPs is approximately
-17.276 Ha. From the results of the tutorial, how does the selection of determinants relate to the expected DMC
energy? What about the choice in the set of orbitals?

264 Chapter 20. Lab 3: Advanced molecular calculations



QMCPACK Manual

20.7 Appendix A: GAMESS input

In this section we provide a brief description of the GAMESS input needed to produce trial wavefunction for QMC
calculations with QMCPACK. We assume basic familiarity with GAMESS input structure, particularly regarding the
input of atomic coordinates and the definition of Gaussian basis sets. This section focuses on generation of the output
files needed by the converter tool, convert4qmc. For a description of the converter, see Appendix B: convert4qmc.

Only a subset of the methods available in GAMESS can be used to generate wavefunctions for QMCPACK, and we
restrict our description to these. For a complete description of all the options and methods available in GAMESS,
please refer to the official documentation at “http://www.msg.ameslab.gov/gamess/documentation.html.”

Currently, convert4qmc can process output for the following methods in GAMESS (in SCFTYP): RHF, ROHF, and
MCSCF. Both HF and DFT calculations (any DFT type) can be used in combination with RHF and ROHF calculations.
For MCSCF and CI calculations, ALDET, ORMAS, and GUGA drivers can be used (details follow).

20.7.1 HF input

The following input will perform a restricted HF calculation on a closed-shell singlet (multiplicity=1). This will
generate RHF orbitals for any molecular system defined in $DATA ... $END.

$CONTRL SCFTYP=RHF RUNTYP=ENERGY MULT=1
ISPHER=1 EXETYP=RUN COORD=UNIQUE MAXIT=200 $END
$SYSTEM MEMORY=150000000 $END
$GUESS GUESS=HUCKEL $END
$SCF DIRSCF=.TRUE. $END
$DATA
...
Atomic Coordinates and basis set
...
$END

Main options:

1. SCFTYP: Type of SCF method, options: RHF, ROHF, MCSCF, UHF and NONE.

2. RUNTYP: Type of run. For QMCPACK wavefunction generation this should always be ENERGY.

3. MULT: Multiplicity of the molecule.

4. ISPHER: Use spherical harmonics (1) or Cartesian basis functions (-1).

5. COORD: Input structure for the atomic coordinates in $DATA.

20.7.2 DFT calculations

The main difference between the input for a RHF/ROHF calculation and a DFT calculation is the definition of the
DFTTYP parameter. If this is set in the $CONTROL section, a DFT calculation will be performed with the appropriate
functional. Notice that although the default values are usually adequate, DFT calculations have many options involving
the integration grids and accuracy settings. Make sure you study the input manual to be aware of these. Refer to the
input manual for a list of the implemented exchange-correlation functionals.
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20.7.3 MCSCF

MCSCF calculations are performed by setting SCFTYP=MCSCF in the CONTROL section. If this option is set, an
MCSCF section must be added to the input file with the options for the calculation. An example section for the water
molecule used in the tutorial follows.

$MCSCF CISTEP=GUGA MAXIT=1000 FULLNR=.TRUE. ACURCY=1.0D-5 $END

The most important parameter is CISTEP, which defines the CI package used. The only options compatible with
QMCPACK are: ALDET, GUGA, and ORMAS. Depending on the package used, additional input sections are needed.

20.7.4 CI

Configuration interaction (full CI, truncated CI, CAS-CI, etc) calculations are performed by setting SCFTYP=NONE
and CITYP=GUGA,ALDET,ORMAS. Each one of these packages requires further input sections, which are typically
slightly different from the input sections needed for MCSCF runs.

20.7.5 GUGA: Unitary group CI package

The GUGA package is the only alternative if one wants CSFs with GAMESS. We subsequently provide a very brief
description of the input sections needed to perform MCSCF, CASCI, truncated CI, and SOCI with this package. For a
complete description of these methods and all the options available, please refer to the GAMESS input manual.

GUGA-MCSCF

The following input section performs a CASCI calculation with a CAS that includes 8 electrons in 8 orbitals (4
DOC and 4 VAL), for example, CAS(8,8). NMCC is the number of frozen orbitals (doubly occupied orbitals in all
determinants), NDOC is the number of double occupied orbitals in the reference determinant, NVAL is the number of
singly occupied orbitals in the reference (for spin polarized cases), and NVAL is the number of orbitals in the active
space. Since FORS is set to .TRUE., all configurations in the active space will be included. ISTSYM defines the
symmetry of the desired state.

$MCSCF CISTEP=GUGA MAXIT=1000 FULLNR=.TRUE. ACURCY=1.0D-5 $END
$DRT GROUP=C2v NMCC=0 NDOC=4 NALP=0 NVAL=4 ISTSYM=1 MXNINT= 500000 FORS=.TRUE. $END

GUGA-CASCI

The following input section performs a CASCI calculation with a CAS that includes 8 electrons in 8 orbitals (4
DOC and 4 VAL), for example, CAS(8,8). NFZC is the number of frozen orbitals (doubly occupied orbitals in all
determinants). All other parameters are identical to those in the MCSCF input section.

$CIDRT GROUP=C2v NFZC=0 NDOC=4 NALP=0 NVAL=4 NPRT=2 ISTSYM=1 FORS=.TRUE. MXNINT=
→˓500000 $END
$GUGDIA PRTTOL=0.001 CVGTOL=1.0E-5 ITERMX=1000 $END
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GUGA-truncated CI

The following input sections will lead to a truncated CI calculation. In this particular case it will perform a CISD
calculation since IEXCIT is set to 2. Other values in IEXCIT will lead to different CI truncations; for example,
IEXCIT=4 will lead to CISDTQ. Notice that only the lowest 30 orbitals will be included in the generation of the
excited determinants in this case. For a full CISD calculation, NVAL should be set to the total number of virtual
orbitals.

$CIDRT GROUP=C2v NFZC=0 NDOC=4 NALP=0 NVAL=30 NPRT=2 ISTSYM=1 IEXCIT=2 MXNINT= 500000
→˓$END
$GUGDIA PRTTOL=0.001 CVGTOL=1.0E-5 ITERMX=1000 $END

GUGA-SOCI

The following input section performs a SOCI calculation with a CAS that includes 8 electrons in 8 orbitals (4 DOC and
4 VAL), for example, CAS(8,8). Since SOCI is set to .TRUE., all single and double determinants from all determinants
in the CAS(8,8) will be included.

$CIDRT GROUP=C2v NFZC=0 NDOC=4 NALP=0 NVAL=4 NPRT=2 ISTSYM=1 SOCI=.TRUE. NEXT=30
→˓MXNINT= 500000 $END
$GUGDIA PRTTOL=0.001 CVGTOL=1.0E-5 ITERMX=1000 $END

20.7.6 ECP

To use ECPs in GAMESS, you must define a {$ECP ... $END} block. There must be a definition of a potential
for every atom in the system, including symmetry equivalent ones. In addition, they must appear in the particular
order expected by GAMESS. The following example shows an ECP input block for a single water molecule using
BFD ECPs. To turn on the use of ECPs, the option “ECP=READ” must be added to the CONTROL input block.

$ECP
O-QMC GEN 2 1
3
6.00000000 1 9.29793903
55.78763416 3 8.86492204
-38.81978498 2 8.62925665
1
38.41914135 2 8.71924452
H-QMC GEN 0 0
3
1.000000000000 1 25.000000000000
25.000000000000 3 10.821821902641
-8.228005709676 2 9.368618758833
H-QMC
$END
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20.8 Appendix B: convert4qmc

To generate the particleset and wavefunction XML blocks required by QMCPACK in calculations with molecular
systems, the converter convert4qmc must be used. The converter will read the standard output from the appropriate
quantum chemistry calculation and will generate all the necessary input for QMCPACK. In the following, we describe
the main options of the converter for GAMESS output. In general, there are three ways to use the converter depending
on the type of calculation performed. The minimum syntax for each option is shown subsequently. For a description
of the XML files produced by the converter, see Appendix E: Wavefunction XML block.

1. For all single-determinant calculations (HF and DFT with any DFTTYP):

convert4qmc -gamess single det.out

• single det.out is the standard output generated by GAMESS.

2. (This option is not recommended. Use the following option to avoid mistakes.) For multideterminant calculations
where the orbitals and configurations are read from different files (e.g., when using orbitals from a MCSCF run
and configurations from a subsequent CI run):

convert4qmc -gamess orbitals multidet.out -ci cicoeff
multidet.out

• orbitals_multidet.out is the standard output from the calculation that generates the orbitals. cicoeff multi-
det.out is the standard output from the calculation that calculates the CI expansion.

3. For multideterminant calculations where the orbitals and configurations are read from the same file, using
PRTMO=.T. in the GUESS input block:

convert4qmc -gamess multi det.out -ci multi det.out
-readInitialGuess Norb

• multi_det.out is the standard output from the calculation that calculates the CI expansion.

Options:

• -gamess file.out: Standard output of GAMESS calculation. With the exception of determinant configurations
and coefficients in multideterminant calculations, everything else is read from this file including atom coordi-
nates, basis sets, SPOs, ECPs, number of electrons, multiplicity, etc.

• -ci file.out: In multideterminant calculations, determinant configurations and coefficients are read from this file.
Notice that SPOs are NOT read from this file. Recognized CI packages are ALDET, GUGA, and ORMAS.
Output produced with the GUGA package MUST have the option “NPRT=2” in the CIDRT or DRT input
blocks.

• -threshold cutoff: Cutoff in multideterminant expansion. Only configurations with coefficients above this value
are printed.

• -zeroCI: Sets to zero the CI coefficients of all determinants, with the exception of the first one.

• -readInitialGuess Norb: Reads Norb initial orbitals (“INITIAL GUESS ORBITALS”) from GAMESS output.
These are orbitals generated by the GUESS input block and printed with the option “PRTMO=.T.”. Notice that
this is useful only in combination with the option “GUESS=MOREAD” and in cases where the orbitals are not
modified in the GAMESS calculation, e.g. CI runs. This is the recommended option in all CI calculations.

• -NaturalOrbitals Norb: Read Norb “NATURAL ORBITALS” from GAMESS output. The natural orbitals
must exists in the output, otherwise the code aborts.

• -add3BodyJ: Adds 3-body Jastrow terms (e-e-I) between electron pairs (both same spin and opposite spin
terms) and all ion species in the system. The radial function is initialized to zero, and the default cutoff is 10.0
bohr. The converter will add a 1- and 2-body Jastrow to the wavefunction block by default.
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20.8.1 Useful notes

• The type of SPOs read by the converter depends on the type of calculation and on the options used. By default,
when neither -readInitialGuess nor -NaturalOrbitals are used, the following orbitals are read in each case (notice
that -readInitialGuess or -NaturalOrbitals are mutually exclusive):

– RHF and ROHF: “EIGENVECTORS”

– MCSCF: “MCSCF OPTIMIZED ORBITALS”

– GUGA, ALDET, ORMAS: Cannot read orbitals without -readInitialGuess or -NaturalOrbitals options.

• The SPOs and printed CI coefficients in MCSCF calculations are not consistent in GAMESS. The printed CI
coefficients correspond to the next-to-last iteration; they are not recalculated with the final orbitals. So to
get appropriate CI coefficients from MCSCF calculations, a subsequent CI (no SCF) calculation is needed to
produce consistent orbitals. In principle, it is possible to read the orbitals from the MCSCF output and the CI
coefficients and configurations from the output of the following CI calculations. This could lead to problems
in principle since GAMESS will rotate initial orbitals by default to obtain an initial guess consistent with the
symmetry of the molecule. This last step is done by default and can change the orbitals reported in the MCSCF
calculation before the CI is performed. To avoid this problem, we highly recommend using the preceding option
#3 to read all the information from the output of the CI calculation; this requires the use of “PRTMO=.T.” in the
GUESS input block. Since the orbitals are printed after any symmetry rotation, the resulting output will always
be consistent.

20.9 Appendix C: Wavefunction optimization XML block

Listing 20.1: Sample XML optimization block.

<loop max="10">
<qmc method="linear" move="pbyp" checkpoint="-1" gpu="no">
<parameter name="blocks"> 10 </parameter>

<parameter name="warmupsteps"> 25 </parameter>
<parameter name="steps"> 1 </parameter>
<parameter name="substeps"> 20 </parameter>
<parameter name="timestep"> 0.5 </parameter>
<parameter name="samples"> 10240 </parameter>
<cost name="energy"> 0.95 </cost>
<cost name="unreweightedvariance"> 0.0 </cost>
<cost name="reweightedvariance"> 0.05 </cost>
<parameter name="useDrift"> yes </parameter>
<parameter name="bigchange">10.0</parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="usebuffer"> yes </parameter>
<parameter name="nonlocalpp"> yes </parameter>
<parameter name="MinMethod">quartic</parameter>
<parameter name="exp0">-6</parameter>
<parameter name="alloweddifference"> 1.0e-5 </parameter>
<parameter name="stepsize"> 0.15 </parameter>
<parameter name="nstabilizers"> 1 </parameter>

</qmc>
</loop>

Options:

• bigchange: (default 50.0) Largest parameter change allowed

• usebuffer: (default no) Save useful information during VMC
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• nonlocalpp: (default no) Include nonlocal energy on 1-D min

• MinMethod: (default quartic) Method to calculate magnitude of parameter change quartic: fit quartic polyno-
mial to four values of the cost function obtained using reweighting along chosen direction linemin: direct line
minimization using reweighting rescale: no 1-D minimization. Uses Umrigars suggestions.

• stepsize: (default 0.25) Step size in either quartic or linemin methods.

• alloweddifference: (default 1e-4) Allowed increase in energy

• exp0: (default -16.0) Initial value for stabilizer (shift to diagonal of H). Actual value of stabilizer is 10 exp0

• nstabilizers: (default 3) Number of stabilizers to try

• stabilizaterScale: (default 2.0) Increase in value of exp0 between iterations.

• max its: (default 1) Number of inner loops with same sample

• minwalkers: (default 0.3) Minimum value allowed for the ratio of effective samples to actual number of walk-
ers in a reweighting step. The optimization will stop if the effective number of walkers in any reweighting
calculation drops below this value. Last set of acceptable parameters are kept.

• maxWeight: (defaul 1e6) Maximum weight allowed in reweighting. Any weight above this value will be reset
to this value.

Recommendations:

• Set samples to equal to (#threads)*blocks.

• Set steps to 1. Use substeps to control correlation between samples.

• For cases where equilibration is slow, increase both substeps and warmupsteps.

• For hard cases (e.g., simultaneous optimization of long MSD and 3-Body J), set exp0 to 0 and do a single inner
iteration (max its=1) per sample of configurations.

20.10 Appendix D: VMC and DMC XML block

Listing 20.2: Sample XML blocks for VMC and DMC calculations.

<qmc method="vmc" move="pbyp" checkpoint="-1">
<parameter name="useDrift">yes</parameter>
<parameter name="warmupsteps">100</parameter>
<parameter name="blocks">100</parameter>
<parameter name="steps">1</parameter>
<parameter name="substeps">20</parameter>
<parameter name="walkers">30</parameter>
<parameter name="timestep">0.3</parameter>
<estimator name="LocalEnergy" hdf5="no"/>

</qmc>
<qmc method="dmc" move="pbyp" checkpoint="-1">
<parameter name="nonlocalmoves">yes</parameter>
<parameter name="targetWalkers">1920</parameter>
<parameter name="blocks">100</parameter>
<parameter name="steps">100</parameter>
<parameter name="timestep">0.1</parameter>
<estimator name="LocalEnergy" hdf5="no"/>

</qmc>

General Options:
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• move: (default “walker”) Type of electron move. Options: “pbyp” and “walker.”

• checkpoint: (default “-1”) (If > 0) Generate checkpoint files with given frequency. The calculations can be
restarted/continued with the produced checkpoint files.

• useDrift: (default “yes”) Defines the sampling mode. useDrift = “yes” will use Langevin acceleration to sample
the VMC and DMC distributions, while useDrift=“no” will use random displacements in a box.

• warmupSteps: (default 0) Number of steps warmup steps at the beginning of the calculation. No output is
produced for these steps.

• blocks: (default 1) Number of blocks (outer loop).

• steps: (default 1) Number of steps per blocks (middle loop).

• sub steps: (default 1) Number of substeps per step (inner loop). During substeps, the local energy is not
evaluated in VMC calculations, which leads to faster execution. In VMC calculations, set substeps to the
average autocorrelation time of the desired quantity.

• time step: (default 0.1) Electronic time step in bohr.

• samples: (default 0) Number of walker configurations saved during the current calculation.

• walkers: (default #threads) In VMC, sets the number of walkers per node. The total number of walkers in the
calculation will be equal to walkers*(# nodes).

Options unique to DMC:

• targetWalkers: (default #walkers from previous calculation, e.g., VMC). Sets the target number of walkers.
The actual population of walkers will fluctuate around this value. The walkers will be distributed across all the
nodes in the calculation. On a given node, the walkers are split across all the threads in the system.

• nonlocalmoves: (default “no”) Set to “yes” to turns on the use of Casula’s T-moves.

20.11 Appendix E: Wavefunction XML block

Listing 20.3: Basic framework for a single-determinant determinantset
XML block.

<wavefunction name="psi0" target="e">
<determinantset type="MolecularOrbital" name="LCAOBSet"
source="ion0" transform="yes">
<basisset name="LCAOBSet">

<atomicBasisSet name="Gaussian-G2" angular="cartesian" type="Gaussian"
→˓elementType="O" normalized="no">

...
</atomicBasisSet>

</basisset>
<slaterdeterminant>

<determinant id="updet" size="4">
<occupation mode="ground"/>
<coefficient size="57" id="updetC">
...
</coefficient>

</determinant>
<determinant id="downdet" size="4">
<occupation mode="ground"/>
<coefficient size="57" id="downdetC">
...

(continues on next page)
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(continued from previous page)

</coefficient>
</determinant>

</slaterdeterminant>

</determinantset>

<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
...
</jastrow>

</wavefunction>

In this section we describe the basic format of a QMCPACK wavefunction XML block. Everything listed in this
section is generated by the appropriate converter tools. Little to no modification is needed when performing standard
QMC calculations. As a result, this section is meant mainly for illustration purposes. Only experts should attempt to
modify these files (with very few exceptions like the cutoff of CI coefficients and the cutoff in Jastrow functions) since
changes can lead to unexpected results.

A QMCPACK wavefunction XML block is a combination of a determinantset, which contains the antisymmetric part
of the wavefunction and one or more Jastrow blocks. The syntax of the antisymmetric block depends on whether the
wavefunction is a single determinant or a multideterminant expansion. Listing 62 shows the general structure of the
single-determinant case. The determinantset block is composed of a basisset block, which defines the atomic orbital
basis set, and a slaterdeterminant block, which defines the SPOs and occupation numbers of the Slater determinant.
Listing 63 shows a (piece of a) sample of a slaterdeterminant block. The slaterdeterminant block consists of two
determinant blocks, one for each electron spin. The parameter “size” in the determinant block refers to the number
of SPOs present while the “size” parameter in the coefficient block refers to the number of atomic basis functions per
SPO.

Listing 20.4: Sample XML block for the single Slater determinant case.

<slaterdeterminant>
<determinant id="updet" size="5">

<occupation mode="ground"/>
<coefficient size="134" id="updetC">

9.55471000000000e-01 -3.87000000000000e-04 6.51140000000000e-02 2.17700000000000e-
→˓03
1.43900000000000e-03 4.00000000000000e-06 -4.58000000000000e-04 -5.20000000000000e-

→˓05
-2.40000000000000e-05 6.00000000000000e-06 -0.00000000000000e+00 -0.

→˓00000000000000e+00
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 -0.

→˓00000000000000e+00
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 -0.

→˓00000000000000e+00
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 -0.

→˓00000000000000e+00
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 -0.

→˓00000000000000e+00
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 -0.

→˓00000000000000e+00
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 -0.

→˓00000000000000e+00
-0.00000000000000e+00 -5.26000000000000e-04 2.63000000000000e-04 2.

→˓63000000000000e-04
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 -1.

→˓27000000000000e-04

(continues on next page)
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(continued from previous page)

6.30000000000000e-05 6.30000000000000e-05 -0.00000000000000e+00 -0.
→˓00000000000000e+00
-0.00000000000000e+00 -3.20000000000000e-05 1.60000000000000e-05 1.

→˓60000000000000e-05
-0.00000000000000e+00 -0.00000000000000e+00 -0.00000000000000e+00 7.

→˓00000000000000e-06

Listing 64 shows the general structure of the multideterminant case. Similar to the single-determinant case, the deter-
minantset must contain a basisset block. This definition is identical to the one described previously. In this case, the
definition of the SPOs must be done independently from the definition of the determinant configurations; the latter is
done in the sposet block, while the former is done on the multideterminant block. Notice that two sposet sets must be
defined, one for each electron spin. The name of each sposet set is required in the definition of the multideterminant
block. The determinants are defined in terms of occupation numbers based on these orbitals.

Listing 20.5: Basic framework for a multideterminant determinantset
XML block.

<wavefunction id="psi0" target="e">
<determinantset name="LCAOBSet" type="MolecularOrbital" transform="yes" source=

→˓"ion0">
<basisset name="LCAOBSet">

<atomicBasisSet name="Gaussian-G2" angular="cartesian" type="Gaussian"
→˓elementType="O" normalized="no">

...
</atomicBasisSet>
...

</basisset>
<sposet basisset="LCAOBSet" name="spo-up" size="8">

<occupation mode="ground"/>
<coefficient size="40" id="updetC">
...

</coefficient>
</sposet>
<sposet basisset="LCAOBSet" name="spo-dn" size="8">

<occupation mode="ground"/>
<coefficient size="40" id="downdetC">
...

</coefficient>
</sposet>
<multideterminant optimize="yes" spo_up="spo-up" spo_dn="spo-dn">

<detlist size="97" type="CSF" nca="0" ncb="0" nea="4" neb="4" nstates="8"
→˓cutoff="0.001">

<csf id="CSFcoeff_0" exctLvl="0" coeff="0.984378" qchem_coeff="0.984378"
→˓occ="22220000">

<det id="csf_0-0" coeff="1" alpha="11110000" beta="11110000"/>
</csf>
...

</detlist>
</multideterminant>

</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
...
</jastrow>

</wavefunction>

There are various options in the multideterminant block that users should be aware of.
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• cutoff: (IMPORTANT! ) Only configurations with (absolute value) “qchem coeff” larger than this value will be
read by QMCPACK.

• optimize: Turn on/off the optimization of linear CI coefficients.

• coeff: (in csf ) Current coefficient of given configuration. Gets updated during wavefunction optimization.

• qchem coeff: (in csf ) Original coefficient of given configuration from GAMESS calculation. This is used when
applying a cutoff to the configurations read from the file. The cutoff is applied on this parameter and not on the
optimized coefficient.

• nca and nab: Number of core orbitals for up/down electrons. A core orbital is an orbital that is doubly occupied
in all determinant configurations, not to be confused with core electrons. These are not explicitly listed on the
definition of configurations.

• nea and neb: Number of up/down active electrons (those being explicitly correlated).

• nstates: Number of correlated orbitals.

• size (in detlist ): Contains the number of configurations in the list.

The remaining part of the determinantset block is the definition of Jastrow factor. Any number of these can be defined.
Listing 65 shows a sample Jastrow block including 1-, 2- and 3-body terms. This is the standard block produced
by convert4qmc with the option -add3BodyJ (this particular example is for a water molecule). Optimization of
individual radial functions can be turned on/off using the “optimize” parameter. It can be added to any coefficients
block, even though it is currently not present in the J1 and J2 blocks.

Listing 20.6: Sample Jastrow XML block.

<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation rcut="10" size="10" speciesA="u" speciesB="u">

<coefficients id="uu" type="Array">0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
→˓coefficients>

</correlation>
<correlation rcut="10" size="10" speciesA="u" speciesB="d">

<coefficients id="ud" type="Array">0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
→˓coefficients>

</correlation>
</jastrow>
<jastrow name="J1" type="One-Body" function="Bspline" source="ion0" print="yes">

<correlation rcut="10" size="10" cusp="0" elementType="O">
<coefficients id="eO" type="Array">0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</

→˓coefficients>
</correlation>
<correlation rcut="10" size="10" cusp="0" elementType="H">

<coefficients id="eH" type="Array">0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
→˓coefficients>

</correlation>
</jastrow>
<jastrow name="J3" type="eeI" function="polynomial" source="ion0" print="yes">

<correlation ispecies="O" especies="u" isize="3" esize="3" rcut="10">
<coefficients id="uuO" type="Array" optimize="yes">
</coefficients>

</correlation>
<correlation ispecies="O" especies1="u" especies2="d" isize="3" esize="3" rcut=

→˓"10">
<coefficients id="udO" type="Array" optimize="yes">
</coefficients>

</correlation>
<correlation ispecies="H" especies="u" isize="3" esize="3" rcut="10">

(continues on next page)
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<coefficients id="uuH" type="Array" optimize="yes">
</coefficients>

</correlation>
<correlation ispecies="H" especies1="u" especies2="d" isize="3" esize="3" rcut=

→˓"10">
<coefficients id="udH" type="Array" optimize="yes">
</coefficients>

</correlation>
</jastrow>

This training assumes basic familiarity with the UNIX operating system. In particular, we use simple scripts written
in “csh.” In addition, we assume you have obtained all the necessary files and executables and that the training files
are located at ${TRAINING TOP}.

The goal of this training is not only to familiarize you with the execution and options in QMCPACK but also to
introduce you to important concepts in QMC calculations and many-body electronic structure calculations.
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CHAPTER

TWENTYONE

LAB 4: CONDENSED MATTER CALCULATIONS

21.1 Topics covered in this lab

• Tiling DFT primitive cells into QMC supercells

• Reducing finite-size errors via extrapolation

• Reducing finite-size errors via averaging over twisted boundary conditions

• Using the B-spline mesh factor to reduce memory requirements

• Using a coarsely resolved vacuum buffer region to reduce memory requirements

• Calculating the DMC total energies of representative 2D and 3D extended systems

21.2 Lab directories and files

labs/lab4_condensed_matter/
Be-2at-setup.py - DFT only for prim to conv cell
Be-2at-qmc.py - QMC only for prim to conv cell
Be-16at-qmc.py - DFT and QMC for prim to 16 atom cell
graphene-setup.py - DFT and OPT for graphene
graphene-loop-mesh.py - VMC scan over orbital bspline mesh factors
graphene-final.py - DMC for final meshfactor
pseudopotentials - pseudopotential directory

Be.ncpp - Be PP for Quantum ESPRESSO
Be.xml - Be PP for QMCPACK
C.BFD.upf - C PP for Quantum ESPRESSO
C.BFD.xml - C PP for QMCPACK

The goal of this lab is to introduce you to the somewhat specialized problems involved in performing DMC calculations
on condensed matter as opposed to the atoms and molecules that were the focus of the preceding labs. Calculations
will be performed on two different systems. Firstly, we will perform a series of calculations on BCC beryllium,
focusing on the necessary methodology to limit finite-size effects. Secondly, we will perform calculations on graphene
as an example of a system where QMCPACK’s capability to handle cases with mixed periodic and open boundary
conditions is useful. This example will also focus on strategies to limit memory usage for such systems. All of
the calculations performed in this lab will use the Nexus workflow management system, which vastly simplifies the
process by automating the steps of generating trial wavefunctions and performing DMC calculations.
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21.3 Preliminaries

For any DMC calculation, we must start with a trial wavefunction. As is typical for our calculations of condensed
matter, we will produce this wavefunction using DFT. Specifically, we will use QE to generate a Slater determinant
of SPOs. This is done as a three-step process. First, we calculate the converged charge density by performing a DFT
calculation with a fine grid of k-points to fully sample the Brillouin zone. Next, a non-self- consistent calculation
is performed at the specific k-points needed for the supercell and twists needed in the DMC calculation (more on
this later). Finally, a wavefunction is converted from the binary representation used by QE to the portable hdf5
representation used by QMCPACK.

The choice of k-points necessary to generate the wavefunctions depends on both the supercell chosen for the DMC
calculation and by the supercell twist vectors needed. Recall that the wavefunction in a plane-wave DFT calculation
is written using Bloch’s theorem as:

Ψ(�⃗�) = 𝑒𝑖�⃗�·�⃗�𝑢(�⃗�) , (21.1)

where �⃗� is confined to the first Brillouin zone of the cell chosen and 𝑢(�⃗�) is periodic in this simulation cell. A plane-
wave DFT calculation stores the periodic part of the wavefunction as a linear combination of plane waves for each
SPO at all k-points selected. The symmetry of the system allows us to generate an arbitrary supercell of the primitive
cell as follows: Consider the set of primitive lattice vectors, {a𝑝1,a

𝑝
2,a

𝑝
3}. We may write these vectors in a matrix, L𝑝,

the rows of which are the primitive lattice vectors. Consider a nonsingular matrix of integers, S. A corresponding set
of supercell lattice vectors, {a𝑠1,a𝑠2,a𝑠3}, can be constructed by the matrix product

a𝑠𝑖 = 𝑆𝑖𝑗a
𝑝
𝑗 ] . (21.2)

If the primitive cell contains 𝑁𝑝 atoms, the supercell will then contain 𝑁𝑠 = |det(S)|𝑁𝑝 atoms.

Now, the wavefunciton at any point in this new supercell can be related to the wavefunction in the primitive cell by
finding the linear combination of primitive lattice vectors that maps this point back to the primitive cell:

�⃗�′ = �⃗� + 𝑥a𝑝1 + 𝑦a𝑝2 + 𝑧a𝑝3 = �⃗� + 𝑇 , (21.3)

where 𝑥, 𝑦, 𝑧 are integers. Now the wavefunction in the supercell at point �⃗�′ can be written in terms of the wavefunction
in the primitive cell at �⃗�′ as:

Ψ(�⃗�) = Ψ(�⃗�′)𝑒𝑖𝑇 ·⃗𝑘 , (21.4)

where �⃗� is confined to the first Brillouin zone of the primitive cell. We have also chosen the supercell twist vector,
which places a constraint on the form of the wavefunction in the supercell. The combination of these two constraints
allows us to identify family of N k-points in the primitive cell that satisfy the constraints. Thus, for a given supercell
tiling matrix and twist angle, we can write the wavefunction everywhere in the supercell by knowing the wavefunction
a N k-points in the primitive cell. This means that the memory necessary to store the wavefunction in a supercell is
only linear in the size of the supercell rather than the quadratic cost if symmetry were neglected.

21.4 Total energy of BCC beryllium

When performing calculations of periodic solids with QMC, it is essential to work with a reasonable size supercell
rather than the primitive cells that are common in mean field calculations. Specifically, all of the finite-size correction
schemes discussed in the morning require that the exchange-correlation hole be considerably smaller than the periodic
simulation cell. Additionally, finite-size effects are lessened as the distance between the electrons in the cell and their
periodic images increases, so it is advantageous to generate supercells that are as spherical as possible to maximize
this distance. However, a competing consideration is that when calculating total energies we often want to extrapolate
the energy per particle to the thermodynamic limit by means of the following formula in three dimensions:

𝐸inf = 𝐶 + 𝐸𝑁/𝑁 . (21.5)
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This formula derived assuming the shape of the supercells is consistent (more specifically that the periodic distances
scale uniformly with system size), meaning we will need to do a uniform tiling, that is, 2× 2× 2, 3× 3× 3, etc. As
a 3 × 3 × 3 tiling is 27 times larger than the supercell and the practical limit of DMC is on the order of 200 atoms
(depending on Z), sometimes it is advantageous to choose a less spherical supercell with fewer atoms rather than a
more spherical one that is too expensive to tile.

In the case of a BCC crystal, it is possible to tile the one atom primitive cell to a cubic supercell only by doubling the
number of electrons. This is the best possible combination of a small number of atoms that can be tiled and a regular
box that maximizes the distance between periodic images. We will need to determine the tiling matrix S that generates
this cubic supercell by solving the following equation for the coefficients of the S matrix:⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦ =

⎡⎣ 𝑠11 𝑠12 𝑠13
𝑠21 𝑠22 𝑠23
𝑠31 𝑠32 𝑠33

⎤⎦ ·
⎡⎣ 0.5 0.5 −0.5
−0.5 0.5 0.5

0.5 −0.5 0.5

⎤⎦ . (21.6)

We will now use Nexus to generate the trial wavefunction for this BCC beryllium.

Fortunately, the Nexus will handle determination of the proper k-vectors given the tiling matrix. All that is needed is
to place the tiling matrix in the Be-2at-setup.py file. Now the definition of the physical system is

bcc_Be = generate_physical_system(
lattice = 'cubic',
cell = 'primitive',
centering = 'I',
atoms = 'Be',
constants = 3.490,
units = 'A',
net_charge = 0,
net_spin = 0,
Be = 2,
tiling = [[a,b,c],[d,e,f],[g,h,i]],
kgrid = kgrid,
kshift = (.5,.5,.5)
)

where the tiling line should be replaced with the preceding row major tiling matrix. This script file will now perform a
converged DFT calculation to generate the charge density in a directory called bcc-beryllium/scf and perform
a non-self-consistend DFT calculation to generate SPOs in the directory bcc-beryllium/nscf. Fortunately,
Nexus will calculate the required k-points needed to tile the wavefunction to the supercell, so all that is necessary
is the granularity of the supercell twists and whether this grid is shifted from the origin. Once this is finished, it
performs the conversion from pwscf’s binary format to the hdf5 format used by QMCPACK. Finally, it will optimize
the coefficients of 1-body and 2-body Jastrow factors in the supercell defined by the tiling matrix.

Run these calculations by executing the script Be-2at-setup.py. You will notice the small calculations required to
generate the wavefunction of beryllium in a one-atom cell are rather inefficient to run on a high-performance computer
such as vesta in terms of the time spent doing calculations versus time waiting on the scheduler and booting compute
nodes. One of the benefits of the portable HDF format that is used by QMCPACK is that you can generate data like
wavefunctions on a local workstation or other convenient resource and use high-performance clusters for the more
expensive QMC calculations.

In this case, the wavefunction is generated in the directory bcc-beryllium/nscf-2at_222/pwscf_ output
in a file called pwscf.pwscf.h5. For debugging purposes, it can be useful to verify that the contents of this file
are what you expect. For instance, you can use the tool h5ls to check the geometry of the cell where the DFT
calculations were performed or the number of k-points or electrons in the calculation. This is done with the command
h5ls -d pwscf.pwscf.h5/supercell or h5ls -d pwscf.pwscf.h5/electrons.

In the course of running Be-2at-setup.py, you will get an error when attempting to perform the VMC and
wavefunction optimization calculations. This is because the wavefunction has generated supercell twists of the form
(+/- 1/4, +/- 1/4, +/- 1/4). In the case that the supercell twist contains only 0 or 1/2, it is possible to operate entirely with
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real arithmetic. The executable that has been indicated in Be-2at-setup.py was compiled for this case. Note that
where possible, the memory use is a factor of two less than the general case and the calculations are somewhat faster.
However, it is often necessary to perform calculations away from these special twist angles to reduce finite-size effects.
To fix this, delete the directory bcc-beryllium/opt-2at, change the line near the top of Be-2at-setup.py
from

qmcpack = '/soft/applications/qmcpack/Binaries/qmcpack'

to

qmcpack = '/soft/applications/qmcpack/Binaries/qmcpack_comp'

and rerun the script.

When the optimization calculation has finished, check that everything has proceeded correctly by looking at the output
in the opt-2at directory. Firstly, you can grep the output file for Delta to see if the cost function has indeed been
decreasing during the optimization. You should find something like this:

OldCost: 4.8789147e-02 NewCost: 4.0695360e-02 Delta Cost:-8.0937871e-03
OldCost: 3.8507795e-02 NewCost: 3.8338486e-02 Delta Cost:-1.6930674e-04
OldCost: 4.1079105e-02 NewCost: 4.0898345e-02 Delta Cost:-1.8076319e-04
OldCost: 4.2681333e-02 NewCost: 4.2356598e-02 Delta Cost:-3.2473514e-04
OldCost: 3.9168577e-02 NewCost: 3.8552883e-02 Delta Cost:-6.1569350e-04
OldCost: 4.2176276e-02 NewCost: 4.2083371e-02 Delta Cost:-9.2903058e-05
OldCost: 4.3977361e-02 NewCost: 4.2865751e-02 Delta Cost:-1.11161830-03
OldCost: 4.1420944e-02 NewCost: 4.0779569e-02 Delta Cost:-6.4137501e-04

which shows that the starting wavefunction was fairly good and that most of the optimization occurred in the first step.
Confirm this by using qmca to look at how the energy and variance changed over the course of the calculation with
the command: qmca -q ev -e 10 *.scalar.dat executed in the opt-2at directory. You should get
output like the following:

LocalEnergy Variance ratio
opt series 0 -2.159139 +/- 0.001897 0.047343 +/- 0.000758 0.0219
opt series 1 -2.163752 +/- 0.001305 0.039389 +/- 0.000666 0.0182
opt series 2 -2.160913 +/- 0.001347 0.040879 +/- 0.000682 0.0189
opt series 3 -2.162043 +/- 0.001223 0.041183 +/- 0.001250 0.0190
opt series 4 -2.162441 +/- 0.000865 0.039597 +/- 0.000342 0.0183
opt series 5 -2.161287 +/- 0.000732 0.039954 +/- 0.000498 0.0185
opt series 6 -2.163458 +/- 0.000973 0.044431 +/- 0.003583 0.0205
opt series 7 -2.163495 +/- 0.001027 0.040783 +/- 0.000413 0.0189

Now that the optimization has completed successfully, we can perform DMC calculations. The first goal of the
calculations will be to try to eliminate the 1-body finite-size effects by twist averaging. The script Be-2at-qmc.py
has the necessary input. Note that on line 42 two twist grids are specified, (2,2,2) and (3,3,3). Change the tiling
matrix in this input file as in Be-2at-qmc.py and start the calculations. Note that this workflow takes advantage
of QMCPACK’s capability to group jobs. If you look in the directory dmc-2at_222 at the job submission script
(dmc.qsub.in), you will note that rather than operating on an XML input file, qmcapp is targeting a text file called
dmc.in. This file is a simple text file that contains the names of the eight XML input files needed for this job, one for
each twist. When operated in this mode, QMCPACK will use MPI groups to run multiple copies of itself within the
same MPI context. This is often useful both in terms of organizing calculations and for taking advantage of the large
job sizes that computer centers often encourage.

The DMC calculations in this case are designed to complete in a few minutes. When they have finished running, first
look at the scalar.dat files corresponding to the DMC calculations at the various twists in dmc-2at_222. Using
a command such as qmca -q ev -e 32 *.s001.scalar.dat (with a suitably chosen number of blocks for
the equilibration), you will see that the DMC energy in each calculation is nearly identical within the statistical uncer-
tainty of the calculations. In the case of a large supercell, this is often indicative of a situation where the Brillouin zone
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is so small that the 1-body finite-size effects are nearly converged without any twist averaging. In this case, however,
this is because of the symmetry of the system. For this cubic supercell, all of the twist angles chosen in this shifted
2×2×2 grid are equivalent by symmetry. In the case where substantial resources are required to equilibrate the DMC
calculations, it can be beneficial to avoid repeating such twists and instead simply weight them properly. In this case,
however, where the equilibration is inexpensive, there is no benefit to adding such complexity as the calculations can
simply be averaged together and the result is equivalent to performing a single longer calculation.

Using the command qmc -a -q ev -e 16 *.s001.scalar.dat, average the DMC energies in
dmc-2at_222 and dmc-2at_333 to see whether the 1-body finite-size effects are converged with a 3 × 3 × 3
grid of twists. When using beryllium as a metal, the convergence is quite poor (0.025 Ha/Be or 0.7 eV/Be). If this
were a production calculation it would be necessary to perform calculations on much larger grids of supercell twists
to eliminate the 1-body finite-size effects.

In this case there are several other calculations that would warrant a high priority. Script Be-16at-qmc.py has
been provided in which you can input the appropriate tiling matrix for a 16-atom cell and perform calculations to
estimate the 2-body finite-size effects, which will also be quite large in the 2-atom calculations. This script will take
approximately 30 minutes to run to completion, so depending on your interest, you can either run it or work to modify
the scripts to address the other technical issues that would be necessary for a production calculation such as calculating
the population bias or the time step error in the DMC calculations.

Another useful exercise would be to attempt to validate this PP by calculating the ionization potential and electron
affinity of the isolated atom and compare it with the experimental values: IP = 9.3227 eV , EA = 2.4 eV.

21.5 Handling a 2D system: graphene

In this section we examine a calculation of an isolated sheet of graphene. Because graphene is a 2D system, we will
take advantage of QMCPACK’s capability to mix periodic and open boundary conditions to eliminate and spurious
interaction of the sheet with its images in the z direction. Run the script graphene-setup.py, which will generate
the wavefunction and optimize one and two body jastrow factors. In the script; notice line 160: bconds = ’ppn’ in the
generate_qmcpack function, which specifies this mix of open and periodic boundary conditions. Consequently, the
atoms will need to be kept away from this open boundary in the z direction as the electronic wavefunction will not be
defined outside of the simulation box in this direction. For this reason, all of the atom positions at the beginning of the
file have z coordinates 7.5. At this point, run the script graphene-setup.py.

Aside from the change in boundary conditions, the main thing that distinguishes this kind of calculation from the pre-
vious beryllium example is the large amount of vacuum in the cell. Although this is a very small calculation designed
to run quickly in the tutorial, in general a more converged calculation would quickly become memory limited on an
architecture like BG/Q. When the initial wavefunction optimization has completed to your satisfaction, run the script
graphene-loop-mesh.py. This examines within VMC an approach to reducing the memory required to store
the wavefunction. In graphene-loop-mesh.py, the spacing between the B-spline points is varied uniformly.
The mesh spacing is a prefactor to the linear spacing between the spline points, so the memory use goes as the cube
of the meshfactor. When you run the calculations, examine the .s000.scalar.dat files with qmca to determine
the lowest possible mesh spacing that preserves both the VMC energy and the variance.

Finally, edit the file graphene-final.py, which will perform two DMC calculations. In the first, (qmc1) replace
the following lines:

meshfactor = xxx,
precision = '---',

with the values you have determined will perform the calculation with as small as possible wavefunction. Note that we
can also use single precision arithmetic to store the wavefunction by specifying precision=`single.’ When you run the
script, compare the output of the two DMC calculations in terms of energy and variance. Also, see if you can calculate
the fraction of memory that you were able to save by using a meshfactor other than 1 and single precision arithmetic.
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21.6 Conclusion

Upon completion of this lab, you should be able to use Nexus to perform DMC calculations on periodic solids when
provided with a PP. You should also be able to reduce the size of the wavefunction in a solid-state calculation in cases
where memory is a limiting factor.
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TWENTYTWO

LAB 5: EXCITED STATE CALCULATIONS

22.1 Topics covered in this lab

• Tiling DFT primitive cells into optimal QMC supercells

• Fundamentals of between neutral and charged calculations

• Calculating quasiparticle excitation energies of condensed matter systems

• Calculating optical excitation energies of condensed matter systems

22.2 Lab directories and files

labs/lab5_excited_properties/
band.py - Band structure calculation for Carbon Diamond
optical.py - VMC optical gap calculation using the tiling matrix from band.

→˓py
quasiparticle.py - VMC quasiparticle gap calculation using the tiling matrix

→˓from band.py
pseudopotentials - pseudopotential directory

C.BFD.upf - C PP for Quantum ESPRESSO
C.BFD.xml - C PP for QMCPACK

The goal of this lab is to perform neutral and charged excitation calculations in condensed matter systems using
QMCPACK. Throughout this lab, a working knowledge of Lab4 Condensed Matter Calculations is assumed. First, we
will introduce the concepts of neutral and charged excitations. We will briefly discuss these in relation to the specific
experimental studies that must be used to benchmark DMC results. Secondly, we will perform charged (quasiparticle)
and neutral (optical) excitations calculations on C-diamond.

22.3 Basics and excited state experiments

Although VMC and DMC methods are better suited for studying ground state properties of materials, they can still
provide useful information regarding the excited states. Unlike the applications of band structure theory such as
DFT and GW, it is more challenging to obtain the complete excitation spectra using DMC. However, it is relatively
straightforward to calculate the band gap minimum of a condensed matter system using DMC.

We will briefly discuss the two main ways of obtaining the band gap minimum through experiments: photoemission
and absorption studies. The energy required to remove an electron from a neutral system is called the IP (ionization
potential), which is available from direct photoemission experiments. In contrast, the emission energy of a negatively
charged system (or the energy required to convert a negatively charged system to a neutral system), known as electron
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affinity (EA), is available from inverse photoemission experiments. Outlines of these experiments are shown in Fig.
22.1.

Fig. 22.1: Direct and inverse photoemission experiments involve charged excitations, whereas optical absorption
experiments involve excitations that are just enough to be excited to the conduction band. From [[ORR02]]

Following the explanation in the previous paragraph and Fig. 22.1, the quasiparticle band gap of a material can be
defined as:

𝐸𝑔 = 𝐸𝐴− 𝐼𝑃 = (𝐸𝐶𝐵𝑀𝑁+1 − 𝐸𝐾
′

𝑁 )− (𝐸𝐾
′

𝑁 − 𝐸𝑉 𝐵𝑀𝑁−1 ) = 𝐸𝐶𝐵𝑀𝑁+1 + 𝐸𝑉 𝐵𝑀𝑁−1 − 2 * 𝐸𝐾
′

𝑁 , (22.1)

where 𝑁 is the number of electrons in the neutral system and 𝐸𝑁 is the ground state energy of the neutral system.
CBM and VBM stand for the conduction band minimum and valence band maximum, respectively. K’ can formally be
arbitrary at the infinite limit. However, in practical calculations, a supertwist that accommodates both CBM and VBM
can be more efficient in terms of computational time and systematic finite-size error cancellation. In the literature, the
quasiparticle gap is also called the electronic gap. The term electronic comes from the fact that in both photoemission
experiments, it is assumed that the perturbed electron is not interacting with the sample.

Additionally, absorption experiments can be performed in which electrons are perturbed at relatively lower energies,
just enough to be excited into the conduction band. In absorption experiments, electrons are perturbed at lower
energies. Therefore, they are not completely free and the system is still considered neutral. Since a quasihole and
quasielectron are formed simultaneously, a bound state is created, unlike the free electron in the quasiparticle gap as
described previously. This process is also known as optical excitation, which is schematically shown in Fig. 22.1,
under “Absorption.” The optical gap can be formulated as follows:

𝐸𝐾1→𝐾2
𝑔 = 𝐸𝐾1→𝐾2 − 𝐸0, (22.2)

where 𝐸𝐾1→𝐾2 is the energy of the system when a valence electron at wavevector 𝐾1 is promoted to the conduction
band at wavevector 𝐾2. Therefore, the 𝐸𝐾1→𝐾2

𝑔 is called the optical gap for promoting an electron at 𝐾1 to 𝐾2. If
both CBM and VBM are on the same k-vector then the material is called direct band gap since it can directly emit
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photons without any external perturbation (phonons). However, if CBM and VBM share different k-vectors, then the
photon-emitting electron has to transfer some of its momenta to the crystal lattice and then decay to the ground state.
As this process involves an intermediate step, this property is called the indirect band gap. The difference between
the optical and electronic band gaps is called the exciton binding energy. Exciton binding energy is very important
for optoelectronic applications such as lasers. Since the recombination usually occurs between free holes and free
electrons, a bound electron and hole state means that the spectrum of emission energies will be narrower. In the
examples that follow, we will investigate the optical excitations of C-diamond.

22.4 Preparation for the excited state calculations

In this section, we will study the preparation steps to perform excited state calculations with QMC. Here, the most
basic steps are listed in the implementation order:

1. Identify the high-symmetry k-points of the standardized primitive cell.

2. Perform DFT band structure calculation along high-symmetry paths.

3. Find a supertwist that includes all the k-points of interest.

4. Identify the indexing of k-points in the supertwist to be used in QMCPACK.

22.4.1 Identifying high-symmetry k-points

Primitive cell is the most basic, nonunique repeat unit of a crystal in real space. However, the translations of the repeat
unit, the Bravais lattice is unique for each crystal and can be represented using discrete translation operations, 𝑅𝑛:

Rn = 𝑛1a1 + 𝑛2a2 + 𝑛3a3 , (22.3)

𝑎𝑛 are the real-space lattice vectors in three dimensions. Thanks to the periodicity of the Bravais lattice, a crystal can
also be represented using periodic functions in the reciprocal space:

𝑓(Rn + r) =
∑︁
𝑚

𝑓𝑚𝑒
𝑖𝐺𝑚(Rn+r), (22.4)

where 𝐺𝑚 are called as the reciprocal lattice vectors. (22.4) also satisfies the equality 𝐺𝑚 · 𝑅𝑛 = 2𝜋𝑁 . High-
symmetry structures can be represented using a subspace of the BZ, which is called as the irreducible Brillouin Zone
(iBZ). If we choose a series of paths of high-symmetry k-points that encapsulates the iBZ, we can determine the band
gap and electronic structure of the material. For more discussion, please refer to any solid-state physics textbook.

There are multiple practical ways to find the high-symmetry k-point path. For example, pymatgen, [[ORJ+13]]
XCRYSDEN [[Kok99]] or SeeK-path [[HPK+17]] can be used.

Fig. 22.2 shows the procedure for visualizing the Brillouin Zone using XCRYSDEN after the structure file is loaded.
However, the primitive cell is not unique, and the actual shape of the BZ can depend on the structure used. In our
example, we use the Python libraries of SeeK-path, using a wrapper written in Nexus.
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SeeK-path includes routines to standardize primitive cells, which will be useful for our work.

SeeK-path can be installed easily using pip:

>pip install --user seekpath

In the band.py script, identification of high-symmetry k-points and band structure calculations are done within the
workflow. In the script, where the dia PhysicalSystem object is used as the input structure, dia2_structure
is the standardized primitive cell and dia2_kpath is the respective k-path around the iBZ. dia2_kpath has a
dictionary of the k-path in various coordinate systems; please make sure you are using the right one.

from structure import get_primitive_cell, get_kpath
dia2_structure = get_primitive_cell(structure=dia.structure)['structure']
dia2_kpath = get_kpath(structure=dia2_structure)

22.4.2 DFT band structure calculation along high-symmetry paths

After the high-symmetry k-points are identified, band structure calculations can be performed in DFT. For an insulating
structure, DFT can provide VBM and CBM wavevectors, which would be of interest to the DMC calculations. How-
ever, if available, CBM and VBM from DFT would need to be compared with the experiments. Basically, band.py
will do the following:

1. Perform an SCF calculation in QE using a high-density reciprocal grid.

2. Identify the high-symmetry k-points on the iBZ and provide a k-path.

286 Chapter 22. Lab 5: Excited state calculations



QMCPACK Manual

Fig. 22.2: Visualizing the Brillouin Zone using XCRYSDEN.

3. Perform a “band” calculation in QE, explicitly writing all the k-points on the path. (Make sure to add extra
unoccupied bands.)

4. Plot the band structure curves and location of VBM/CBM if available.

In Fig. 22.3, C-diamond is shown to have an indirect band gap between the red and green dots (CBM and VBM,
respectively). VBM is located at Γ. CBM is not located on a high-symmetry k-point in this case. Therefore, we can
use the symbol ∆ to denote the CBM wavevector in the rest of this document. In band.py script, once the band
structure calculation is finished, you can use the following lines to get the exact location of VBM and CBM using

p = band.load_analyzer_image()
print "VBM:\n{0}".format(p.bands.vbm)
print "CBM:\n{0}".format(p.bands.cbm)

Output must be the following:

VBM:
band_number = 3
energy = 13.2874
index = 0
kpoint_2pi_alat = [0. 0. 0.]
kpoint_rel = [0. 0. 0.]
pol = up

CBM:
band_number = 4
energy = 17.1545
index = 51

(continues on next page)
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(continued from previous page)

kpoint_2pi_alat = [0. 0.1095605 0. ]
kpoint_rel = [0.3695652 0. 0.3695652]
pol = up

Fig. 22.3: Band structure calculation of C-diamond performed at the DFT-LDA level. CBMs are shown with red
points, and the VBMs are shown with the green points, both at Γ. DFT-LDA calculations suggest that the material has
an indirect band gap from Γ→ ∆. However, Γ→ Γ transition can also be investigated for more complete check.

22.4.3 DFT band structure calculation along high-symmetry paths

After the high-symmetry k-points are identified, band structure calculations can be performed in DFT. For an insulating
structure, DFT can provide VBM and CBM wavevectors, which would be of interest to the DMC calculations. How-
ever, if available, CBM and VBM from DFT would need to be compared with the experiments. Basically, band.py
will do the following:

1. Perform an SCF calculation in QE using a high-density reciprocal grid.

2. Identify the high-symmetry k-points on the iBZ and provide a k-path.

3. Perform a “band” calculation in QE, explicitly writing all the k-points on the path. (Make sure to add extra
unoccupied bands.)

4. Plot the band structure curves and location of VBM/CBM if available.

In Fig. 22.3, C-diamond is shown to have an indirect band gap between the red and green dots (CBM and VBM,
respectively). VBM is located at Γ. CBM is not located on a high-symmetry k-point in this case. Therefore, we
can use the symbol ∆ to denote the CBM wavevector in the rest of this document. In script, once the band structure
calculation is finished, you can use the following lines to get the exact location of VBM and CBM using
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p = band.load_analyzer_image()
print "VBM:\n{0}".format(p.bands.vbm)
print "CBM:\n{0}".format(p.bands.cbm)

Output must be the following:

VBM:
band_number = 3
energy = 13.2874
index = 0
kpoint_2pi_alat = [0. 0. 0.]
kpoint_rel = [0. 0. 0.]
pol = up

CBM:
band_number = 4
energy = 17.1545
index = 51
kpoint_2pi_alat = [0. 0.1095605 0. ]
kpoint_rel = [0.3695652 0. 0.3695652]
pol = up

22.4.4 Finding a supertwist that includes all the k-points of interest

Using the VBM and CBM wavevectors defined in the previous section, we now construct the supertwist, which will
hopefully contain both VBM and CBM. In Fig. 22.4, we provide a simple example using 2D rectangular lattice. Let
us assume that we are interested in the indirect transition, Γ→ 𝑋1. In Fig. 22.4 a, the first BZ of the primitive cell is
shown as the square centered on Γ, which is drawn using dashed lines. Because of the periodicity of the lattice, this
primitive cell BZ repeats itself with spacings equal to the reciprocal lattice vectors: (2𝜋/a, 0) and (0, 2𝜋/a) or (1,0) and
(0,1) in crystal coordinates. We are interested in the first BZ, where 𝑋1 is at (0,0.5). In Fig. 22.4 b, the first BZ of the
2× 2 supercell is the smaller square, drawn using solid lines. In Fig. 22.4 c, the BZ of the 2× 2 supercell also repeats
in the space, similar to Fig. 22.4 a. Therefore, in the 2× 2 supercell, 𝑋1, 𝑋2, and 𝑅 are only the periodic images of Γ.
The 2× 2 supercell calculation can be performed in reciprocal space using a [2,2] tiling matrix. Therefore, individual
k-points (twists) of the primitive cell are combined in the supercell calculation, which are then called as supertwists.
In more complex primitive cells (hence BZ), more general criteria would be constructing a set of supercell reciprocal
lattice vectors that contain the Γ → 𝑋1 (e.g., 𝐺1 in Fig. 22.4) vector within their convex hull. Under this constraint,
the Wigner-Seitz radius of the simulation cell can be maximized in an effort to reduce finite-size errors.

For the case of the indirect band gap in Diamond, several approximations might be needed to generate a supertwist that
corresponds to a reasonable simulation cell. In the Diamond band gap, ∆ is at . In your calculations, the ∆ wavevector
and the eigenvalues you find can be slightly different in value. The closest simple fraction to this number with the
smallest denominator is 1/3. If we use ∆′ = [1/3, 0., 1/3], we could use a 3 × 1 × 3 supercell as the simple choice
and include both ∆′ and Γ in the same supertwist exactly. Near ∆, the LDA band curvature is very low and using ∆′

can be a good approximation. We can compare the eigenvalues using their index numbers:

>>> print p.bands.up[51] ## CBM, $\Delta$ ##
eigs = [-3.2076 4.9221 7.5433 7.5433 17.1545 19.7598 28.3242 28.3242]
index = 51
kpoint_2pi_alat = [0. 0.1095605 0. ]
kpoint_rel = [0.3695652 0. 0.3695652]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

>>> print p.bands.up[46] ## $\Delta'$ ##
eigs = [-4.0953 6.1376 7.9247 7.9247 17.1972 20.6393 27.3653 27.3653]

(continues on next page)
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Fig. 22.4: a) First BZ of the primitive cell centered on Γ. Dashed lines indicate zone boundaries. b) First BZ of the
2 × 2 supercell inside the first BZ of the primitive cell. First BZ boundaries of the supercell are shown using solid
lines. c) Periodic translations of the first BZ of the supercell showing that Γ and 𝑋1 are periodic images of each other
given the supercell BZ.

(continued from previous page)

index = 46
kpoint_2pi_alat = [0. 0.0988193 0. ]
kpoint_rel = [0.3333333 0. 0.3333333]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

This shows that the eigenvalues of the first unoccupied bands in ∆ and ∆′ are 17.1545 and 17.1972 eV, respectively,
meaning that according to LDA, a correction of nearly -40 meV is obtained. After electronic transitions between Γ
and ∆′ are studied using DMC, the LDA correction can be applied to extrapolate the results to Γ and ∆ transitions.

22.4.5 Identifying the indexing of k-points of interest in the supertwist

At this stage, we must have performed an scf calculation using a converged k-point grid and then an nscf calculation
using the supertwist k-points given previously. We will be using the orbitals from neutral DFT calculations; therefore,
we need to explicitly define the band and twist indexes of the excitations in QMCPACK (e.g., to define electron pro-
motion). In C-diamond, we can give an example by finding the band and twist indexes of Γ and ∆′. For this end, a
mock VMC calculation can be run and the einspline.tile_300010003 .spin_0.tw_0.g0.bandinfo.
dat file read. The Einspline file prints out the eigenstates information from DFT calculations. Therefore, we can
obtain the band and the state index from this file, which can later be used to define the electron promotion. You can see
in the following an explanation of how the band and twist indexes are defined using a portion of the einspline.
tile_300010003.spin_0.tw_0.g0.bandinfo.dat file. Spin_0 in the file name suggests that we are read-
ing the spin-up eigenstates. Band, state, twistindex, and bandindex numbers all start from zero. We know we have
72 electrons in the simulation cell, with 36 of them spin-up polarized. Since the state number starts from zero, state
number 35 must be occupied while state 36 should be unoccupied. States 35 and 36 have the same reciprocal crystal
coordinates (K1,K2,K3) as Γ and ∆′, respectively. Therefore, an electron should be promoted from state number 35
to 36 to study the indirect band gap here.

# Band State TwistIndex BandIndex Energy Kx Ky Kz K1 K2 K3 KmK
33 33 0 1 0.488302 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 1
34 34 0 2 0.488302 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 1
35 35 0 3 0.488302 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 1
36 36 4 4 0.631985 0.0000 -0.6209 0.0000 -0.3333 -0.0000 -0.3333 1

(continues on next page)
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37 37 8 4 0.631985 0.0000 -1.2418 0.0000 -0.6667 -0.0000 -0.6667 1
38 38 0 4 0.691907 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 1

However, we should always check whether this is really what we want. It can be seen that bands 33, 34, and 35
are degenerate (energy eigenvalues are listed in the 5th column), but they also have the same reciprocal coordinates
in (K1,K2,K3). This is actually expected as one can see from Fig. 22.3, in the band diagram the band structure is
threefold degenerate at Γ. Here, we can choose the state with the largest band index: (0,3). Following the (twistindex,
bandindex) notation, we can say that Γ to ∆′ transition can be defined as from (0,3) to (4,4).

Alternatively, we can also read the band and twist indexes using PwscfAnalyzer and determine the band/twist indexes
on the go:

p = nscf.load_analyzer_image()
print 'band information'
print p.bands.up
print 'twist 0 k-point:',p.bands.up[0].kpoint_rel
print 'twist 4 k-point:',p.bands.up[4].kpoint_rel
print 'twist 0 band 3 eigenvalue:',p.bands.up[0].eigs[3]
print 'twist 4 band 4 eigenvalue:',p.bands.up[4].eigs[4]

Giving output:

0
eigs = [-8.0883 13.2874 13.2874 13.2874 18.8277 18.8277 18.8277 25.9151]
index = 0
kpoint_2pi_alat = [0. 0. 0.]
kpoint_rel = [0. 0. 0.]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

1
eigs = [-5.0893 3.8761 10.9518 10.9518 21.5031 21.5031 21.5361 28.2574]
index = 1
kpoint_2pi_alat = [-0.0494096 0.0494096 0.0494096]
kpoint_rel = [0.3333333 0. 0. ]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

2
eigs = [-5.0893 3.8761 10.9518 10.9518 21.5031 21.5031 21.5361 28.2574]
index = 2
kpoint_2pi_alat = [-0.0988193 0.0988193 0.0988193]
kpoint_rel = [0.6666667 0. 0. ]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

3
eigs = [-5.0893 3.8761 10.9518 10.9518 21.5031 21.5031 21.5361 28.2574]
index = 3
kpoint_2pi_alat = [ 0.0494096 0.0494096 -0.0494096]
kpoint_rel = [0. 0. 0.3333333]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

4
eigs = [-4.0954 6.1375 7.9247 7.9247 17.1972 20.6393 27.3652 27.3652]
index = 4
kpoint_2pi_alat = [0. 0.0988193 0. ]
kpoint_rel = [0.3333333 0. 0.3333333]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]

(continues on next page)
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pol = up
5

eigs = [-0.6681 2.3791 3.7836 8.5596 19.3423 26.2181 26.6666 28.0506]
index = 5
kpoint_2pi_alat = [-0.0494096 0.1482289 0.0494096]
kpoint_rel = [0.6666667 0. 0.3333333]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

6
eigs = [-5.0893 3.8761 10.9518 10.9518 21.5031 21.5031 21.5361 28.2574]
index = 6
kpoint_2pi_alat = [ 0.0988193 0.0988193 -0.0988193]
kpoint_rel = [0. 0. 0.6666667]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

7
eigs = [-0.6681 2.3791 3.7836 8.5596 19.3423 26.2181 26.6666 28.0506]
index = 7
kpoint_2pi_alat = [ 0.0494096 0.1482289 -0.0494096]
kpoint_rel = [0.3333333 0. 0.6666667]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

8
eigs = [-4.0954 6.1375 7.9247 7.9247 17.1972 20.6393 27.3652 27.3652]
index = 8
kpoint_2pi_alat = [0. 0.1976385 0. ]
kpoint_rel = [0.6666667 0. 0.6666667]
occs = [1. 1. 1. 1. 0. 0. 0. 0.]
pol = up

twist 0 k-point: [0. 0. 0.]
twist 4 k-point: [0.3333333 0. 0.3333333]
twist 0 band 3 eigenvalue: 13.2874
twist 4 band 4 eigenvalue: 17.1972

22.5 Quasiparticle (electronic) gap calculations

In quasiparticle calculations, it is essential to work with reasonably large sized supercells to avoid spurious “1/N
effects.” Since quasiparticle calculations involve charged cells, large simulation cells ensure that the extra charge is
diluted over the simulation cell. Coulombic interactions are conditionally convergent for neutral periodic systems, but
they are divergent for the charged systems. A typical workflow for a quasiparticle calculation includes the following:

1. Run an SCF calculation in a neutral charged cell with QE using a high-density reciprocal grid.

2. Choose a tiling matrix that will at least approximately include VBM and CBM k-points.

3. Run ‘nscf’/‘p2q’ calculations using the tiling matrix.

4. Run VMC/DMC calculations for the neutral and positively and negatively charged cells in QMCPACK.

5. Check the convergence of the quasiparticle gap with respect to the simulation cell size.

<particleset name="e" random="yes">
<group name="u" size="36" mass="1.0"> ##Change size to 35
<parameter name="charge" > -1 </parameter>
<parameter name="mass" > 1.0 </parameter>

(continues on next page)
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</group>
...
...
<determinantset>

<slaterdeterminant>
<determinant id="updet" group="u" sposet="spo_u" size="36"> ##Change size to 35

<occupation mode="ground" spindataset="0"/>
</determinant>
<determinant id="downdet" group="d" sposet="spo_d" size="36">

<occupation mode="ground" spindataset="1"/>
</determinant>

</slaterdeterminant>
</determinantset>

Going back to (22.2), we can see that it is essential to include VBM and CBM wavevectors in the same twist for
quasiparticle calculations as well. Therefore, the added electron will sit at CBM while the subtracted electron will be
removed from VBM. However, for the charged cell calculations, we may need to make changes in the input files for
the fourth step. Alternatively, in the quasiparticle.py file, the changes in the QMC input are shown for a negatively
charged system:

qmc.input.simulation.qmcsystem.particlesets.e.groups.u.size +=1
(qmc.input.simulation.qmcsystem.wavefunction.determinantset
.slaterdeterminant.determinants.updet.size += 1)

Here, the number of up electrons are increased by one (negatively charged system), and QMCPACK is instructed to
read more one orbital in the up channel from the .h5 file.

QE uses symmetry to reduce the number of k-points required for the calculation. Therefore, all symmetry tags in QE
(nosym, noinv, and nosym_evc) must be set to false. An easy way to check whether this is the case is to see that
all KmK values einspline files are equal to 1. Previously, the input for the neutral cell is given, while the changes
are denoted as comments for the positively charged cell. Note that we have used det_format = "old" in the
vmc_+/-e.py files.

22.6 Optical gap calculations

Routines for the optical gap calculations are very similar to the quasiparticle gap calculations. The first three items
in the quasiparticle band gap calculations can be reused for the optical gap calculations. However, at the VMC/DMC
level, the electronic transitions performed should be explicitly stated. Therefore, compared with the quasiparticle
calculations, only item number 4 is different for optical gap calculations. Here, the modified input file is given for the
Γ→ ∆′ transition, which can be compared with the ground state input file in the previous section.

<determinantset>
<slaterdeterminant>
<determinant id="updet" group="u" sposet="spo_u" size="36">

<occupation mode="excited" spindataset="0" format="band" pairs="1" >
0 3 4 4

</occupation>
</determinant>
<determinant id="downdet" group="d" sposet="spo_d" size="36">

<occupation mode="ground" spindataset="1"/>
</determinant>

</slaterdeterminant>
</determinantset>
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We have used the (twistindex, bandindex) notation in the annihilaion/creation order for the up-spin electrons. After
resubmitting the batch job, in the output, you should be able to see the following lines in the vmc.out file:

Sorting the bands now:
Occupying bands based on (ti,bi) data.

removing orbital 35
adding orbital 36
We will read 36 distinct orbitals.
There are 0 core states and 36 valence states.

And the einspline.tile_300010003.spin_0.tw_0.g0.bandinfo.dat file must be changed in the fol-
lowing way:

# Band State TwistIndex BandIndex Energy Kx Ky Kz K1 K2 K3 KmK
33 33 0 1 0.499956 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1
34 34 0 2 0.500126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1
35 35 4 4 0.637231 0.0000 -0.6209 0.0000 -0.3333 0.0000 -0.3333 1
36 36 0 3 0.502916 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1
37 37 8 4 0.637231 0.0000 -1.2418 0.0000 -0.6667 0.0000 -0.6667 1
38 38 0 4 0.699993 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1

Alternatively, the excitations within Nexus can be defined as shown in the optical.py file:

qmc = generate_qmcpack(
...
excitation = ['up', '0 3 4 4'], # (ti, bi) notation
#excitation = ['up', '-35 + 36'], # Orbital (state) index notation
...
)
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TWENTYTHREE

AFQMC TUTORIALS

Below we will run through some full AFQMC workflow examples. The necessary scripts can be found in the
qmcpack/examples/afqmc directory.

23.1 Example 1: Neon atom

In this example we will go through the basic steps necessary to generate AFQMC input from a pyscf scf calculation
on a simple closed shell molecule (neon/aug-cc-pvdz).

The pyscf scf script is given below (scf.py in the current directory):

from pyscf import gto, scf, cc
from pyscf.cc import ccsd_t
import h5py

mol = gto.Mole()
mol.basis = 'aug-cc-pvdz'
mol.atom = (('Ne', 0,0,0),)
mol.verbose = 4
mol.build()

mf = scf.RHF(mol)
mf.chkfile = 'scf.chk'
ehf = mf.kernel()

ccsd = cc.CCSD(mf)
ecorr_ccsd = ccsd.kernel()[0]
ecorr_ccsdt = ccsd_t.kernel(ccsd, ccsd.ao2mo())
print("E(CCSD(T)) = {}".format(ehf+ecorr_ccsd+ecorr_ccsdt))

The most important point above is that we create a scf checkpoint file by specifying the mf.chkfile mol member
variable. Note we will also compute the CCSD and CCSD(T) energies for comparison puposes since this system is
trivially small.

We next run the pyscf calculation using

python scf.py > scf.out

which will yield a converged restricted Hartree–Fock total energy of -128.496349730541 Ha, a CCSD value of -
128.7084878405062 Ha, and a CCSD(T) value of -128.711294157 Ha.

The next step is to generate the necessary qmcpack input from this scf calculation. To this we do (assuming afqmctools
is in your PYTHONPATH):
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/path/to/qmcpack/utils/afqmctools/bin/pyscf_to_afqmc.py -i scf.chk -o afqmc.h5 -t 1e-
→˓5 -v

which will peform the necessary AO to MO transformation of the one and two electron integrals and perform a
modified cholesky transormation of the two electron integrals. A full explanation of the various options available for
pyscf_to_afqmc.py you can do

pyscf_to_afqmc.py -h

In the above example, -i designates the input pyscf checkpoint file, -o speficies the output filename to write the
qmcpack hamiltonian/wavefunction to, -t specifies the convergence threshold for the Cholesky decomposition, -v
increases verbosity. You can optionally pass the -q/–qmcpack-input to generate a qmcpack input file which is based
on the hamiltonian and wavefunction generated. Greater control over input file generation can be achieved using the
write_xml_input function provided with afqmctools. Run gen_input.py after the integrals/wavefunction have been
generated to generate the input file afqmc.xml.

Running the above will generate one file: afqmc.h5. The plain text wavefunction files are deprecated and will be
removed in later releases. The qmcpack input file afqmc.xml is a skeleton input file, meaning that it’s created from the
information in hamil.h5 and is meant as a convenience, not as a guarantee that the convergeable parameters (timestep,
walker number, bias bound etc. are converged or appropriate).

We will next run through the relevant sections of the input file afqmc.xml below:

<project id="qmc" series="0"/>
<random seed="7"/>

<AFQMCInfo name="info0">
<parameter name="NMO">23</parameter>
<parameter name="NAEA">5</parameter>
<parameter name="NAEB">5</parameter>

</AFQMCInfo>

We first specify how to name the output file. We also have fixed the random number seed so that the results of this
tutorial can be reproducible (if run on the same number of cores).

Next comes the system description, which is mostly a sanity check, as these parameters will be read from the hamilto-
nian file. They specify the number of single-particle orbitals in the basis set (NMO) and the number of alpha (NAEA)
and beta (NAEB) electrons respectively.

Next we specify the Hamiltonian and wavefunction to use:

<Hamiltonian name="ham0" info="info0">
<parameter name="filetype">hdf5</parameter>
<parameter name="filename">afqmc.h5</parameter>

</Hamiltonian>

<Wavefunction name="wfn0" type="NOMSD" info="info0">
<parameter name="filetype">hdf5</parameter>
<parameter name="filename">afqmc.h5</parameter>

</Wavefunction>

The above should be enough for most calculations. A NOMSD (non-orthogonal multi-Slater determinant) wavefunc-
tion allows for a generalised wavefunction input in the form of a single (or multiple) matrix (matrices) of molecular
orbital coefficients for the RHF calculation we perform here.

We next set the walker options:
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<WalkerSet name="wset0" type="shared">
<parameter name="walker_type">CLOSED</parameter>

</WalkerSet>

The important point here is that as we are using a RHF trial wavefunction we must specify that the walker_type is
CLOSED. For a UHF trial wavefunction one would set this to COLLINEAR.

And now the propagator options:

<Propagator name="prop0" info="info0">
<parameter name="hybrid">yes</parameter>

</Propagator>

In the above we specify that we will be using the hybrid approach for updating the walker weights. If you wish to use
the local energy approximation you should set this flag to false.

Finally comes the execute block which controls how the simulation is run:

<execute wset="wset0" ham="ham0" wfn="wfn0" prop="prop0" info="info0">
<parameter name="ncores">1</parameter>
<parameter name="timestep">0.01</parameter>
<parameter name="nWalkers">10</parameter>
<parameter name="blocks">100</parameter>
<parameter name="steps">10</parameter>

</execute>

The time step (timestep), number of Monte Carlo samples (blocks`*`steps), and number of walkers (nWalkers) should
be adjusted as appropriate. Note that nWalkers sets the number of walkers per ncores. For example, if we wanted to
use 100 walkers we could run the above input file on 10 cores. If the problem size is very large we may want distribute
the workload over more cores per walker, say 10. In this case we would require 100 cores to maintain the same number
of walkers. Typically in this case you want to specify fewer walkers per core anyway.

We can now run the qmcpack simulation:

qmcpack afqmc.xml > qmcpack.out

Assuming the calculation finishes successfully, the very first thing you should do is check the information in qmc-
pack.out to see confirm no warnings were raised. The second thing you should check is that the energy of the starting
determinant matches the Hartree–Fock energy you computed earlier from pyscf to within roughly the error threshold
you specified when generating the Cholesky decomposition. This check is not very meaningful if using, say, DFT
orbitals. However if this energy is crazy it’s a good sign something went wrong with either the wavefunction or inte-
gral generation. Next you should inspect the qmc.scalar.s000.dat file which contains the mixed estimates for various
quantities. This can be plotted using gnuplot. EnergyEstim__nume_real contains the block averaged values for the
local energy, which should be the 7th column.

Assuming everything worked correctly we need to analyse the afqmc output using:

/path/to/qmcpack/nexus/bin/qmca -e num_skip -q el qmc.s000.scalar.dat

where num_skip is the number of blocks to skip for the equilibration stage. For a practical calculation you may want
to use more walkers and run for longer to get meaningful statistics.

See the options for qmca for further information. Essentially we discarded the first 100 blocks as equilibaration
and only computed the mixed estimate for the local energy internally called EnergyEstim__nume_real, which can be
specified with -q el. We see that the ph-AFQMC energy agrees well with the CCSD(T) value. However, we probably
did not run the simulation for long enough to really trust the error bars.
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23.2 Example 2: Frozen Core

In this example we show how to perform a frozen core calculation, which only affects the integral generation step.
We will use the the previous Neon example and freeze 2 core electrons. The following only currently works for
RHF/ROHF trial wavefunctions.

mpirun -n 1 /path/to/qmcpack/utils/afqmctools/bin/pyscf_to_afqmc.py -i scf.chk -o
→˓afqmc.h5 -t 1e-5 -v -c 8,22

Again, run gen_input.py to generate the input file afqmc.xml.

Comparing the above to the previous example we see that we have added the -c or –cas option followed by a comma
separated list of the form N,M defining a (N,M) CAS space containing 8 electrons in 22 spatial orbitals (freezing the
lowest MO).

The rest of the qmcpack process follows as before.

23.3 Example 3: UHF Trial

In this example we show how to use a unrestricted Hartree–Fock (UHF) style wavefunction to find the ph-AFQMC
(triplet) ground state energy of the carbon atom (cc-pvtz). Again we first run the scf (scf.py) calculation followed by
the integral generation script:

mpirun -n 1 /path/to/qmcpack/utils/afqmctools/bin/pyscf_to_afqmc.py -i scf.chk -o
→˓afqmc.h5 -t 1e-5 -v -a

Note the new flag -a/–ao which tells the script to transform the integrals to an orthogonalised atomic orbital basis,
rather that the more typical MO basis. This is necessary as qmcpack does not support spin dependent two electron
integrals.

Running qmcpack as before should yield a mixed estimate for the energy of roughly: -37.78471 +/- 0.00014.

23.4 Example 4: NOMSD Trial

In this example we will show how to format trial different wavefunctions in such a way that qmcpack can read them.

Rather than use the pyscf_to_afqmc.py, script we will break up the process to allow for more flexibility and show what
is going on under the hood.

The qmcpack input can be generated with the scf.py script. See the comments in scf.py for a breakdown of the steps
involved.

Currently QMCPACK can deal with trial wavefunctions in two forms: Non-orthogonal multi slater determinant trial
wavefunctions (NOMSD) and particle-hole style trial wavefunctions (PHMSD). The NOMSD trial wavefunctions are
the most general form and expect Slater determinants in the form of M X N matrices of molecular orbital coefficients,
where N is the number of electrons and M is the number of orbitals, along with a list of ci coefficients. Importantly
the Slater determinants must be non-orthogonal.
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23.5 Example 5: CASSCF Trial

In this example we will show how to format a casscf trial wavefunction.

Rather than use the pyscf_to_afqmc.py, script we will break up the process to allow for more flexibility and show what
is going on under the hood.

The qmcpack input can be generated with the scf.py script followed by gen_input.py.

See the relevant code below for a breakdown of the steps involved.

The first step is to run a CASSCF calculation. Here we’ll consider N:sub:2. This replicates the calculations from
Al-Saidi et al J. Chem. Phys. 127, 144101 (2007). They find a CASSCF energy of -108.916484 Ha, and a ph-AFQMC
energy of -109.1975(6) Ha with a 97 determinant CASSCF trial.

mol = gto.M(atom=[['N', (0,0,0)], ['N', (0,0,3.0)]],
basis='cc-pvdz',
unit='Bohr')

nalpha, nbeta = mol.nelec
rhf = scf.RHF(mol)
rhf.chkfile = 'scf.chk'
rhf.kernel()

M = 12
N = 6
nmo = rhf.mo_coeff.shape[-1]
mc = mcscf.CASSCF(rhf, M, N)
mc.chkfile = 'scf.chk'
mc.kernel()

Next we unpack the wavefunction

nalpha = 3
nbeta = 3
ci, occa, occb = zip(*fci.addons.large_ci(mc.ci, M, (nalpha,nbeta),

tol=tol, return_strs=False))

and sort the determinants by the magnitude of their weight:

ixs = numpy.argsort(numpy.abs(coeff))[::-1]
coeff = coeff[ixs]
occa = numpy.array(occa)[ixs]
occb = numpy.array(occb)[ixs]

Next we reinsert the frozen core as the AFQMC simulation is not run using an active space:

core = [i for i in range(mc.ncore)]
occa = [numpy.array(core + [o + mc.ncore for o in oa]) for oa in occa]
occb = [numpy.array(core + [o + mc.ncore for o in ob]) for ob in occb]

Next we need to generate the one- and two-electron integrals. Note that we need to use the CASSCF MO coefficients
to rotate the integrals.

scf_data = load_from_pyscf_chk_mol('scf.chk', 'mcscf')
write_hamil_mol(scf_data, 'afqmc.h5', 1e-5, verbose=True)

Finally we can write the wavefunction to the QMCPACK format:
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ci = numpy.array(ci, dtype=numpy.complex128)
uhf = True # UHF always true for CI expansions.
write_qmcpack_wfn('afqmc.h5', (ci, occa, occb), uhf, mol.nelec, nmo)

To generate the input file we again run gen_input.py. Note the rediag option which is necessary if the CI code
used uses a different convention for ordering creation and annihilation operations when defining determinant strings.

23.6 Example 6: Back Propagation

Note: matplotlib is required to generate the figure in this example.

The basic estimators printed out in the qmcpack *.scalar.dat files are mixed estimates. Unless the operator for which
the mixed estimate is computed commutes with the Hamiltonian this result will generally be biased. To obtain pure
estimates we can use back propagation as outlined in: Motta & Zhang, JCTC 13, 5367 (2017). For this example we
will look at computing the one-body energy of a methane molecule (see Fig. 2 of M&Z).

As before run scf.py and generate the integrals using pyscf_to_afmqc.py:

mpirun -n 1 /path/to/qmcpack/utils/afqmctools/bin/pyscf_to_afqmc.py -i scf.chk -o
→˓afqmc.h5 -t 1e-5 -v

Note we are working in the MO basis. The input file is generated using gen_input.py and comparing to the previous
examples we can now see the estimator block:

<Estimator name="back_propagation">
<parameter name="naverages">4</parameter>
<parameter name="block_size">2</parameter>
<parameter name="ortho">1</parameter>
<OneRDM />
<parameter name="nsteps">200</parameter>

</Estimator>

Which will tell QMCPACK to compute the back propagated one-rdm. In the above we set block_size to be 2 meaning
that we average the back propagated estimates into bins of length 2 in this case. This helps reduce the size of the
hdf5 files. We also specify the option nsteps: We see that it is set to 200, meaning that we will back propagated the
bra wavefunction in the estimator by 200*.01 = 2 a.u., where the timestep has been set to 0.01 a.u. Finally naverages
allows us to split the full path into naverages chunks, so we will have averaged data at 𝜏𝐵𝑃 = [0.5, 1.0, 1.5, 2.0] au.
This allows us to monitor the convergence of the estimator with back propagation time.

Running QMCPACK as before we will notice that in addition to the qmc.s000.scalar.dat file we have generated a new
file qmc.s000.scalar.h5. This file will contain the back propagated estimates, which, for the time being, means the
back propagated one-particle reduced density matrix (1RDM), given as

𝑃𝜎𝑖𝑗 = ⟨𝑐†𝑖𝜎𝑐𝑗𝜎⟩

Before we analyse the output we should question why we chose a back propagation time of 2 au. The back propagation
time represents yet another parameter which must be carefully converged.

In this example we will show how this is done. In this directory you will find a script check_h1e_conv.py which shows
how to use various helper scripts provided in afqmctools/analysis/average.py. The most of important of which are:

from afqmctools.analysis.extraction import get_metadata
metadata = get_metadata(filename)

300 Chapter 23. AFQMC Tutorials



QMCPACK Manual

which returns a dict containing the RDM metadata,

from afqmctools.analysis.average import average_one_rdm
rdm_av, rdm_errs = average_one_rdm(f, name='back_propagated', eqlb=3, ix=2)

which computes the average of the 1RDM, where ‘i’ specifies the index for the length of back propagation time desired
(e.g. 𝑖 = 2→ 𝜏𝐵𝑃 = 1.5 au). eqlb is the equilibration time, and here we skip 10 blocks of length 2 au.

from afqmctools.analysis.extraction import extract_observable
dm = extract_observable(filename,

estimator='back_propagated'
name='one_rdm',
ix=2)

which extracts the 1RDM for all blocks and finally,

from afqmctools.analysis.extraction import extract_observable
dm, weights = extract_observable(filename,

estimator='back_propagated'
name='one_rdm',
ix=2,
sample=index)

which extracts a single density matrix for block index.

Have a look through check_h1e_conv.py and run it. A plot should be produced which shows the back propagated
AFQMC one-body energy as a function of back propagation time, which converges to a value of roughly -78.888(1).
This system is sufficiently small to perform FCI on. How does ph-AFQMC compare? Why are the error bars getting
bigger with back propagation time?

Finally, we should mention that the path restoration algorithm introduced in M&Z is also implemented and can be
turned on using the path_restoration parameter in the Estimator block.

In QMCPACK path restoration restores both the cosine projection and phase along the back propagation path. In gen-
eral it was found in M&Z that path restoration always produced better results than using the standard back propagation
algorithm, and it is recommended that it is always used. Does path restoration affect the results for methane?

23.7 Example 7: 2x2x2 Diamond supercell

In this example we will show how to generate the AFQMC input from a pbc pyscf calculation for a 2x2x2 supercell
of diamond using a RHF trial wavefunction.

Again the first step is to run a pyscf calculation using the scf.py script in this directory.

The first part of the pyscf calculation is straightforward. See pyscf/examples/pbc for more examples on how to set up
Hartree–Fock and DFT simulations.

import h5py
import numpy
import sys
from pyscf.pbc import scf, dft, gto

cell = gto.Cell()
cell.verbose = 5
alat0 = 3.6
cell.a = (numpy.ones((3,3))-numpy.eye(3))*alat0 / 2.0
cell.atom = (('C',0,0,0), ('C',numpy.array([0.25,0.25,0.25])*alat0))

(continues on next page)
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cell.basis = 'gth-szv'
cell.pseudo = 'gth-pade'
cell.mesh = [28,28,28]
cell.build()
nk = [2,2,2]
kpts = cell.make_kpts(nk)

mf = scf.KRHF(cell, kpts=kpts)
mf.chkfile = 'scf.chk'
mf.kernel()

In addition to a standard pyscf calculation, we add the following lines:

from afqmctools.utils.linalg import get_ortho_ao
hcore = mf.get_hcore()
fock = (hcore + mf.get_veff())
X, nmo_per_kpt = get_ortho_ao(cell,kpts)
with h5py.File(mf.chkfile) as fh5:

fh5['scf/hcore'] = hcore
fh5['scf/fock'] = fock
fh5['scf/orthoAORot'] = X
fh5['scf/nmo_per_kpt'] = nmo_per_kpt

essentially, storing the fock matrix, core Hamiltonian and transformation matrix to the orthogonalised AO basis. This
is currently required for running PBC AFQMC calculations.

Once the above (scf.py) script is run we will again use the pyscf_to_afqmc.py script to generate the necessary AFQMC
input file.

mpirun -n 8 /path/to/qmcpack/utils/afqmctools/bin/pyscf_to_afqmc.py -i scf.chk -o
→˓afqmc.h5 -t 1e-5 -v -a

Note that the commands necessary to generate the integrals are identical to those for the molecular calculations, except
now we accelerate their calculation using MPI. Note that if the number of tasks > number of kpoints then the number
of MPI tasks must be divisible by the number of kpoints.

Once this is done we will again find a Hamiltonian file and afqmc input xml file. Inspecting these you will notice that
their structure is identical to the molecular calculations seen previously. This is because we have not exploited k-point
symmetry and are writing the integrals in a supercell basis. In the next example we will show how exploiting k-point
symmetry can be done explicitly, which leads to a faster and lower memory algorithm for AFQMC.

23.8 Example 8: 2x2x2 Diamond k-point symmetry

In this example we will show how to run an AFQMC simulation that exploits k-point symmetry which is much more
efficient that running in the supercell way discussed in the previous example. We will again look at the same 2x2x2
cell of diamond. We assume you have run the scf calculation in the previous example.

Essentially all that changes in the integral generation step is that we pass the -k/–kpoint flag to pyscf_to_afqmc.py.

mpirun -n 8 /path/to/qmcpack/utils/afqmctools/bin/pyscf_to_afqmc.py -i ../07-diamond_
→˓2x2x2_supercell/scf.chk -o afqmc.h5 -t 1e-5 -v -a -k

You will notice that now the Cholesky decomposition is done for each momentum transfer independently and the the
form of the hamiltonian file has changed to be k-point dependent.
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Apart from these changes, running the AFQMC simulation proceeds as before, however you should see a significant
performance boost relative to the supercell simulations, particularly on GPU machines.
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CHAPTER

TWENTYFOUR

ADDITIONAL TOOLS

QMCPACK provides a set of lightweight executables that address certain common problems in QMC work-
flow and analysis. These range from conversion utilities between different file formats and QMCPACK (e.g.,
ppconvert and convert4qmc), (qmc-extract-eshdf-kvectors) to postprocessing utilities (trace-density and
qmcfinitesize) to many others. In this section, we cover the use cases, syntax, and features of all additional tools
provided with QMCPACK.

24.1 Initialization

24.1.1 qmc-get-supercell

24.2 Postprocessing

24.2.1 qmca

qmca is a versatile tool to analyze and plot the raw data from QMCPACK *.scalar.dat files. It is a Python
executable and part of the Nexus suite of tools. It can be found in qmcpack/nexus/executables. For details,
see Using the qmca tool to obtain total energies and related quantities.

24.2.2 qmc-fit

qmc-fit is a curve fitting tool used to obtain statistical error bars on fitted parameters. It is useful for DMC time
step extrapolation. For details, see Using the qmc-fit tool for statistical time step extrapolation and curve fitting.

24.2.3 qdens

qdens is a command line tool to produce density files from QMCPACK’s stat.h5 output files. For details, see
Using the qdens tool to obtain electron densities.
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24.2.4 qmcfinitesize

qmcfinitesize is a utility to compute many-body finite-size corrections to the energy. It is a C++ executable that
is built alongside the QMCPACK executable. It can be found in build/bin.

24.3 Converters

24.3.1 convert4qmc

Convert4qmc allows conversion of orbitals and wavefunctions from quantum chemistry output files to QMCPACK
XML and HDF5 input files. It is a small C++ executable that is built alongside the QMCPACK executable and can be
found in build/bin.

To date, convert4qmc supports the following codes: GAMESS [[SBB+93]], PySCF [[SBB+18]] and QP2
[[GAG+19]] natively, and NWCHEM [[ApraBdJ+20]], TURBOMOLE [[FAH+14]], PSI4 [[TSP+12]], CFOUR
2.0beta [[MCH+20]], ORCA 3.X - 4.X [[Nee18]], DALTON2016 [[AAB+14]], MOLPRO [[WKK+12]], DIRAC
[[DIR]], RMG [[RMG]], and QCHEM 4.X [[SGE+15]] through the molden2qmc converter (see molden2qmc).

General use

General use of convert4qmc can be prompted by running with no options:

>convert4qmc

Defaults : -gridtype log -first 1e-6 -last 100 -size 1001 -ci required -threshold 0.
→˓01 -TargetState 0 -prefix sample

convert [-gaussian|gamess|-orbitals|-dirac|-rmg]
filename

[-nojastrow -hdf5 -prefix title -addCusp -production -NbImages NimageX NimageY
→˓NimageZ]
[-psi_tag psi0 -ion_tag ion0 -gridtype log|log0|linear -first ri -last rf]
[-size npts -ci file.out -threshold cimin -TargetState state_number
-NaturalOrbitals NumToRead -optDetCoeffs]
Defaults : -gridtype log -first 1e-6 -last 100 -size 1001 -ci required
-threshold 0.01 -TargetState 0 -prefix sample
When the input format is missing, the extension of filename is used to determine
the format

*.Fchk -> gaussian; *.out -> gamess; *.h5 -> hdf5 format

As an example, to convert a GAMESS calculation using a single determinant, the following use is sufficient:

convert4qmc -gamess MyGamessOutput.out

By default, the converter will generate multiple files:

convert4qmc output:
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output file
type

default description

*.qmc.in-wfs.
xml

XML default Main input file for QMCPACK

*.qmc.in-wfnoj.
xml

XML default Main input file for QMCPACK

*.structure.xml XML default File containing the structure of the system
*.wfj.xml XML default Wavefunction file with 1-, 2-, and 3-body

Jastrows
*.wfnoj.xml XML default Wavefunction file with no Jastrows
*.orbs.h5 HDF5 with

-hdf5
HDF5 file containing all wavefunction
data

If no -prefix option is specified, the prefix is taken from the input file name. For instance, if the GAMESS output
file is Mysim.out, the files generated by convert4qmc will use the prefix Mysim and output files will be Mysim.
qmc.in-wfs.xml, Mysim.structure.xml, and so on.

• Files .in-wfs.xml and .in-wfnoj.xml

These are the input files for QMCPACK. The geometry and the wavefunction are stored in external files
*.structure.xml and *.wfj.xml (referenced from *.in-wfs.xml) or *.qmc.wfnoj.xml (ref-
erenced from *.qmc.in-wfnoj.xml). The Hamiltonian section is included, and the presence or lack of
presence of an ECP is detected during the conversion. If use of an ECP is detected, a default ECP name is added
(e.g., H.qmcpp.xml), and it is the responsibility of the user to modify the ECP name to match the one used to
generate the wavefunction.

<?xml version="1.0"?>
<simulation>
<!--

Example QMCPACK input file produced by convert4qmc

It is recommend to start with only the initial VMC block and adjust
parameters based on the measured energies, variance, and statistics.

-->
<!--Name and Series number of the project.-->
<project id="gms" series="0"/>
<!--Link to the location of the Atomic Coordinates and the location of

the Wavefunction.-->
<include href="gms.structure.xml"/>
<include href="gms.wfnoj.xml"/>
<!--Hamiltonian of the system. Default ECP filenames are assumed.-->
<hamiltonian name="h0" type="generic" target="e">

<pairpot name="ElecElec" type="coulomb" source="e" target="e"
physical="true"/>

<pairpot name="IonIon" type="coulomb" source="ion0" target="ion0"/>
<pairpot name="PseudoPot" type="pseudo" source="ion0" wavefunction="psi0"

format="xml">
<pseudo elementType="H" href="H.qmcpp.xml"/>
<pseudo elementType="Li" href="Li.qmcpp.xml"/>

</pairpot>
</hamiltonian>

The ``qmc.in-wfnoj.xml`` file will have one VMC block with a
minimum number of blocks to reproduce the HF/DFT energy used to

(continues on next page)
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generate the trial wavefunction.

::

<qmc method="vmc" move="pbyp" checkpoint="-1">
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="warmupSteps">100</parameter>
<parameter name="blocks">20</parameter>
<parameter name="steps">50</parameter>
<parameter name="substeps">8</parameter>
<parameter name="timestep">0.5</parameter>
<parameter name="usedrift">no</parameter>

</qmc>
</simulation>

If the qmc.in-wfj.xml file is used, Jastrow optimization blocks followed by a VMC and DMC block are
included. These blocks contain default values to allow the user to test the accuracy of a system; however, they
need to be updated and optimized for each system. The initial values might only be suitable for a small molecule.

<loop max="4">
<qmc method="linear" move="pbyp" checkpoint="-1">

<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="warmupSteps">100</parameter>
<parameter name="blocks">20</parameter>
<parameter name="timestep">0.5</parameter>
<parameter name="walkers">1</parameter>
<parameter name="samples">16000</parameter>
<parameter name="substeps">4</parameter>
<parameter name="usedrift">no</parameter>
<parameter name="MinMethod">OneShiftOnly</parameter>
<parameter name="minwalkers">0.0001</parameter>

</qmc>
</loop>
<!--

Example follow-up VMC optimization using more samples for greater accuracy:

-->
<loop max="10">

<qmc method="linear" move="pbyp" checkpoint="-1">
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="warmupSteps">100</parameter>
<parameter name="blocks">20</parameter>
<parameter name="timestep">0.5</parameter>
<parameter name="walkers">1</parameter>
<parameter name="samples">64000</parameter>
<parameter name="substeps">4</parameter>
<parameter name="usedrift">no</parameter>
<parameter name="MinMethod">OneShiftOnly</parameter>
<parameter name="minwalkers">0.3</parameter>

</qmc>
</loop>
<!--

Production VMC and DMC:

(continues on next page)
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Examine the results of the optimization before running these blocks.
For example, choose the best optimized jastrow from all obtained, put in the
wavefunction file, and do not reoptimize.

-->
<qmc method="vmc" move="pbyp" checkpoint="-1">

<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="warmupSteps">100</parameter>
<parameter name="blocks">200</parameter>
<parameter name="steps">50</parameter>
<parameter name="substeps">8</parameter>
<parameter name="timestep">0.5</parameter>
<parameter name="usedrift">no</parameter>
<!--Sample count should match targetwalker count for

DMC. Will be obtained from all nodes.-->
<parameter name="samples">16000</parameter>

</qmc>
<qmc method="dmc" move="pbyp" checkpoint="20">

<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="targetwalkers">16000</parameter>
<parameter name="reconfiguration">no</parameter>
<parameter name="warmupSteps">100</parameter>
<parameter name="timestep">0.005</parameter>
<parameter name="steps">100</parameter>
<parameter name="blocks">100</parameter>
<parameter name="nonlocalmoves">yes</parameter>

</qmc>
</simulation>

• File .structure.xml

This file will be referenced from the main QMCPACK input. It contains the geometry of the system, position of
the atoms, number of atoms, atomic types and charges, and number of electrons.

• Files .wfj.xml and .wfnoj.xml

These files contain the basis set detail, orbital coefficients, and the 1-, 2-, and 3-body Jastrow (in the case of .
wfj.xml). If the wavefunction is multideterminant, the expansion will be at the end of the file. We recommend
using the option -hdf5 when large molecules are studied to store the data more compactly in an HDF5 file.

• File .orbs.h5 This file is generated only if the option -hdf5 is added as follows:

convert4qmc -gamess MyGamessOutput.out -hdf5

In this case, the .wfj.xml or .wfnoj.xml files will point to this HDF file. Information about the basis set,
orbital coefficients, and the multideterminant expansion is put in this file and removed from the wavefunction
files, making them smaller.

convert4qmc input type:

option
name

description

-orbitals Generic HDF5 input file. Mainly automatically generated from QP2, Pyscf and all
codes in molden2qmc

-gamess Gamess code
-gaussian Gaussian code
-dirac get spinors from DIRAC code
-rmg RMG code
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Command line options

convert4qmc command line options:

Option Name Value default description
-nojastrow • • Force no Jastrow.

qmc.in.wfj will
not be generated

-hdf5 • • Force the wf to be in
HDF5 format

-prefix string • All created files will
have the name of the
string

-multidet string • HDF5 file contain-
ing a multidetermi-
nant expansion

-addCusp • • Force to add or-
bital cusp correc-
tion (ONLY for all-
electron)

-production • • Generates specific
blocks in the input

-psi_tag string psi0 Name of the elec-
trons particles in-
side QMCPACK

-ion_tag string ion0 Name of the ion par-
ticles inside QMC-
PACK

• -multidet

This option is to be used when a multideterminant expansion (mainly a CI expansion) is present in an HDF5 file.
The trial wavefunction file will not display the full list of multideterminants and will add a path to the HDF5 file
as follows (full example for the C2 molecule in qmcpack/tests/molecules/C2_pp).

<?xml version="1.0"?>
<qmcsystem>
<wavefunction name="psi0" target="e">

<determinantset type="MolecularOrbital" name="LCAOBSet" source="ion0"
→˓transform="yes" href="C2.h5">

<sposet basisset="LCAOBSet" name="spo-up" size="58">
<occupation mode="ground"/>
<coefficient size="58" spindataset="0"/>

</sposet>
<sposet basisset="LCAOBSet" name="spo-dn" size="58">
<occupation mode="ground"/>
<coefficient size="58" spindataset="0"/>

</sposet>
<multideterminant optimize="no" spo_up="spo-up" spo_dn="spo-dn">
<detlist size="202" type="DETS" nca="0" ncb="0" nea="4" neb="4" nstates=

→˓"58" cutoff="1e-20" href="C2.h5"/>
</multideterminant>

</determinantset>

(continues on next page)
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</wavefunction>
</qmcsystem>

To generate such trial wavefunction, the converter has to be invoked as follows:

> convert4qmc -orbitals C2.h5 -multidet C2.h5

• -nojastrow

This option generates only an input file, *.qmc.in.wfnoj.xml, containing no Jastrow optimization blocks
and references a wavefunction file, *.wfnoj.xml, containing no Jastrow section.

• -hdf5

This option generates the *.orbs.h5 HDF5 file containing the basis set and the orbital coefficients. If the
wavefunction contains a multideterminant expansion from QP2, it will also be stored in this file. This option
minimizes the size of the *.wfj.xml file, which points to the HDF file, as in the following example:

<?xml version="1.0"?>
<qmcsystem>
<wavefunction name="psi0" target="e">

<determinantset type="MolecularOrbital" name="LCAOBSet" source="ion0"
transform="yes" href="test.orbs.h5">
<slaterdeterminant>
<determinant id="updet" size="39">
<occupation mode="ground"/>
<coefficient size="411" spindataset="0"/>

</determinant>
<determinant id="downdet" size="35">
<occupation mode="ground"/>
<coefficient size="411" spindataset="0"/>

</determinant>
</slaterdeterminant>

</determinantset>
</wavefunction>

</qmcsystem>

Jastrow functions will be included if the option “-nojastrow” was not specified. Note that when initially opti-
mization a wavefunction, we recommend temporarily removing/disabling the 3-body Jastrow.

• -prefix

Sets the prefix for all output generated by convert4qmc. If not specified, convert4qmcwill use the defaults
for the following:

– Gamess If the Gamess output file is named “Name.out” or “Name.output,” all files generated by
convert4qmc will carry Name as a prefix (i.e., Name.qmc.in.xml).

– Generic HDF5 input If a generic HDF5 file is named “Name.H5,” all files generated by convert4qmc
will carry Name as a prefix (i.e., Name.qmc.in.xml).

• -addCusp

This option is very important for all-electron (AE) calculations. In this case, orbitals have to be corrected for the
electron-nuclear cusp. The cusp correction scheme follows the algorithm described by Ma et al. [[MTDN05]]
When this option is present, the wavefunction file has a new set of tags:

qmcsystem>
<wavefunction name="psi0" target="e">

(continues on next page)
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<determinantset type="MolecularOrbital" name="LCAOBSet" source="ion0"
transform="yes" cuspCorrection="yes">
<basisset name="LCAOBSet">

The tag “cuspCorrection” in the wfj.xml (or wfnoj.xml) wavefunction file will force correction of the
orbitals at the beginning of the run. In the “orbitals“ section of the wavefunction file, a new tag “cuspInfo” will
be added for orbitals spin-up and orbitals spin-down:

<slaterdeterminant>
<determinant id="updet" size="2"

cuspInfo="../updet.cuspInfo.xml">
<occupation mode="ground"/>
<coefficient size="135" id="updetC">

<determinant id="downdet" size="2"
cuspInfo="../downdet.cuspInfo.xml">

<occupation mode="ground"/>
<coefficient size="135" id="downdetC">

These tags will point to the files updet.cuspInfo.xml and downdet.cuspInfo.xml. By default, the
converter assumes that the files are located in the relative path ../. If the files are not present in the parent
directory, QMCPACK will run the cusp correction algorithm to generate both files in the current run directory
(not in ../). If the files exist, then QMCPACK will apply the corrections to the orbitals.

Important notes:

The cusp correction implementations has been parallelized and performance improved. However, since the cor-
rection needs to be applied for every ion and then for every orbital on that ion, this operation can be costly (slow)
for large systems. We recommend saving and reusing the computed cusp correction files updet.cuspInfo.
xml and downdet.cuspInfo.xml, and transferring them between computer systems where relevant.

• -psi_tag

QMCPACK builds the wavefunction as a named object. In the vast majority of cases, one wavefunction is
simulated at a time, but there may be situations where we want to distinguish different parts of a wavefunction,
or even use multiple wavefunctions. This option can change the name for these cases.

<wavefunction name="psi0" target="e">

• -ion_tag

Although similar to -psi_tag, this is used for the type of ions.

<particleset name="ion0" size="2">

• -production

Without this option, input files with standard optimization, VMC, and DMC blocks are generated. When the
“-production” option is specified, an input file containing complex options that may be more suitable for large
runs at HPC centers is generated. This option is for users who are already familiar with QMC and QMCPACK.
We encourage feedback on the standard and production sample inputs.

The following options are specific to using MCSCF multideterminants from Gamess.

convert4qmc MCSCF arguments:
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Option Name Value default description
-ci String none Name of the file con-

taining the CI expan-
sion

-threshold double 1e-20 Cutoff of the weight of
the determinants

-TargetState int none ?
-NaturalOrbitals int none ?
-optDetCoeffs • no Enables the optimiza-

tion of CI coefficients

• keyword -ci Path/name of the file containing the CI expansion in a Gamess Format.

• keyword -threshold The CI expansion contains coefficients (weights) for each determinant. This option sets
the maximum coefficient to include in the QMC run. By default it is set to 1e-20 (meaning all determinants in
an expansion are taken into account). At the same time, if the threshold is set to a different value, for example
1𝑒 − 5, any determinant with a weight |𝑤𝑒𝑖𝑔ℎ𝑡| < 1𝑒 − 5 will be discarded and the determinant will not be
considered.

• keyword -TargetState ?

• keyword -NaturalOrbitals ?

• keyword -optDetCoeffs This flag enables optimization of the CI expansion coefficients. By default, optimiza-
tion of the coefficients is disabled during wavefunction optimization runs.

Examples and more thorough descriptions of these options can be found in the lab section of this manual: Lab 3:
Advanced molecular calculations.

Grid options

These parameters control how the basis set is projected on a grid. The default parameters are chosen to be very
efficient. Unless you have a very good reason, we do not recommend modifying them.

Tags
keyword Value default description
-gridtype log|log0|linear log Grid type
-first double 1e-6 First point of the grid
-last double 100 Last point of the grid
-size int 1001 Number of point in the grid

• -gridtype Grid type can be logarithmic, logarithmic base 10, or linear

• -first First value of the grid

• -last Last value of the grid

• -size Number of points in the grid between “first” and “last.”
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Supported codes

• PySCF

PySCF [[SBB+18]] is an all-purpose quantum chemistry code that can run calculations from simple Hartree-
Fock to DFT, MCSCF, and CCSD, and for both isolated systems and periodic boundary conditions. PySCF can
be downloaded from https://github.com/sunqm/pyscf. Many examples and tutorials can be found on the PySCF
website, and all types of single determinants calculations are compatible with , thanks to active support from the
authors of PySCF. A few additional steps are necessary to generate an output readable by convert4qmc.

This example shows how to run a Hartree-Fock calculation for the𝐿𝑖𝐻 dimer molecule from PySCF and convert
the wavefunction for QMCPACK.

– Python path

PySCF is a Python-based code. A Python module named PyscfToQmcpack containing the function save-
toqmcpack is provided by and is located at qmcpack/src/QMCTools/PyscfToQmcpack.py. To
be accessible to the PySCF script, this path must be added to the PYTHONPATH environment variable.
For the bash shell, this can be done as follows:

export PYTHONPATH=/PATH_TO_QMCPACK/qmcpack/src/QMCTools:\$PYTHONPATH

– PySCF Input File

Copy and paste the following code in a file named LiH.py.

#! /usr/bin/env python3
from pyscf import gto, scf, df
import numpy

cell = gto.M(
atom ='''

Li 0.0 0.0 0.0
H 0.0 0.0 3.0139239778''',

basis ='cc-pv5z',
unit="bohr",
spin=0,
verbose = 5,
cart=False,

)
mf = scf.ROHF(cell)
mf.kernel()

###SPECIFIC TO QMCPACK###
title='LiH'
from PyscfToQmcpack import savetoqmcpack

savetoqmcpack(cell,mf,title)

The arguments to the function savetoqmcpack are:

* cell This is the object returned from gto.M, containing the type of atoms, geometry, basisset, spin, etc.

* mf This is an object representing the PySCF level of theory, in this example, ROHF. This object
contains the orbital coefficients of the calculations.

* title The name of the output file generated by PySCF. By default, the name of the generated file will
be “default” if nothing is specified.
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By adding the three lines below the “SPECIFIC TO QMCPACK” comment in the input file, the script will
dump all the necessary data for QMCPACK into an HDF5 file using the value of “title” as an output name.
PySCF is run as follows:

>python LiH.py

The generated HDF5 can be read by convert4qmc to generate the appropriate QMCPACK input files.

– Generating input files

As described in the previous section, generating input files for PySCF is as follows:

> convert4qmc -pyscf LiH.h5

The HDF5 file produced by “savetoqmcpack” contains the wavefunction in a form directly readable by
QMCPACK. The wavefunction files from convert4qmc reference this HDF file as if the “-hdf5” option
were specified (converting from PySCF implies the “-hdf5” option is always present).

Periodic boundary conditions with Gaussian orbitals from PySCF is fully supported for Gamma point and kpoints.

• Quantum Package

QP2 [[GAG+19]] is a quantum chemistry code developed by the LCPQ laboratory in Toulouse, France,
and Argonne National Laboratory for the PBC version. It can be downloaded from https://github.com/
QuantumPackage/qp2, and the tutorial within is quite extensive. The tutorial section of QP2 can guide you
on how to install and run the code.

After a QP2 calculation, the data needed for convert4qmc can be generated through

qp_run save_for_qmcpack Myrun.ezfio

This command will generate an HDF5 file in the QMCPACK format named QP2QMCPACK.h5 convert4qmc
can read this file and generate the *.structure.xml, *.wfj.xml and other files needed to run QMC-
PACK. . For example:

convert4qmc -orbitals QP2QMCPACK.h5 -multidet QP2QMCPACK.h5 -prefix MySystem

The main reason to use QP2 is to access the CIPSI algorithm to generate a multideterminant wavefunction.
CIPSI is the preferred choice for generating a selected CI trial wavefunction for QMCPACK. An example on
how to use QP2 for Hartree-Fock and selected CI can be found in CIPSI wavefunction interface of this manual.
The converter code is actively maintained and codeveloped by both QMCPACK and QP2 developers.

• Using -hdf5 tag

convert4qmc -gamess Myrun.out -hdf5

This option is only used/useful with the gamess code as it is the only code not providing an HDF5 output The
result will create QMCPACK input files but will also store all key data in the HDF5 format.

• Mixing orbitals and multideterminants

Note that the QP2QMCPACK.h5 combined with the tags -orbitals and -multidet allows the user to
choose orbitals from a different code such as PYSCF and the multideterminant section from QP2. These two
codes are fully compatible, and this route is also the only possible route for multideterminants for solids.

convert4qmc -orbitals MyPyscfrun.h5 -multidet QP2QMCPACK.h5
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• GAMESS

QMCPACK can use the output of GAMESS [[SBB+93]] for any type of single determinant calculation (HF or
DFT) or multideterminant (MCSCF) calculation. A description with an example can be found in the Advanced
Molecular Calculations Lab (Lab 3: Advanced molecular calculations).

• DIRAC

QMCPACK can use the output of DIRAC to run spin-orbit calculations using single-particle spinor wave func-
tions for single-determinant calculations (DFT or closed-shell Dirac HF) or multideterminant complete open-
shell configuration interaction (COSCI) wavefunctions. In the case of COSCI, the desired ground or excited
state can be requested with -TargetState x.

• RMG

QMCPACK can use the HDF5 output of RMG DFT calculations. To generate this HDF5 output, set
write_qmcpack_restart = "true" in the RMG input (file will be written to Waves/wave.out.
h5). convert4qmc will read the data from this HDF5 file and generate *.structure.xml, *.wf{j,
noj}.xml, and *.qmc.in-wf{j,noj}.xml. Pseudopotential files must be generated/moved manually
by the user to X.qmcpp.xml, where X is the appropriate element symbol (PP filename/path can be changed in
the Hamiltonian section of *.qmc.in-wf{j,noj}.xml).

convert4qmc -rmg wave.out.h5

24.3.2 pw2qmcpack.x

pw2qmcpack.x is an executable that converts PWSCF wavefunctions from the Quantum ESPRESSO (QE) package
to QMCPACK readable HDF5 format. This utility is built alongside the QE postprocessing utilities. This utility is
written in Fortran90 and is distributed as a patch of the QE source code. The patch, as well as automated QE download
and patch scripts, can be found in qmcpack/external_codes/quantum_espresso. Once built, we recom-
mend also build QMCPACK with the QE_BIN option pointing to the build pw.x and pw2qmcpack.x directory. This
will enable workflow tests to be run.

pw2qmcpack can be used in serial in small systems and should be used in parallel with large systems for best perfor-
mance. The K_POINT gamma optimization is not supported.

Listing 24.1: Sample pw2qmcpack.x input file p2q.in

&inputpp
prefix = 'bulk_silicon'
outdir = './'
write_psir = .false.

/

This example will cause pw2qmcpack.x to convert wavefunctions saved from PWSCF with the prefix
“bulk_silicon.” Perform the conversion via, for example:

mpirun -np 1 pw2qmcpack.x < p2q.in>& p2q.out

Because of the large plane-wave energy cutoffs in the pw.x calculation required by accurate PPs and the large system
sizes of interest, one limitation of QE can be easily reached: that wf_collect=.true. results in problems of
writing and loading correct plane-wave coefficients on disks by pw.x because of the 32 bit integer limits. Thus,
pw2qmcpack.x fails to convert the orbitals for QMCPACK. Since the release of QE v5.3.0, the converter has been
fully parallelized to overcome this limitation completely.

By setting wf_collect=.false. (by default .false. in v6.1 and before and .true. since v6.2), pw.x does
not collect the whole wavefunction into individual files for each k-point but instead writes one smaller file for each
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processor. By running pw2qmcpack.x in the same parallel setup (MPI tasks and k-pools) as the last scf/nscf cal-
culation with pw.x, the orbitals distributed among processors will first be aggregated by the converter into individual
temporal HDF5 files for each k-pool and then merged into the final file. In large calculations, users should benefit from
a significant reduction of time in writing the wavefunction by pw.x thanks to avoiding the wavefunction collection.

pw2qmcpack has been included in the test suite of QMCPACK (see instructions about how to acti-
vate the tests in Installing and patching Quantum ESPRESSO). There are tests labeled “no-collect” run-
ning the pw.x with the setting wf_collect=.false. The input files are stored at examples/solids/
dft-inputs-polarized-no-collect. The scf, nscf, and pw2qmcpack runs are performed on 16, 12, and
12 MPI tasks with 16, 2, and 2 k-pools respectively.

24.3.3 convertpw4qmc

Convertpw4qmc is an executable that reads xml from a plane wave based DFT code and produces a QMCPACK
readable HDF5 format wavefunction. For the moment, this supports both QBox and Quantum Epresso

In order to save the wavefunction from QBox so that convertpw4qmc can work on it, one needs to add a line to the
QBox input like

save -text -serial basename.sample

after the end of a converged dft calculation. This will write an ascii wavefunction file and will avoid QBox’s optimized
parallel IO (which is not currently supported).

After the wavefunction file is written (basename.sample in this case) one can use convertpw4qmc as follows:

convertpw4qmc basename.sample -o qmcpackWavefunction.h5

This reads the Qbox wavefunction and performs the Fourier transform before saving to a QMCPACK eshdf format
wavefunction. Currently multiple k-points are supported, but due to difficulties with the qbox wavefunction file format,
the single particle orbitals do not have their proper energies associated with them. This means that when tiling from a
primitive cell to a supercell, the lowest n single particle orbitals from all necessary k-points will be used. This can be
problematic in the case of a metal and this feature should be used with EXTREME caution.

In the case of Quantum ESPRESSO, QE must be compiled with HDF support. If this is the case, then an eshdf file can
be generated by targeting the data-file-schema.xml file generated in the output of Quantum ESPRESSO. For example,
if one is running a calculation with outdir = ‘out’ and prefix=’Pt’ then the converter can be invoked as:

convertpw4qmc out/Pt.save/data-file-schema.xml -o qmcpackWavefunction.h5

Note that this method is insensitive to parallelization options given to Quantum ESPRESSO. Additionally, it supports
noncollinear magnetism and can be used to generate wavefunctions suitable for qmcpack calculations with spin-orbit
coupling.

24.3.4 ppconvert

ppconvert is a utility to convert PPs between different commonly used formats. As with all operations on pseu-
dopotentials, great care should be exercised when using this tool. The tool is not yet considered to be fully robust
and converted potentials should be examined carefully. Please report any issues. Generally DFT-derived potentials
should not be used with QMC. The main intended use for the converter is to convert potentials generated for QMC
calculations into formats acceptable to DFT and quantum chemistry codes for trial wavefunction generation.

Currently it converts CASINO, FHI, UPF (generated by OPIUM), BFD, and GAMESS formats to several other formats
including XML (QMCPACK) and UPF (QE). See all the formats via ppconvert -h.
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For output formats requiring Kleinman-Bylander projectors, the atom will be solved with DFT if the projectors are
not provided in the input formats. This requires providing reference states and often needs extra tuning for heavy
elements. To avoid ghost states, the local channel can be changed via the --local_channel option. Ghost state
considerations are similar to those of DFT calculations but could be worse if ghost states were not considered during
the original PP construction. To make the self-consistent calculation converge, the density mixing parameter may
need to be reduced via the --density_mix option. Note that the reference state should include only the valence
electrons. One reference state should be included for each channel in the PP.

For example, for a sodium atom with a neon core, the reference state would be “1s(1).” --s_ref needs to include
a 1s state, --p_ref needs to include a 2p state, --d_ref needs to include a 3d state, etc. If not specified, a
corresponding state with zero occupation is added. If the reference state is chosen as the neon core, setting empty
reference states “” is technically correct. In practice, reasonable reference states should be picked with care. For PP
with semi-core electrons in the valence, the reference state can be long. For example, Ti PP has 12 valence electrons.
When using the neutral atom state, --s_ref, --p_ref, and --d_ref are all set as “1s(2)2p(6)2s(2)3d(2).” When
using an ionized state, the three reference states are all set as “1s(2)2p(6)2s(2)” or “1s(2)2p(6)2s(2)3d(0).”

Unfortunately, if the generated UPF file is used in QE, the calculation may be incorrect because of the presence of
“ghost” states. Potentially these can be removed by adjusting the local channel (e.g., by setting --local_channel
1, which chooses the p channel as the local channel instead of d. For this reason, validation of UPF PPs is always
required from the third row and is strongly encouraged in general. For example, check that the expected ionization
potential and electron affinities are obtained for the atom and that dimer properties are consistent with those obtained
by a quantum chemistry code or a plane-wave code that does not use the Kleinman-Bylander projectors.

24.3.5 molden2qmc

molden2qmc is a tool used to convert molden files into an HDF5 file with the QMCPACK format. Molden2qmc is
a single program that can use multiple different quantum chemistry codes. It is python code developed by Vladimir
Konjkov originally for the CASINO code but then extended to QMCPACK. This tool can be found at https://github.
com/gjohnson3/molden2qmc.git.

Using molden2qmc

General use of molden2qmc can be prompted by running molden2qmc.py and entering the corresponding quan-
tum chemistry code number and the molden file name:

number corresponding to the quantum chemistry code used to produce this MOLDEN file:
0 -- TURBOMOLE
1 -- PSI4
2 -- CFOUR 2.0beta
3 -- ORCA 3.X - 4.X
4 -- DALTON2016
5 -- MOLPRO
6 -- NWCHEM
7 -- QCHEM 4.X

Use the --qmcpack flag to create the file as an hdf5 file, suitable for QMCPACK. Without the --qmcpack flag, the
file will become a gwfn file for CASINO. Example: molden2qmc.py 5 n4.molden --qmcpack.
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24.4 Obtaining pseudopotentials

24.4.1 Pseudopotentiallibrary.org

An open website collecting community developed and tested pseudopotentials for QMC and other many-body calcu-
lations is being developed at https://pseudopotentiallibrary.org. This site includes potentials in QMCPACK format and
an increasing range of electronic structure and quantum chemistry codes. We recommend using potentials from this
site if available and suitable for your science application.

24.4.2 Opium

Opium is a pseudopotential generation code available from the website http://opium.sourceforge.net/. Opium can
generate pseudopotentials with either Hartree-Fock or DFT methods. Once you have a useable pseudopotential param
file (for example, Li.param), generate pseudopotentials for use in Quantum ESPRESSO with the upf format as follows:

This generates a UPF-formatted pseudopotential (Li.upf, in this case) for use in Quantum ESPRESSO. The pseu-
dopotential conversion tool ppconvert can then convert UPF to FSAtom xml format for use in QMCPACK:

Listing 24.2: Convert UPF-formatted pseudopotential to FSAtom xml
format

ppconvert --upf_pot Li.upf --xml Li.xml

24.4.3 Burkatzki-Filippi-Dolg

Burkatzki et al. developed a set of energy-consistent pseudopotenitals for use in QMC [[BFD07], [BFD08]], available
at http://www.burkatzki.com/pseudos/index.2.html. To convert for use in QMCPACK, select a pseudopotential (choice
of basis set is irrelevant to conversion) in GAMESS format and copy the ending (pseudopotential) lines beginning
with(element symbol)-QMC GEN:

Listing 24.3: BFD Li pseudopotential in GAMESS format

Li-QMC GEN 2 1
3
1.00000000 1 5.41040609
5.41040609 3 2.70520138
-4.60151975 2 2.07005488
1
7.09172172 2 1.34319829

Save these lines to a file (here, named Li.BFD.gamess; the exact name may be anything as long as it is passed to
ppconvert after –gamess_pot). Then, convert using ppconvert with the following:

Listing 24.4: Convert GAMESS-formatted pseudopotential to FSAtom
xml format

ppconvert --gamess_pot Li.BFD.gamess --s_ref "2s(1)" --p_ref "2p(0)" --xml Li.BFD.xml

Listing 24.5: Convert GAMESS-formatted pseudopotential to Quantum
ESPRESSO UPF format

ppconvert --gamess_pot Li.BFD.gamess --s_ref "2s(1)" --p_ref "2p(0)" --log_grid --upf
→˓Li.BFD.upf
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24.4.4 CASINO

The QMC code CASINO also makes available its pseudopotentials available at the website https://vallico.net/
casinoqmc/pplib/. To use one in QMCPACK, select a pseudopotential and download its summary file (summary.
txt), its tabulated form (pp.data), and (for ppconvert to construct the projectors to convert to Quantum
ESPRESSO’s UPF format) a CASINO atomic wavefunction for each angular momentum channel (awfn.data_*).
Then, to convert using ppconvert, issue the following command:

Listing 24.6: Convert CASINO-formatted pseudopotential to Quantum
ESPRESSO UPF format

ppconvert --casino_pot pp.data --casino_us awfn.data_s1_2S --casino_up awfn.data_p1_
→˓2P --casino_ud awfn.data_d1_2D --upf Li.TN-DF.upf

QMCPACK can directly read in the CASINO-formated pseudopotential (pp.data), but four parameters found in
the pseudopotential summary file must be specified in the pseudo element (l-local, lmax, nrule, cutoff)[see
Pseudopotentials for details]:

Listing 24.7: XML syntax to use CASINO-formatted pseudopotentials
in QMCPACK

<pairpot type="pseudo" name="PseudoPot" source="ion0" wavefunction="psi0" format="xml
→˓">

<pseudo elementType="Li" href="Li.pp.data" format="casino" l-local="s" lmax="2"
→˓nrule="2" cutoff="2.19"/>

<pseudo elementType="H" href="H.pp.data" format="casino" l-local="s" lmax="2"
→˓nrule="2" cutoff="0.5"/>
</pairpot>

24.4.5 wftester

While not really a stand-alone application, wftester (short for “Wave Function Tester”) is a helpful tool for testing pre-
existing and experimental estimators and observables. It provides the user with derived quantities from the Hamiltonian
and wave function, but evaluated at a small set of configurations.

The wftester is implemented as a QMCDriver, so one invokes QMCPACK in the normal manner with a correct input
XML, the difference being the addition of an additional qmc input block. This is the main advantage of this tool–it
allows testing of realistic systems and realistic combinations of observables. It can also be invoked before launching
into optimization, VMC, or DMC runs, as it is a valid <qmc> block.

As an example, the following code generates a random walker configuration and compares the trial wave function ratio
computed in two different ways:

Listing 24.8: The following executes the wavefunction ratio test in
“wftester”

<qmc method="wftester">
<parameter name="ratio"> yes </parameter>

</qmc>

Here’s a summary of some of the tests provided:

• Ratio Test. Invoked with

<parameter name="ratio">yes</parameter>
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This computes the implemented wave function ratio associated with a single-particle move using two different
methods.

• Clone Test. Invoked with

<parameter name="clone">yes</parameter>

This checks the cloning of TrialWaveFunction, ParticleSet, Hamiltonian, and Walkers.

• Elocal Test. Invoked with

<parameter name="printEloc">yes</parameter>

For an input electron configuration (can be random), print the value of TrialWaveFunction, LocalEnergy, and all
local observables for this configuration.

• Derivative Test. Invoked with

<parameter name="ratio">deriv</parameter>}

Computes electron gradients, laplacians, and wave function parameter derivatives using implemented calls and
compares them to finite-difference results.

• Ion Gradient Test. Invoked with

<parameter name="source">ion0</parameter>

Calls the implemented evaluateGradSource functions and compares them against finite-difference results.

• “Basic Test”. Invoked with

<parameter name="basic">yes</parameter>

Performs ratio, gradient, and laplacian tests against finite-difference and direct computation of wave function
values.

The output of the various tests will be to standard out or “wftest.000” after successful execution of qmcpack.
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CHAPTER

TWENTYFIVE

EXTERNAL TOOLS

This chapter provides some information on using QMCPACK with external tools.

25.1 Sanitizer Libraries

Using CMake, set one of these flags for using the clang sanitizer libraries with or without lldb.

-DENABLE_SANITIZER link with the GNU or Clang sanitizer library for asan, ubsan,
→˓tsan or msan (default=none)

In general:

• address sanitizer (asan): catches most pointer-based errors and memory leaks (via lsan) by default.

• undefined behavior sanitizer (ubsan): low-overhead, catches undefined behavior accessing misaligned memory
or signed or float to integer overflows.

• undefined behavior sanitizer (tsan): catches potential race conditions in threaded code.

• memory sanitizer (msan): catches using uninitialized memory errors, but is difficult to use without a full set of
msan-instrumented libraries.

These set the basic flags required to build with either of these sanitizer libraries which are mutually exclu-
sive. Depending on your system and linker, these may be incompatible with the “Release” build, so set
-DCMAKE_BUILD_TYPE=Debug or -DCMAKE_BUILD_TYPE=RelWithDebInfo. They are tested on GitHub
Actions CI using deterministic tests ctest -L deterministic (currently ubsan). See the following links for ad-
ditional information on use, run time, and build options of the sanitizers: https://clang.llvm.org/docs/AddressSanitizer.
html & https://clang.llvm.org/docs/MemorySanitizer.html.

25.2 Intel VTune

Intel’s VTune profiler has an API that allows program control over collection (pause/resume) and can add information
to the profile data (e.g., delineating tasks).
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25.2.1 VTune API

If the variable USE_VTUNE_API is set, QMCPACK will check that the include file (ittnotify.h) and the library
(libittnotify.a) can be found. To provide CMake with the VTune search paths, add VTUNE_ROOT which
contains include and lib64 sub-directories.

An example of options to be passed to CMake:

-DUSE_VTUNE_API=ON \
-DVTUNE_ROOT=/opt/intel/vtune_amplifier_xe

25.2.2 Timers as Tasks

To aid in connecting the timers in the code to the profile data, the start/stop of timers will be recorded as a task if
USE_VTUNE_TASKS is set.

In addition to compiling with USE_VTUNE_TASKS, an option needs to be set at run time to collect the task API data.
In the graphical user interface (GUI), select the checkbox labeled “Analyze user tasks” when setting up the analysis
type. For the command line, set the enable-user-tasks knob to true. For example,

amplxe-cl -collect hotspots -knob enable-user-tasks=true ...

Collection with the timers set at “fine” can generate too much task data in the profile. Collection with the timers at
“medium” collects a more reasonable amount of task data.

25.3 NVIDIA Tools Extensions

NVIDIA’s Tools Extensions (NVTX) API enables programmers to annotate their source code when used with the
NVIDIA profilers.

25.3.1 NVTX API

If the variable USE_NVTX_API is set, QMCPACK will add the library (libnvToolsExt.so) to the QMCPACK
target. To add NVTX annotations to a function, it is necessary to include the nvToolsExt.h header file and then
make the appropriate calls into the NVTX API. For more information about the NVTX API, see https://docs.nvidia.
com/cuda/profiler-users-guide/index.html#nvtx. Any additional calls to the NVTX API should be guarded by the
USE_NVTX_API compiler define.

25.4 Scitools Understand

Scitools Understand (https://scitools.com/) is a tool for static code analysis. The easiest configuration route is to use
the JSON output from CMake, which the Understand project importer can read directly:

1. Configure QMCPACK by running CMake with CMAKE_EXPORT_COMPILE_COMMANDS=ON, for example:

cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
-DQMC_MPI=0 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ../qmcpack/

2. Run Understand and create a new C++ project. At the import files and settings dialog, import the
compile_commands.json created by CMake in the build directory.
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TWENTYSIX

CONTRIBUTING TO THE MANUAL

This section briefly describes how to contribute to the manual and is primarily “by developers, for developers.” This
section should iterate until a consistent view on style/contents is reached.

Desirable:

• Use the following table templates when describing XML input.

• Unicode rules

– Do not use characters for which well-established idioms exists, especially dashes, quotes, and apostrophes.

– Use math mode markup instead of unicode characters for equations.

– Be cautious of WYSIWYG word processors; cutting and pasting can pickup characters promoted to uni-
code by the program.

– Take a look at your text multibyte expanded; that is open it in (emacs and ‘esc-x toggle-enable-multibyte-
characters’)—see any unicode you did not intend?

• Newly added entries to a Bib file should be as complete as possible. Use a tool such as JabRef or Zotero that
can automate creation of these entries from just a DOI.

Forbidden:

• Including images instead of text tables.

• Saving files in encodings other than UTF8. Some may report being ASCII encoded since they contain no
unicode characters.

Missing sections (these are opinions, not decided priorities):

• Description of XML input in general. Discuss XML format, use of attributes and <parameter/> s in gen-
eral, case sensitivity (input is generally case sensitive), and behavior of when unrecognized XML elements are
encountered (they are generally ignored without notification).

• Overview of the input file in general, broad structure, and at least one full example that works in isolation.

Information currently missing for a complete reference specification:

• Noting how many instances of each child element are allowed. Examples: simulation–1 only, method–1
or more, jastrow–0 or more.

Table templates follow for describing XML elements in reference fashion. A number of examples can be found in,
for example, Hamiltonian and Observables. Preliminary style is (please weigh in with opinions): typewriter text (\
texttt\{}) for XML elements, attributes, and parameter names; normal text for literal information in the datatype,
values, and default columns; bold (\textbf{}) text if an attribute or parameter must take on a particular value
(values column); italics (\textit{}) for descriptive (nonliteral) information in the values column (e.g., anything,
non-zero); and required/optional attributes or parameters noted by some_attr 𝑟/some_attr 𝑟 superscripts. Valid
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datatypes are text, integer, real, Boolean, and arrays of each. Fixed length arrays can be noted, for example, by “real
array(3).”

Template for a generic XML element:

generic element:

parent elements: parent1 parent2
child elements: child1 child2 child3

attributes:

Name Datatype Values Default Description
attr1𝑟 text
attr2𝑟 integer
attr3𝑟 real
attr4𝑟 boolean
attr5𝑟 text array
attr6𝑟 integer array
attr7𝑟 real array
attr8𝑟 boolean array

parameters:

Name Datatype Values Default Description
param1𝑟 text
param2𝑟 integer
param3𝑟 real
param4𝑟 boolean
param5𝑟 text array
param6𝑟 integer array
param7𝑟 real array
param8𝑟 boolean array

body text: Long form description of body text format

“Factory” elements are XML elements that share a tag but whose contents change based on the value an attribute, or
sometimes multiple attributes, take. The attribute(s) that determines the allowed content is subsequently referred to as
the “type selector” (e.g., for <estimator/> elements, the type selector is usually the type attribute). These types
of elements are frequently encountered as they correspond (sometimes loosely, sometimes literally) to polymorphic
classes in QMCPACK that are built in “factories.” This name is true to the underlying code but may be obscure to the
general user (is there a better name to retain the general meaning?).

The following template should be provided each time a new “factory” type is encountered (such as <estimator/>).
The table lists all types of possible elements (see “type options” in the template) and any attributes that are common to
all possible related elements. Specific “derived” elements are then described one at a time with the previous template,
noting the type selector in addition to the XML tag (e.g., “estimator type=density element”).

Template for shared information about “factory” elements.

generic factory element:
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parent elements: parent1 parent2
child elements: child1 child2 child3
type selector some attribute
type options Selection 1

Selection 2
Selection 3
. . .

shared attributes:

Name Datatype Values Default Description
attr1𝑟 text
attr2𝑟 integer
. . .
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TWENTYSEVEN

UNIT TESTING

Unit testing is a standard software engineering practice to aid in ensuring a quality product. A good suite of unit tests
provides confidence in refactoring and changing code, furnishes some documentation on how classes and functions
are used, and can drive a more decoupled design.

If unit tests do not already exist for a section of code, you are encouraged to add them when modifying that section of
code. New code additions should also include unit tests. When possible, fixes for specific bugs should also include a
unit test that would have caught the bug.

27.1 Unit testing framework

The Catch framework is used for unit testing. See the project site for a tutorial and documentation: https://github.com/
philsquared/Catch.

Catch consists solely of header files. It is distributed as a single include file about 400 KB in size. In QMCPACK, it is
stored in external_codes/catch.

27.2 Unit test organization

The source for the unit tests is located in the tests directory under each directory in src (e.g., src/
QMCWavefunctions/tests). All of the tests in each tests directory get compiled into an executable. After
building the project, the individual unit test executables can be found in build/tests/bin. For example, the tests
in src/QMCWavefunctions/tests are compiled into build/tests/bin/test_wavefunction.

All the unit test executables are collected under ctest with the unit label. When checking the whole code, it is useful
to run through CMake (cmake -L unit). When working on an individual directory, it is useful to run the individual
executable.

Some of the tests reference input files. The unit test CMake setup places those input files in particular locations under
the tests directory (e.g., tests/xml_test). The individual test needs to be run from that directory to find the
expected input files.

Command line options are available on the unit test executables. Some of the more useful ones are

• List command line options.

• List all the tests in the executable.

A test name can be given on the command line to execute just that test. This is useful when iterating on a particular
test or when running in the debugger. Test names often contain spaces, so most command line environments require
enclosing the test name in single or double quotes.
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27.3 Example

The first example is one test from src/Numerics/tests/test_grid_functor.cpp.

Listing 27.1: Unit test example using Catch.

TEST_CASE("double_1d_grid_functor", "[numerics]")
{

LinearGrid<double> grid;
OneDimGridFunctor<double> f(&grid);

grid.set(0.0, 1.0, 3);

REQUIRE(grid.size() == 3);
REQUIRE(grid.rmin() == 0.0);
REQUIRE(grid.rmax() == 1.0);
REQUIRE(grid.dh() == Approx(0.5));
REQUIRE(grid.dr(1) == Approx(0.5));

}

The test function declaration is TEST_CASE("double_1d_grid_functor","[numerics]"). The first ar-
gument is the test name, and it must be unique in the test suite. The second argument is an optional list of tags. Each
tag is a name surrounded by brackets ("[tag1][tag2]"). It can also be the empty string.

The REQUIRE macro accepts expressions with C++ comparison operators and records an error if the value of the
expression is false.

Floating point numbers may have small differences due to roundoff, etc. The Approx class adds some tolerance to
the comparison. Place it on either side of the comparison (e.g., Approx(a) == 0.3 or a = Approx(0.3)). To
adjust the tolerance, use the epsilon and scale methods to Approx (REQUIRE(Approx(a).epsilon(0.
001) = 0.3);.

27.3.1 Expected output

When running the test executables individually, the output of a run with no failures should look like

===============================================================================
All tests passed (26 assertions in 4 test cases)

A test with failures will look like

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
test_numerics is a Catch v1.4.0 host application.
Run with -? for options

-------------------------------------------------------------------------------
double_1d_grid_functor
-------------------------------------------------------------------------------
/home/user/qmcpack/src/Numerics/tests/test_grid_functor.cpp:29
...............................................................................

/home/user/qmcpack/src/Numerics/tests/test_grid_functor.cpp:39: FAILED:
REQUIRE( grid.dh() == Approx(0.6) )

with expansion:
0.5 == Approx( 0.6 )

(continues on next page)
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(continued from previous page)

===============================================================================
test cases: 4 | 3 passed | 1 failed
assertions: 25 | 24 passed | 1 failed

27.4 Adding tests

Three scenarios are covered here: adding a new test in an existing file, adding a new test file, and adding a new test
directory.

27.4.1 Adding a test to existing file

Copy an existing test or from the example shown here. Be sure to change the test name.

27.4.2 Adding a test file

When adding a new test file, create a file in the test directory, or copy from an existing file. Add the file name to the
ADD_EXECUTABLE in the CMakeLists.txt file in that directory.

One (and only one) file must define the main function for the test executable by defining CATCH_CONFIG_MAIN
before including the Catch header. If more than one file defines this value, there will be linking errors about multiply
defined values.

Some of the tests need to shut down MPI properly to avoid extraneous error messages. Those tests include Message/
catch_mpi_main.hpp instead of defining CATCH_CONFIG_MAIN.

27.4.3 Adding a test directory

Copy the CMakeLists.txt file from an existing tests directory. Change the SRC_DIR name and the files in the
ADD_EXECUTABLES line. The libraries to link in TARGET_LINK_LIBRARIES may need to be updated.

Add the new test directory to src/CMakeLists.txt in the BUILD_UNIT_TESTS section near the end.

27.5 Testing with random numbers

Many algorithms and parts of the code depend on random numbers, which makes validating the results difficult. One
solution is to verify that certain properties hold for any random number. This approach is valuable at some levels of
testing, but is unsatisfying at the unit test level.

The Utilities directory contains a “fake” random number generator that can be used for deterministic tests of
these parts of the code. Currently it outputs a single, fixed value every time it is called, but it could be expanded to
produce more varied, but still deterministic, sequences. See src/QMCDrivers/test_vmc.cpp for an example
of using the fake random number generator.

27.4. Adding tests 331
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TWENTYEIGHT

INTEGRATION TESTS

Unlike unit tests requiring only a specific part of QMCPACK being built for testing, integration tests require the
qmcpack executable. In this category, tests are made based on realistic simulations although the amount of statistics
collected depends on sub-categories:

• Deterministic integration tests must be 100% reliable, quick to run, and always pass. They usually run one or
a few walkers for a very few steps in a few seconds. They are used to rapidly identify changes as part of the
continuous integration testing, to verify installations, and for development work.

• Short integration tests mostly run 16 walkers in a few hundred steps within a minutes. These are usually stochas-
tic and should pass with very high reliability.

• Long integration tests mostly run 16 walkers in a few thousand steps within 10 minutes. These are usually
stochastic and should pass with very high reliability.

To keep overall testing costs down, electron counts are usually kept small while still being large enough to compre-
hensively test the code e.g. 3-10. The complete test set except for the long tests has to be able to be run on a laptop or
modest workstation in a reasonable amount of time.

28.1 Integration test organization

Integration tests are placed under directories such as tests/heg, tests/solids and tests/molecules from
the top directory and one sub-directory for each simulation system. Each test source directory contains input XML
files, orbital h5 files, pseudo-potential files and reference data (qmc_ref). These files may be shared by a few tests to
minimize duplicated files. When cmake is invoked in the build directory, one directory per test is created and necessary
files correspond to a given test are softlinked. It serves as a working directory when that test is being executed. To
minimize the number file operation and make the cmake execution fast, there is limitation on file names used by
tests. The filenames are given below and implemented in the COPY_DIRECTORY_USING_SYMLINK_LIMITED
function in Cmake/macros.cmake.

qmc-ref/qmc_ref for reference data folder.

*.opt.xml/*.ncpp.xml/*.BFD.xml/*.ccECP.xml for pseudo-potential files.

*.py/*.sh for result checking helper scripts.

*.wfj.xml/*.wfnoj.xml/*.wfs.xml for standalone wavefunction input files.

*.structure.xml/*.ptcl.xml for standalone structure/particleset input files.
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28.2 How to add a integration test

1. Generate reference data using a very long (many blocks >=2000) and possibly wide run (many nodes). This
reduces both the error bar and the error bar of the error bar (10x samples than long test, 100x samples than short
test). A folder named qmc-ref containing input.xml, scalar.dat and output file is required with the commit. The
number of blocks should be about 200 to avoid large text files (a simple way to obtain these files is to repeat the
reference run with 10x fewer blocks and 10x more steps).

2. Generate the short/long run input files. Use the reference error bar to appropriately estimate the error bar for the
long and short tests. These error bars are sqrt(10+1) and sqrt(100+1) times larger than the very long reference.
10x grade is not a hard requirement but ref >= 10 long, long >= 10 short are required.

3. Short tests must be less than 20 sec VMC, 1 min OPT/DMC on a 16core Xeon processor. Long tests are
preferably in the 5-10min range. For systems containing more than just a few electrons submitting only a long
test may be appropriate.

4. Deterministic tests require a different approach: use of a fixed seed value, and for example, 3 blocks of 2 steps
and a single walker. The intent of these tests is to exercise the code paths but keep the run short enough that
the numerical deviations do not build up. Different reference data may be needed for mixed precision vs full
precision runs.

28.2.1 Suggested procedure to add a test

1. Study some of the existing tests and their CMakeLists.txt configuration file to see what is required and the
typical system sizes and run lengths used.

2. Perform a run ~30s in length on a 16 core machine (200 blocks min) using the CPU version of the code with 16
MPI and 1 thread per MPI. Decide if the resulting error bar is meaningful for a test. If so, short and long tests
should be created. If not, possibly only a long test is appropriate.

3. Perform a reference run by increasing steps and blocks by 10x each (2000 blocks) and obtain reference mean
and error bars. Long and short test error bars are then sqrt(100+1) and sqrt(10+1) of the reference.

4. Generate reference scalar data by redoing the reference run with 200 blocks and 100x steps. These data are
should be committed in a qmc-ref directory with the test.

5. Create short (1x blocks, 1x steps) and long (1x blocks, 10x steps) input files (200 blocks each). Make one set of
input files for CPU runs (walkers=1) and another for GPU runs (walkers=16).

6. Create CMakeLists.txt by following the example in other tests. CPU runs should include at least a 4 MPI, 4
thread test since this tests OpenMP, MPI, and any possible interactions between them. A GPU test should have
1 MPI and 16 threads.

7. Create a README file with information describing the tests and the reference data.

8. Check that the tests run properly with ctest on your local machine.

9. Submit a pull request with the final tests.
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RUNNING QMCPACK ON DOCKER CONTAINERS

This guide will briefly cover running QMCPACK on your machine using a docker container. Docker containers are a
portable way to achieve reproducibility across all developers and users. Two main uses:

1. Debugging CI related issues running on Docker containers that are not reproducible in other environments.

2. Ease the learning curve by providing a ready-to-go environment in a single container (binary available in Dock-
erHub) to new community members.

29.1 Current Images

Docker containers are identified by domain/image:tag and stored using DockerHub. Currently available containers
have pre-installed QMCPACK dependencies, see the Dockerfile file link for available dependencies on each image:

• Linux containers

– williamfgc/qmcpack-ci:ubuntu20-openmpi: Dockerfile

– williamfgc/qmcpack-ci:ubuntu20-clang-latest: Dockerfile

29.2 Running Docker Containers

1. Install the Docker engine: install the latest version of the Docker engine for your system. Please see the
documentation for different Linux distros here.

After installation run the following command to verify the Docker engine is properly installed. Note: restart
your system if necessary.

docker run hello-world

2. Pull an image (optional, see 3): once Docker is properly installed and running on your system, use the following
command to download a QMCPACK image and tag:

docker pull williamfgc/qmcpack-ci:ubuntu20-openmpi

3. Run an image: the docker run command will spin up a container with using the image we just downloaded
from step 2. Alternatively, docker run will automatically fallback to pulling the image and tag from DockerHub
(requires connection).

For a quick and safe, non sudo, run:

docker run -it williamfgc/qmcpack-ci:ubuntu20-openmpi /bin/bash
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The above will run the container in interactive mode dropping the default user to /home/user using the bash
shell. If sudo access is needed (e.g. install a package sudo apt-get install emacs) the password for the default
user is also user.

Run an image (for Development) docker run has a few extra options that can be used to run QMCPACK:

docker run -u $(id -u `stat -c "%U" .`):$(id -g `stat -c "%G" .`) -v <QMCPACK
→˓Source Directory>:/home/user -it williamfgc/qmcpack-ci:ubuntu20-openmpi /bin/
→˓bash

Flags used by docker run (Note: The flags -i and -t are combined above):

-u : For building we need write permissions, the current arguments will set your container user and
group to match your host user and group (e.g. install additional packages, allocating shared volume
permissions, etc.).

-v : Replace <QMCPACK Source Directory> with the direct path to your QMCPACK directory, this
maps it to our landing directory and gives docker access to the files

-i : Specifies the image to use

-t : Allocate a pseudo-tty, allows an instance of bash to pass commands to it

As an example, if extra permissions are needed the container can be run with the sudo user (not recommended):

docker run -u root -v path/to/QMCPACK:home/user -it williamfgc/qmcpack-
→˓ci:ubuntu20-openmpi /bin/bash

29.3 Build QMCPACK on Docker

The following steps just follow a regular QMCPACK build on any Linux environment

1. Get QMCPACK: use https as ssh requires extra authentication

• Option 1 (fresh build):

git clone https://github.com/QMCPACK/qmcpack.git
cd build

• Option 2 (for development):

cd build

– Note: this assumes you have mapped your QMCPACK directory as outlined above, else traverse
to your source directory, then the build folder inside.

2. Configure:

cmake -GNinja \
-DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx \
-DQMC_COMPLEX=0 \
..

• Note: To reproduce the build in the Docker container used by GitHub Actions CI pipeline we provide an
optimized build with debug symbols -DCMAKE_BUILD_TYPE=RelWithDebInfo , but users can select any
other cmake build type(Release being default):

– Debug
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– Release

– RelWithDebInfo

3. Build:

ninja

3. Test:

ctest -VV -R deterministic-unit_test_wavefunction_trialwf
ctest -L deterministic

Caution: OpenMPI strongly advises against running as a root user, see docs
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THIRTY

QMCPACK DESIGN AND FEATURE DOCUMENTATION

This section contains information on the overall design of QMCPACK. Also included are detailed explana-
tions/derivations of major features and algorithms present in the code.

30.1 QMCPACK design

TBD.

30.2 Feature: Optimized long-range breakup (Ewald)

Consider a group of particles interacting with long-range central potentials, 𝑣𝛼𝛽(|𝑟𝛼𝑖 − 𝑟
𝛽
𝑗 |), where the Greek super-

scripts represent the particle species (e.g., 𝛼 = electron, 𝛽 = proton), and Roman subscripts refer to particle number
within a species. We can then write the total interaction energy for the system as

𝑉 =
∑︁
𝛼

⎧⎨⎩∑︁
𝑖<𝑗

𝑣𝛼𝛼(|r𝛼𝑖 − r𝛼𝑗 |) +
∑︁
𝛽<𝛼

∑︁
𝑖,𝑗

𝑣𝛼𝛽(|r𝛼𝑖 − r𝛽𝑗 |)

⎫⎬⎭ (30.1)

30.2.1 The long-range problem

Consider such a system in periodic boundary conditions in a cell defined by primitive lattice vectors a1, a2, and a3.
Let L ≡ 𝑛1a1 + 𝑛2a2 + 𝑛3a3 be a direct lattice vector. Then the interaction energy per cell for the periodic system is
given by

𝑉 =
∑︁
L

∑︁
𝛼

⎧⎪⎪⎨⎪⎪⎩
homologous⏞  ⏟  ∑︁

𝑖<𝑗

𝑣𝛼𝛼(|r𝛼𝑖 − r𝛼𝑗 + L|) +

heterologous⏞  ⏟  ∑︁
𝛽<𝛼

∑︁
𝑖,𝑗

𝑣𝛼𝛽(|r𝛼𝑖 − r𝛽𝑗 + L|)

⎫⎪⎪⎬⎪⎪⎭
+
∑︁
L̸=0

∑︁
𝛼

𝑁𝛼𝑣𝛼𝛼(|L|)⏟  ⏞  
Madelung

.

(30.2)

where 𝑁𝛼 is the number particles of species 𝛼. If the potentials 𝑣𝛼𝛽(𝑟) are indeed long-range, the summation over
direct lattice vectors will not converge in this naive form. A solution to the problem was posited by Ewald. We break
the central potentials into two pieces—a short-range and a long-range part defined by

𝑣𝛼𝛽(𝑟) = 𝑣𝛼𝛽𝑠 (𝑟) + 𝑣𝛼𝛽𝑙 (𝑟) . (30.3)
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We will perform the summation over images for the short-range part in real space, while performing the sum for the
long-range part in reciprocal space. For simplicity, we choose 𝑣𝛼𝛽𝑠 (𝑟) so that it is identically zero at the half-the-box
length. This eliminates the need to sum over images in real space.

30.2.2 Reciprocal-space sums

Heterologous terms

We begin with (30.2), starting with the heterologous terms (i.e., the terms involving particles of different species). The
short-range terms are trivial, so we neglect them here.

heterologous =
1

2

∑︁
�̸�=𝛽

∑︁
𝑖,𝑗

∑︁
L

𝑣𝛼𝛽𝑙 (r𝛼𝑖 − r𝛽𝑗 + L) . (30.4)

We insert the resolution of unity in real space twice:

heterologous =
1

2

∑︁
�̸�=𝛽

∫︁
cell
𝑑r 𝑑r′

∑︁
𝑖,𝑗

𝛿(r𝛼𝑖 − r)𝛿(r𝛽𝑗 − r′)
∑︁
L

𝑣𝛼𝛽𝑙 (|r− r′ + L|) ,

=
1

2Ω2

∑︁
�̸�=𝛽

∫︁
cell
𝑑r 𝑑r′

∑︁
k,k′,𝑖,𝑗

𝑒𝑖k·(r
𝛼
𝑖 −r)𝑒𝑖k

′·(r𝛽𝑗 −r′)
∑︁
L

𝑣𝛼𝛽𝑙 (|r− r′ + L|) ,

=
1

2Ω2

∑︁
�̸�=𝛽

∫︁
cell
𝑑r 𝑑r′

∑︁
k,k′,k′′,𝑖,𝑗

𝑒𝑖k·(r
𝛼
𝑖 −r)𝑒𝑖k

′·(r𝛽𝑗 −r′)𝑒𝑖k
′′·(r−r′)𝑣𝛼𝛽k′′ .

Here, the k summations are over reciprocal lattice vectors given by k = 𝑚1b1 +𝑚2b2 +𝑚3b3, where

b1 = 2𝜋
a2 × a3

a1 · (a2 × a3)
,

b2 = 2𝜋
a3 × a1

a1 · (a2 × a3)
,

b3 = 2𝜋
a1 × a2

a1 · (a2 × a3)
.

We note that k · L = 2𝜋(𝑛1𝑚1 + 𝑛2𝑚2 + 𝑛3𝑚3).

𝑣𝛼𝛽𝑘′′ =
1

Ω

∫︁
cell
𝑑r′′

∑︁
L

𝑒−𝑖k
′′·(|r′′+L|)𝑣𝛼𝛽(|r′′ + L|) ,

=
1

Ω

∫︁
all space

𝑑r̃ 𝑒−𝑖k
′′·r̃𝑣𝛼𝛽(𝑟) ,

(30.5)

where Ω is the volume of the cell. Here we have used the fact that summing over all cells of the integral over the cell
is equivalent to integrating over all space.

hetero =
1

2Ω2

∑︁
𝛼 ̸=𝛽

∫︁
cell
𝑑r 𝑑r′

∑︁
k,k′,k′′,𝑖,𝑗

𝑒𝑖(k·r
𝛼
𝑖 +k′·r𝛽𝑗 )𝑒𝑖(k

′′−k)·r𝑒−𝑖(k
′′+k′)·r′𝑣𝛼𝛽k′′ . (30.6)

We have

1

Ω

∫︁
𝑑r 𝑒𝑖(k−k′)·r = 𝛿k,k′ . (30.7)

Then, performing the integrations we have

hetero =
1

2

∑︁
�̸�=𝛽

∑︁
k,k′,k′′,𝑖,𝑗

𝑒𝑖(k·r
𝛼
𝑖 +k′·r𝛽𝑗 )𝛿k,k′′𝛿−k′,k′′𝑣𝛼𝛽k′′ . (30.8)
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We now separate the summations, yielding

hetero =
1

2

∑︁
�̸�=𝛽

∑︁
k,k′

⎡⎣∑︁
𝑖

𝑒𝑖k·r
𝛼
𝑖

⎤⎦
⏟  ⏞  

𝜌𝛼k

⎡⎣∑︁
𝑗

𝑒𝑖k
′·r𝛽𝑗

⎤⎦
⏟  ⏞  

𝜌𝛽
k′

𝛿k,k′′𝛿−k′,k′′𝑣𝛼𝛽k′′ .
(30.9)

Summing over k and k′, we have

hetero =
1

2

∑︁
𝛼 ̸=𝛽

∑︁
k′′

𝜌𝛼k′′ 𝜌
𝛽
−k′′𝑣

𝛼𝛽
𝑘′′ . (30.10)

We can simplify the calculation a bit further by rearranging the sums over species:

hetero =
1

2

∑︁
𝛼>𝛽

∑︁
k

(︁
𝜌𝛼k𝜌

𝛽
−k + 𝜌𝛼−k𝜌

𝛽
k

)︁
𝑣𝛼𝛽𝑘 ,

=
∑︁
𝛼>𝛽

∑︁
k

ℛ𝑒
(︁
𝜌𝛼k𝜌

𝛽
−k

)︁
𝑣𝛼𝛽𝑘 .

(30.11)

Homologous terms

We now consider the terms involving particles of the same species interacting with each other. The algebra is very
similar to the preceding, with the slight difficulty of avoiding the self-interaction term.

homologous =
∑︁
𝛼

∑︁
𝐿

∑︁
𝑖<𝑗

𝑣𝛼𝛼𝑙 (|r𝛼𝑖 − r𝛼𝑗 + L|) ,

=
1

2

∑︁
𝛼

∑︁
𝐿

∑︁
𝑖 ̸=𝑗

𝑣𝛼𝛼𝑙 (|r𝛼𝑖 − r𝛼𝑗 + L|) .
(30.12)

homologous =
1

2

∑︁
𝛼

∑︁
𝐿

⎡⎣−𝑁𝛼𝑣𝛼𝛼𝑙 (|L|) +
∑︁
𝑖,𝑗

𝑣𝛼𝛼𝑙 (|r𝛼𝑖 − r𝛼𝑗 + L|)

⎤⎦ ,

=
1

2

∑︁
𝛼

∑︁
k

(︀
|𝜌𝛼𝑘 |2 −𝑁

)︀
𝑣𝛼𝛼𝑘 .

(30.13)

Madelung terms

Let us now consider the Madelung term for a single particle of species 𝛼. This term corresponds to the interaction of
a particle with all of its periodic images.

𝑣𝛼𝑀 =
1

2

∑︁
L ̸=0

𝑣𝛼𝛼(|L|) ,

=
1

2

[︃
−𝑣𝛼𝛼𝑙 (0) +

∑︁
L

𝑣𝛼𝛼(|L|)

]︃
,

=
1

2

[︃
−𝑣𝛼𝛼𝑙 (0) +

∑︁
k

𝑣𝛼𝛼k

]︃
.

(30.14)
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k = 0 terms

Thus far, we have neglected what happens at the special point k = 0. For many long-range potentials, such as the
Coulomb potential, 𝑣𝛼𝛼𝑘 diverges for 𝑘 = 0. However, we recognize that for a charge-neutral system, the divergent
part of the terms cancel each other. If all the potential in the system were precisely Coulomb, the k = 0 terms would
cancel precisely, yielding zero. For systems involving PPs, however, it may be that the resulting term is finite, but
nonzero. Consider the terms from k = 0:

𝑉𝑘=0 =
∑︁
𝛼>𝛽

𝑁𝛼𝑁𝛽𝑣𝛼𝛽𝑘=0 +
1

2

∑︁
𝛼

(𝑁𝛼)
2
𝑣𝛼𝛼𝑘=0 ,

=
1

2

∑︁
𝛼,𝛽

𝑁𝛼𝑁𝛽𝑣𝛼𝛽𝑘=0 .

(30.15)

Next, we must compute 𝑣𝛼𝛽𝑘=0.

𝑣𝛼𝛽𝑘=0 =
4𝜋

Ω

∫︁ ∞

0

𝑑𝑟 𝑟2𝑣𝛼𝛽𝑙 (𝑟) . (30.16)

We recognize that this integral will not converge because of the large-𝑟 behavior. However, we recognize that when
we do the sum in (30.15), the large-𝑟 parts of the integrals will cancel precisely. Therefore, we define

𝑣𝛼𝛽𝑘=0 =
4𝜋

Ω

∫︁ 𝑟end

0

𝑑𝑟 𝑟2𝑣𝛼𝛽𝑙 (𝑟) , (30.17)

where 𝑟end is some cutoff value after which the potential tails precisely cancel.

Neutralizing background terms

For systems with a net charge, such as the one-component plasma (jellium), we add a uniform background charge,
which makes the system neutral. When we do this, we must add a term that comes from the interaction of the particle
with the neutral background. It is a constant term, independent of the particle positions. In general, we have a
compensating background for each species, which largely cancels out for neutral systems.

𝑉background = −1

2

∑︁
𝛼

(𝑁𝛼)
2
𝑣𝛼𝛼𝑠0 −

∑︁
𝛼>𝛽

𝑁𝛼𝑁𝛽𝑣
𝛼𝛽
𝑠0 , (30.18)

where 𝑣𝛼𝛽𝑠0 is given by

𝑣𝛼𝛽𝑠0 =
1

Ω

∫︁ 𝑟𝑐

0

𝑑3𝑟 𝑣𝛼𝛽𝑠 (𝑟) ,

=
4𝜋

Ω

∫︁ 𝑟𝑐

0

𝑟2𝑣𝑠(𝑟) 𝑑𝑟 .

342 Chapter 30. QMCPACK Design and Feature Documentation



QMCPACK Manual

30.2.3 Combining terms

Here, we sum all of the terms we computed in the previous sections:

𝑉 =
∑︁
𝛼>𝛽

⎡⎣∑︁
𝑖,𝑗

𝑣𝑠(|r𝛼𝑖 − r𝛽𝑗 |) +
∑︁
k

ℛ𝑒
(︁
𝜌𝛼k𝜌

𝛽
−k

)︁
𝑣𝛼𝛽𝑘 −𝑁

𝛼𝑁𝛽𝑣𝛼𝛽𝑠0

⎤⎦ ,

+
∑︁
𝛼

⎡⎣𝑁𝛼𝑣𝛼𝑀 +
∑︁
𝑖>𝑗

𝑣𝑠(|r𝛼𝑖 − r𝛼𝑗 |) +
1

2

∑︁
k

(︀
|𝜌𝛼k |2 −𝑁

)︀
𝑣𝛼𝛼k − 1

2
(𝑁𝛼)

2
𝑣𝛼𝛼𝑠0

⎤⎦ ,

=
∑︁
𝛼>𝛽

⎡⎣∑︁
𝑖,𝑗

𝑣𝑠(|r𝛼𝑖 − r𝛽𝑗 |) +
∑︁
k

ℛ𝑒
(︁
𝜌𝛼k𝜌

𝛽
−k

)︁
𝑣𝛼𝛽𝑘 −𝑁

𝛼𝑁𝛽𝑣𝛼𝛽𝑠0 + 𝑉𝑘=0

⎤⎦ ,

+
∑︁
𝛼

⎡⎣−𝑁𝛼𝑣𝛼𝛼𝑙 (0)

2
+
∑︁
𝑖>𝑗

𝑣𝑠(|r𝛼𝑖 − r𝛼𝑗 |) +
1

2

∑︁
k

|𝜌𝛼k |2𝑣𝛼𝛼k − 1

2
(𝑁𝛼)

2
𝑣𝛼𝛼𝑠0 + 𝑉𝑘=0

⎤⎦ .

30.2.4 Computing the reciprocal potential

Now we return to (30.5). Without loss of generality, we define for convenience k = 𝑘ẑ.

𝑣𝛼𝛽𝑘 =
2𝜋

Ω

∫︁ ∞

0

𝑑𝑟

∫︁ 1

−1

𝑑 cos(𝜃) 𝑟2𝑒−𝑖𝑘𝑟 cos(𝜃)𝑣𝛼𝛽𝑙 (𝑟) . (30.19)

We do the angular integral first. By inversion symmetry, the imaginary part of the integral vanishes, yielding

𝑣𝛼𝛽𝑘 =
4𝜋

Ω𝑘

∫︁ ∞

0

𝑑𝑟 𝑟 sin(𝑘𝑟)𝑣𝛼𝛽𝑙 (𝑟) . (30.20)

30.2.5 The Coulomb potential

For the case of the Coulomb potential, the preceding integral is not formally convergent if we do the integral naively.
We may remedy the situation by including a convergence factor, 𝑒−𝑘0𝑟. For a potential of the form 𝑣coul(𝑟) = 𝑞1𝑞2/𝑟,
this yields

𝑣screened coul
𝑘 =

4𝜋𝑞1𝑞2
Ω𝑘

∫︁ ∞

0

𝑑𝑟 sin(𝑘𝑟)𝑒−𝑘0𝑟 ,

=
4𝜋𝑞1𝑞2

Ω(𝑘2 + 𝑘20)
.

(30.21)

Allowing the convergence factor to tend to zero, we have

𝑣coul
𝑘 =

4𝜋𝑞1𝑞2
Ω𝑘2

. (30.22)

For more generalized potentials with a Coulomb tail, we cannot evaluate (30.20) numerically but must handle the
coulomb part analytically. In this case, we have

𝑣𝛼𝛽𝑘 =
4𝜋

Ω

{︂
𝑞1𝑞2
𝑘2

+

∫︁ ∞

0

𝑑𝑟 𝑟 sin(𝑘𝑟)
[︁
𝑣𝛼𝛽𝑙 (𝑟)− 𝑞1𝑞2

𝑟

]︁}︂
. (30.23)
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30.2.6 Efficient calculation methods

Fast computation of 𝜌k

We wish to quickly calculate the quantity

𝜌𝛼k ≡
∑︁
𝑖

𝑒𝑖k·𝑟
𝛼
𝑖 . (30.24)

First, we write

k = 𝑚1b1 +𝑚2b2 +𝑚3b3 ,

k · r𝛼𝑖 = 𝑚1b1 · r𝛼𝑖 +𝑚2b2 · r𝛼𝑖 +𝑚3b3 · r𝛼𝑖 ,

𝑒𝑖k·𝑟
𝛼
𝑖 =

[︁
𝑒𝑖b1·r𝛼𝑖

]︁
⏟  ⏞  

𝐶𝑖𝛼
1

𝑚1
[︁
𝑒𝑖b2·r𝛼𝑖

]︁
⏟  ⏞  

𝐶𝑖𝛼
2

𝑚2
[︁
𝑒𝑖b3·r𝛼𝑖

]︁
⏟  ⏞  

𝐶𝑖𝛼
3

𝑚3

.
(30.25)

Now, we note that

𝑚1 = 𝐶𝑖𝛼1 [𝐶𝑖𝛼](𝑚1−1) . (30.26)

This allows us to recursively build up an array of the 𝐶𝑖𝛼s and then compute 𝜌k for all k-vectors by looping over all
k-vectors, requiring only two complex multiplies per particle per k.

Algorithm to quickly calculate 𝜌𝛼k .

Create list of k-vectors and corresponding (𝑚1,𝑚2,𝑚3) indices.
for all 𝛼 ∈ species

Zero out 𝜌𝛼k
for all 𝑖 ∈ particles do

for 𝑗 ∈ [1 · · · 3] do
Compute 𝐶𝑖𝛼𝑗 ≡ 𝑒𝑖b𝑗 ·r𝛼𝑖

for 𝑚 ∈ [−𝑚max . . .𝑚max] do
Compute [𝐶𝑖𝛼𝑗 ]𝑚 and store in array

end for
end for
for all (𝑚1,𝑚2,𝑚3) ∈ index list do

Compute 𝑒𝑖k·𝑟
𝛼
𝑖 = [𝐶𝑖𝛼1 ]𝑚1 [𝐶𝑖𝛼2 ]𝑚2 [𝐶𝑖𝛼3 ]𝑚3 from array

end for
end for

end for

30.2.7 Gaussian charge screening breakup

This original approach to the short- and long-range breakup adds an opposite screening charge of Gaussian shape
around each point charge. It then removes the charge in the long-range part of the potential. In this potential,

𝑣long(𝑟) =
𝑞1𝑞2
𝑟

erf(𝛼𝑟) , (30.27)

where 𝛼 is an adjustable parameter used to control how short ranged the potential should be. If the box size is 𝐿, a
typical value for 𝛼 might be 7/(𝐿𝑞1𝑞2). We should note that this form for the long-range potential should also work
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for any general potential with a Coulomb tail (e.g., pseudo-Hamiltonian potentials. For this form of the long-range
potential, we have in 𝑘-space

𝑣𝑘 =
4𝜋𝑞1𝑞2 exp

[︁
−𝑘2
4𝛼2

]︁
Ω𝑘2

.
(30.28)

30.2.8 Optimized breakup method

In this section, we undertake the task of choosing a long-range/short-range partitioning of the potential, which is
optimal in that it minimizes the error for given real and 𝑘-space cutoffs 𝑟𝑐 and 𝑘𝑐. Here, we slightly modify the
method introduced by Natoli and Ceperley [[NC95]]. We choose 𝑟𝑐 = 1

2 min{𝐿𝑖} so that we require the nearest
image in real-space summation. 𝑘𝑐 is then chosen to satisfy our accuracy requirements.

Here we modify our notation slightly to accommodate details not previously required. We restrict our discussion to
the interaction of two particle species (which may be the same), and drop our species indices. Thus, we are looking
for short- and long-range potentials defined by

𝑣(𝑟) = 𝑣𝑠(𝑟) + 𝑣ℓ(𝑟) . (30.29)

Define 𝑣𝑠𝑘 and 𝑣ℓ𝑘 to be the respective Fourier transforms of the previous equation. The goal is to choose 𝑣𝑠(𝑟) such that
its value and first two derivatives vanish at 𝑟𝑐, while making 𝑣ℓ(𝑟) as smooth as possible so that 𝑘-space components,
𝑣ℓ𝑘, are very small for 𝑘 > 𝑘𝑐. Here, we describe how to do this in an optimal way.

Define the periodic potential, 𝑉𝑝, as

𝑉𝑝(r) =
∑︁
𝑙

𝑣(|r + l|), (30.30)

where r is the displacement between the two particles and l is a lattice vector. Let us then define our approximation to
this potential, 𝑉𝑎, as

𝑉𝑎(r) = 𝑣𝑠(𝑟) +
∑︁

|k|<𝑘𝑐

𝑣ℓ𝑘𝑒
𝑖k·r . (30.31)

Now, we seek to minimize the RMS error over the cell,

𝜒2 =
1

Ω

∫︁
Ω

𝑑3r |𝑉𝑝(r)− 𝑉𝑎(r)|2 . (30.32)

We may write

𝑉𝑝(r) =
∑︁
k

𝑣𝑘𝑒
𝑖k·r , (30.33)

where

𝑣𝑘 =
1

Ω

∫︁
𝑑3r 𝑒−𝑖k·r𝑣(𝑟) . (30.34)

We now need a basis in which to represent the broken-up potential. We may choose to represent either 𝑣𝑠(𝑟) or 𝑣ℓ(𝑟)
in a real-space basis. Natoli and Ceperley chose the former in their paper. We choose the latter for a number of
reasons. First, singular potentials are difficult to represent in a linear basis unless the singularity is explicitly included.
This requires a separate basis for each type of singularity. The short-range potential may have an arbitrary number
of features for 𝑟 < 𝑟𝑐 and still be a valid potential. By construction, however, we desire that 𝑣ℓ(𝑟) be smooth in
real-space so that its Fourier transform falls off quickly with increasing 𝑘. We therefore expect that, in general, 𝑣ℓ(𝑟)
should be well represented by fewer basis functions than 𝑣𝑠(𝑟). Therefore, we define

𝑣ℓ(𝑟) ≡

{︃∑︀𝐽−1
𝑛=0 𝑡𝑛ℎ𝑛(𝑟) for 𝑟 ≤ 𝑟𝑐

𝑣(𝑟) for 𝑟 > 𝑟𝑐.
, (30.35)
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where the ℎ𝑛(𝑟) are a set of 𝐽 basis functions. We require that the two cases agree on the value and first two derivatives
at 𝑟𝑐. We may then define

𝑐𝑛𝑘 ≡
1

Ω

∫︁ 𝑟𝑐

0

𝑑3r 𝑒−𝑖k·rℎ𝑛(𝑟) . (30.36)

Similarly, we define

𝑥𝑘 ≡ −
1

Ω

∫︁ ∞

𝑟𝑐

𝑑3r 𝑒−𝑖k·r𝑣(𝑟) . (30.37)

Therefore,

𝑣ℓ𝑘 = −𝑥𝑘 +

𝐽−1∑︁
𝑛=0

𝑡𝑛𝑐𝑛𝑘 . (30.38)

Because 𝑣𝑠(𝑟) goes identically to zero at the box edge, inside the cell we may write

𝑣𝑠(r) =
∑︁
k

𝑣𝑠𝑘𝑒
𝑖k·r . (30.39)

We then write

𝜒2 =
1

Ω

∫︁
Ω

𝑑3r

⃒⃒⃒⃒
⃒⃒∑︁

k

𝑒𝑖k·r (𝑣𝑘 − 𝑣𝑠𝑘)−
∑︁

|k|≤𝑘𝑐

𝑣ℓ𝑘

⃒⃒⃒⃒
⃒⃒
2

. (30.40)

We see that if we define

𝑣𝑠(𝑟) ≡ 𝑣(𝑟)− 𝑣ℓ(𝑟) . (30.41)

Then

𝑣ℓ𝑘 + 𝑣𝑠𝑘 = 𝑣𝑘 , (30.42)

which then cancels out all terms for |k| < 𝑘𝑐. Then we have

𝜒2 =
1

Ω

∫︁
Ω

𝑑3r

⃒⃒⃒⃒
⃒⃒ ∑︁
|k|>𝑘𝑐

𝑒𝑖k·r (𝑣𝑘 − 𝑣𝑠𝑘)

⃒⃒⃒⃒
⃒⃒
2

,

=
1

Ω

∫︁
Ω

𝑑3r

⃒⃒⃒⃒
⃒⃒ ∑︁
|k|>𝑘𝑐

𝑒𝑖k·r𝑣ℓ𝑘

⃒⃒⃒⃒
⃒⃒
2

,

=
1

Ω

∫︁
Ω

𝑑3r

⃒⃒⃒⃒
⃒⃒ ∑︁
|k|>𝑘𝑐

𝑒𝑖k·r

(︃
−𝑥𝑘 +

𝐽−1∑︁
𝑛=0

𝑡𝑛𝑐𝑛𝑘

)︃⃒⃒⃒⃒
⃒⃒
2

.

(30.43)

We expand the summation,

𝜒2 =
1

Ω

∫︁
Ω

𝑑3r
∑︁

{|k|,|k′|}>𝑘𝑐

𝑒𝑖(k−k′)·r

(︃
𝑥𝑘 −

𝐽−1∑︁
𝑛=0

𝑡𝑛𝑐𝑛𝑘

)︃(︃
𝑥𝑘 −

𝐽−1∑︁
𝑚=0

𝑡𝑚𝑐𝑚𝑘′

)︃
. (30.44)

We take the derivative w.r.t. 𝑡𝑚:

𝜕(𝜒2)

𝜕𝑡𝑚
=

2

Ω

∫︁
Ω

𝑑3r
∑︁

{|k|,|k′|}>𝑘𝑐

𝑒𝑖(k−k′)·r

(︃
𝑥𝑘 −

𝐽−1∑︁
𝑛=0

𝑡𝑛𝑐𝑛𝑘

)︃
𝑐𝑚𝑘′ . (30.45)
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We integrate w.r.t. r, yielding a Kronecker 𝛿.

𝜕(𝜒2)

𝜕𝑡𝑚
= 2

∑︁
{|k|,|k′|}>𝑘𝑐

𝛿k,k′

(︃
𝑥𝑘 −

𝐽−1∑︁
𝑛=0

𝑡𝑛𝑐𝑛𝑘

)︃
𝑐𝑚𝑘′ . (30.46)

Summing over k′ and equating the derivative to zero, we find the minimum of our error function is given by

𝐽−1∑︁
𝑛=0

∑︁
|k|>𝑘𝑐

𝑐𝑚𝑘𝑐𝑛𝑘𝑡𝑛 =
∑︁

|k|>𝑘𝑐

𝑥𝑘𝑐𝑚𝑘 , (30.47)

which is equivalent in form to Equation 19 in [[NC95]], where we have 𝑥𝑘 instead of 𝑉𝑘. Thus, we see that we can
optimize the short- or long-range potential simply by choosing to use 𝑉𝑘 or 𝑥𝑘 in the preceding equation. We now
define

𝐴𝑚𝑛 ≡
∑︁

|k|>𝑘𝑐

𝑐𝑚𝑘𝑐𝑛𝑘 ,

𝑏𝑚 ≡
∑︁

|k|>𝑘𝑐

𝑥𝑘𝑐𝑚𝑘 .
(30.48)

Thus, it becomes clear that our minimization equations can be cast in the canonical linear form

At = b . (30.49)

Solution by SVD

In practice, we note that the matrix A frequently becomes singular in practice. For this reason, we use the singular
value decomposition to solve for 𝑡𝑛. This factorization decomposes 𝐴 as

A = USV𝑇 , (30.50)

where U𝑇U = V𝑇V = 1 and S is diagonal. In this form, we have

t =

𝐽−1∑︁
𝑖=0

(︂
U(𝑖) · b
S𝑖𝑖

)︂
V(𝑖) , (30.51)

where the parenthesized subscripts refer to columns. The advantage of this form is that if S𝑖𝑖 is zero or very near
zero, the contribution of the 𝑖th of V may be neglected since it represents a numerical instability and has little physical
meaning. It represents the fact that the system cannot distinguish between two linear combinations of the basis func-
tions. Using the SVD in this manner is guaranteed to be stable. This decomposition is available in LAPACK in the
DGESVD subroutine.

Constraining Values

Often, we wish to constrain the value of 𝑡𝑛 to have a fixed value to enforce a boundary condition, for example. To do
this, we define

b′ ≡ b− 𝑡𝑛A(𝑛) . (30.52)

We then define A* as A with the 𝑛th row and column removed and b* as b′ with the 𝑛th element removed. Then
we solve the reduced equation A*t* = b* and finally insert 𝑡𝑛 back into the appropriate place in t* to recover the
complete, constrained vector t. This may be trivially generalized to an arbitrary number of constraints.
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The LPQHI basis

The preceding discussion is general and independent of the basis used to represent 𝑣ℓ(𝑟). In this section, we introduce a
convenient basis of localized interpolant functions, similar to those used for splines, which have a number of properties
that are convenient for our purposes.

First, we divide the region from 0 to 𝑟𝑐 into 𝑀 − 1 subregions, bounded above and below by points we term knots,
defined by 𝑟𝑗 ≡ 𝑗∆, where ∆ ≡ 𝑟𝑐/(𝑀 − 1). We then define compact basis elements, ℎ𝑗𝛼, which span the region
[𝑟𝑗−1, 𝑟𝑗+1], except for 𝑗 = 0 and 𝑗 = 𝑀 . For 𝑗 = 0, only the region [𝑟0, 𝑟1], while for 𝑗 = 𝑀 , only [𝑟𝑀−1, 𝑟𝑀 ].
Thus, the index 𝑗 identifies the knot the element is centered on, while 𝛼 is an integer from 0 to 2 indicating one of
three function shapes. The dual index can be mapped to the preceding single index by the relation 𝑛 = 3𝑗 + 𝛼. The
basis functions are then defined as

ℎ𝑗𝛼(𝑟) =

⎧⎪⎪⎨⎪⎪⎩
∆𝛼

∑︀5
𝑛=0 𝑆𝛼𝑛

(︁
𝑟−𝑟𝑗
Δ

)︁𝑛
, 𝑟𝑗 < 𝑟 ≤ 𝑟𝑗+1

(−∆)𝛼
∑︀5
𝑛=0 𝑆𝛼𝑛

(︁
𝑟𝑗−𝑟
Δ

)︁𝑛
, 𝑟𝑗−1 < 𝑟 ≤ 𝑟𝑗

0, otherwise ,

(30.53)

where the matrix 𝑆𝛼𝑛 is given by

𝑆 =

⎡⎣1 0 0 −10 15 −6
0 1 0 −6 8 −3
0 0 1

2 − 3
2

3
2 − 1

2

⎤⎦ . (30.54)

Fig. 30.1 shows plots of these function shapes.

The basis functions have the property that at the left and right extremes (i.e., 𝑟𝑗−1 and 𝑟𝑗+1) their values and first two
derivatives are zero. At the center, 𝑟𝑗 , we have the properties

ℎ𝑗0(𝑟𝑗) = 1,ℎ′𝑗0(𝑟𝑗) = 0, ℎ′′𝑗0(𝑟𝑗) = 0 ,

ℎ𝑗1(𝑟𝑗) = 0,ℎ′𝑗1(𝑟𝑗) = 1, ℎ′′𝑗1(𝑟𝑗) = 0 ,

ℎ𝑗2(𝑟𝑗) = 0,ℎ′𝑗2(𝑟𝑗) = 0, ℎ′′𝑗2(𝑟𝑗) = 1 .

(30.55)

These properties allow the control of the value and first two derivatives of the represented function at any knot value
simply by setting the coefficients of the basis functions centered around that knot. Used in combination with the
method described in Constraining Values, boundary conditions can easily be enforced. In our case, we wish require
that

ℎ𝑀0 = 𝑣(𝑟𝑐), ℎ𝑀1 = 𝑣′(𝑟𝑐), and ℎ𝑀2 = 𝑣′′(𝑟𝑐) . (30.56)

This ensures that 𝑣𝑠 and its first two derivatives vanish at 𝑟𝑐.

Fourier coefficients

We wish now to calculate the Fourier transforms of the basis functions, defined as

𝑐𝑗𝛼𝑘 ≡
1

Ω

∫︁ 𝑟𝑐

0

𝑑3r𝑒−𝑖k·rℎ𝑗𝛼(𝑟) . (30.57)

We may then write,

𝑐𝑗𝛼𝑘 =

⎧⎪⎪⎨⎪⎪⎩
∆𝛼
∑︀5
𝑛=0 𝑆𝛼𝑛𝐷

+
0𝑘𝑛, 𝑗 = 0

∆𝛼
∑︀5
𝑛=0 𝑆𝛼𝑛(−1)𝛼+𝑛𝐷−

𝑀𝑘𝑛, 𝑗 = 𝑀

∆𝛼
∑︀5
𝑛=0 𝑆𝛼𝑛

[︁
𝐷+
𝑗𝑘𝑛 + (−1)𝛼+𝑛𝐷−

𝑗𝑘𝑛

]︁
otherwise ,

(30.58)
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Fig. 30.1: Basis functions ℎ𝑗0, ℎ𝑗1, and ℎ𝑗2 are shown. We note that at the left and right extremes, the values and first
two derivatives of the functions are zero; while at the center, ℎ𝑗0 has a value of 1, ℎ𝑗1 has a first derivative of 1, and
ℎ𝑗2 has a second derivative of 1.
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where

𝐷±
𝑗𝑘𝑛 ≡

1

Ω

∫︁ 𝑟𝑗±1

𝑟𝑗

𝑑3r 𝑒−𝑖k·r
(︂
𝑟 − 𝑟𝑗

∆

)︂𝑛
. (30.59)

We then further make the definition that

𝐷±
𝑗𝑘𝑛 = ± 4𝜋

𝑘Ω

[︁
∆Im

(︁
𝐸±
𝑗𝑘(𝑛+1)

)︁
+ 𝑟𝑗Im

(︁
𝐸±
𝑗𝑘𝑛

)︁]︁
. (30.60)

It can then be shown that

𝐸±
𝑗𝑘𝑛 =

{︃
− 𝑖
𝑘𝑒
𝑖𝑘𝑟𝑗

(︀
𝑒±𝑖𝑘Δ − 1

)︀
if 𝑛 = 0,

− 𝑖
𝑘

[︁
(±1)

𝑛
𝑒𝑖𝑘(𝑟𝑗±Δ) − 𝑛

Δ𝐸
±
𝑗𝑘(𝑛−1)

]︁
otherwise .

(30.61)

Note that these equations correct typographical errors present in [[NC95]].

Enumerating 𝑘-points

We note that the summations over 𝑘, which are ubiquitous in this paper, require enumeration of the 𝑘-vectors. In
particular, we should sum over all |k| > 𝑘𝑐. In practice, we must limit our summation to some finite cutoff value 𝑘𝑐 <
|k| < 𝑘max, where 𝑘max should be on the order of 3, 000/𝐿, where 𝐿 is the minimum box dimension. Enumerating
these vectors in a naive fashion even for this finite cutoff would prove quite prohibitive, as it would require ∼ 109

vectors.

Our first optimization comes in realizing that all quantities in this calculation require only |k| and not k itself. Thus,
we may take advantage of the great degeneracy of |k|. We create a list of (𝑘,𝑁) pairs, where 𝑁 is the number of
vectors with magnitude 𝑘. We make nested loops over 𝑛1, 𝑛2, and 𝑛3, yielding k = 𝑛1b1 + 𝑛2b2 + 𝑛3b3. If |k| is
in the required range, we check to see whether there is already an entry with that magnitude on our list and increment
the corresponding 𝑁 if there is, or create a new entry if not. Doing so typically saves a factor of ∼ 200 in storage and
computation.

This reduction is not sufficient for large 𝑘𝑚𝑎𝑥 since it requires that we still look over 109 entries. To further reduce
costs, we may pick an intermediate cutoff, 𝑘cont, above which we will approximate the degeneracy assuming a contin-
uum of 𝑘-points. We stop our exact enumeration at 𝑘cont and then add ∼ 1, 000 points, 𝑘𝑖, uniformly spaced between
𝑘cont and 𝑘max. We then approximate the degeneracy by

𝑁𝑖 =
4𝜋

3

(︀
𝑘3𝑏 − 𝑘3𝑎

)︀
(2𝜋)3/Ω

, (30.62)

where 𝑘𝑏 = (𝑘𝑖 +𝑘𝑖+1)/2 and 𝑘𝑎 = (𝑘𝑖 +𝑘𝑖−1). In doing so, we typically reduce our total number of k-points to sum
more than ∼ 2, 500 from the 109 we had to start.

Calculating 𝑥𝑘’s

The Coulomb potential

For 𝑣(𝑟) = 1
𝑟 , 𝑥𝑘 is given by

𝑥coulomb
𝑘 = − 4𝜋

Ω𝑘2
cos(𝑘𝑟𝑐) . (30.63)
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The 1/𝑟2 potential

For 𝑣(𝑟) = 1
𝑟2 , 𝑥𝑘 is given by

𝑥
1/𝑟2

𝑘 =
4𝜋

𝜔𝑘

[︁
Si(𝑘𝑟𝑐)−

𝜋

2

]︁
, (30.64)

where the sin integral, Si(𝑧), is given by

Si(𝑧) ≡
∫︁ 𝑧

0

sin 𝑡

𝑡
𝑑𝑡 . (30.65)

The 1/𝑟3 potential

For 𝑣(𝑟) = 1
𝑟3 , 𝑥𝑘 is given by

𝑥
1/𝑟2

𝑘 =
4𝜋

𝜔𝑘

[︁
Si(𝑘𝑟𝑐)−

𝜋

2

]︁
, (30.66)

where the cosine integral, Ci(𝑧), is given by

Ci(𝑧) ≡ −
∫︁ ∞

𝑧

cos 𝑡

𝑡
𝑑𝑡 . (30.67)

The 1/𝑟4 potential

For 𝑣(𝑟) = 1
𝑟4 , 𝑥𝑘 is given by

𝑥
1/𝑟4

𝑘 = − 4𝜋

Ω𝑘

{︂
𝑘 cos(𝑘𝑟𝑐)

2𝑟𝑐
+

sin(𝑘𝑟𝑐)

2𝑟2𝑐
+
𝑘2

2

[︁
Si(𝑘𝑟𝑐)−

𝜋

2

]︁}︂
. (30.68)

30.3 Feature: Optimized long-range breakup (Ewald) 2

Given a lattice of vectors L, its associated reciprocal lattice of vectors k and a function 𝜓(r) periodic on the lattice we
define its Fourier transform ̃︀𝜓(k) as

̃︀𝜓(k) =
1

Ω

∫︁
Ω

𝑑r𝜓(r)𝑒−𝑖kr , (30.69)

where we indicated both the cell domain and the cell volume by Ω. 𝜓(r) can then be expressed as

𝜓(r) =
∑︁
k

̃︀𝜓(k)𝑒𝑖kr . (30.70)

The potential generated by charges sitting on the lattice positions at a particular point r inside the cell is given by

𝑉 (r) =
∑︁
L

𝑣(|r + L|) , (30.71)

and its Fourier transform can be explicitly written as a function of 𝑉 or 𝑣

̃︀𝑉 (k) =
1

Ω

∫︁
Ω

𝑑r𝑉 (r)𝑒−𝑖kr =
1

Ω

∫︁
R3

𝑑r𝑣(r)𝑒−𝑖kr , (30.72)

30.3. Feature: Optimized long-range breakup (Ewald) 2 351



QMCPACK Manual

where R3 denotes the whole 3D space. We now want to find the best (“best” to be defined later) approximate potential
of the form

𝑉𝑎(r) =
∑︁
𝑘≤𝑘𝑐

̃︀𝑌 (𝑘)𝑒𝑖kr +𝑊 (𝑟) , (30.73)

where 𝑊 (𝑟) has been chosen to go smoothly to 0 when 𝑟 = 𝑟𝑐, being 𝑟𝑐 lower or equal to the Wigner-Seitz radius of
the cell. Note also the cutoff 𝑘𝑐 on the momentum summation.

The best form of ̃︀𝑌 (𝑘) and 𝑊 (𝑟) is given by minimizing

𝜒2 =
1

Ω

∫︁
𝑑r

⎛⎝𝑉 (r)−𝑊 (r)−
∑︁
𝑘≤𝑘𝑐

̃︀𝑌 (𝑘)𝑒𝑖kr

⎞⎠2

, (30.74)

or the reciprocal space equivalent

𝜒2 =
∑︁
𝑘≤𝑘𝑐

(̃︀𝑉 (𝑘)−̃︁𝑊 (𝑘)− ̃︀𝑌 (𝑘))2 +
∑︁
𝑘>𝑘𝑐

(̃︀𝑉 (𝑘)−̃︁𝑊 (𝑘))2 . (30.75)

(30.75) follows from (30.74) and the unitarity (norm conservation) of the Fourier transform.

This last condition is minimized by

̃︀𝑌 (𝑘) = ̃︀𝑉 (𝑘)−̃︁𝑊 (𝑘) miñ︁𝑊 (𝑘)

∑︁
𝑘>𝑘𝑐

(̃︀𝑉 (𝑘)−̃︁𝑊 (𝑘))2. (30.76)

We now use a set of basis function 𝑐𝑖(𝑟) vanishing smoothly at 𝑟𝑐 to expand 𝑊 (𝑟); that is,

𝑊 (𝑟) =
∑︁
𝑖

𝑡𝑖𝑐𝑖(𝑟) or ̃︁𝑊 (𝑘) =
∑︁
𝑖

𝑡𝑖̃︀𝑐𝑖(𝑘) . (30.77)

Inserting the reciprocal space expansion of ̃︁𝑊 in the second condition of (30.76) and minimizing with respect to 𝑡𝑖
leads immediately to the linear system At = b where

𝐴𝑖𝑗 =
∑︁
𝑘>𝑘𝑐

̃︀𝑐𝑖(𝑘)̃︀𝑐𝑗(𝑘) 𝑏𝑗 =
∑︁
𝑘>𝑘𝑐

𝑉 (𝑘)̃︀𝑐𝑗(𝑘) . (30.78)

30.3.1 Basis functions

The basis functions are splines. We define a uniform grid with 𝑁knot uniformly spaced knots at position 𝑟𝑖 = 𝑖 𝑟𝑐
𝑁knot

,
where 𝑖 ∈ [0, 𝑁knot − 1]. On each knot we center 𝑚+ 1 piecewise polynomials 𝑐𝑖𝛼(𝑟) with 𝛼 ∈ [0,𝑚], defined as

𝑐𝑖𝛼(𝑟) =

⎧⎪⎨⎪⎩
∆𝛼
∑︀𝒩
𝑛=0 𝑆𝛼𝑛( 𝑟−𝑟𝑖Δ )𝑛 𝑟𝑖 < 𝑟 ≤ 𝑟𝑖+1

∆−𝛼∑︀𝒩
𝑛=0 𝑆𝛼𝑛( 𝑟𝑖−𝑟Δ )𝑛 𝑟𝑖−1 < 𝑟 ≤ 𝑟𝑖

0 |𝑟 − 𝑟𝑖| > ∆

. (30.79)

These functions and their derivatives are, by construction, continuous and odd (even) (with respect to 𝑟− 𝑟𝑖 → 𝑟𝑖− 𝑟)
when 𝛼 is odd (even). We further ask them to satisfy

𝑑𝛽

𝑑𝑟𝛽
𝑐𝑖𝛼(𝑟)

⃒⃒⃒⃒
𝑟=𝑟𝑖

= 𝛿𝛼𝛽 𝛽 ∈ [0,𝑚] ,

𝑑𝛽

𝑑𝑟𝛽
𝑐𝑖𝛼(𝑟)

⃒⃒⃒⃒
𝑟=𝑟𝑖+1

= 0 𝛽 ∈ [0,𝑚] .

(30.80)

(The parity of the functions guarantees that the second constraint is satisfied at 𝑟𝑖−1 as well). These constraints have a
simple interpretation: the basis functions and their first 𝑚 derivatives are 0 on the boundary of the subinterval where
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they are defined; the only function to have a nonzero 𝛽-th derivative in 𝑟𝑖 is 𝑐𝑖𝛽 . These 2(𝑚+ 1) constraints therefore
impose 𝒩 = 2𝑚 + 1. Inserting the definitions of (30.79) in the constraints of (30.80) leads to the set of 2(𝑚 + 1)
linear equation that fixes the value of 𝑆𝛼𝑛:

∆𝛼−𝛽𝑆𝛼𝛽𝛽! = 𝛿𝛼𝛽

∆𝛼−𝛽
2𝑚+1∑︁
𝑛=𝛽

𝑆𝛼𝑛
𝑛!

(𝑛− 𝛽)!
= 0 .

(30.81)

We can further simplify inserting the first of these equations into the second and write the linear system as

2𝑚+1∑︁
𝑛=𝑚+1

𝑆𝛼𝑛
𝑛!

(𝑛− 𝛽)!
=

{︃
− 1

(𝛼−𝛽)! 𝛼 ≥ 𝛽
0 𝛼 < 𝛽

. (30.82)

30.3.2 Fourier components of the basis functions in 3D

𝑘 ̸= 0, non-Coulomb case

We now need to evaluate the Fourier transform ̃︀𝑐𝑖𝛼(𝑘). Let us start by writing the definition

̃︀𝑐𝑖𝛼(𝑘) =
1

𝜔

∫︁
Ω

𝑑r𝑒−𝑖kr𝑐𝑖𝛼(𝑟) . (30.83)

Because 𝑐𝑖𝛼 is different from zero only inside the spherical crown defined by 𝑟𝑖−1 < 𝑟 < 𝑟𝑖, we can conveniently
compute the integral in spherical coordinates as

̃︀𝑐𝑖𝛼(𝑘) = ∆𝛼
𝒩∑︁
𝑛=0

𝑆𝛼𝑛
[︀
𝐷+
𝑖𝑛(𝑘) + 𝑤knot(−1)𝛼+𝑛𝐷−

𝑖𝑛(𝑘)
]︀
, (30.84)

where we used the definition 𝑤knot = 1− 𝛿𝑖0 and

𝐷±
𝑖𝑛(𝑘) = ± 4𝜋

𝑘Ω
Im

[︃∫︁ 𝑟𝑖±Δ

𝑟𝑖

𝑑𝑟

(︂
𝑟 − 𝑟𝑖

∆

)︂𝑛
𝑟𝑒𝑖𝑘𝑟

]︃
, (30.85)

obtained by integrating the angular part of the Fourier transform. Using the identity(︂
𝑟 − 𝑟𝑖

∆

)︂𝑛
𝑟 = ∆

(︂
𝑟 − 𝑟𝑖

∆

)︂𝑛+1

+

(︂
𝑟 − 𝑟𝑖

∆

)︂𝑛
𝑟𝑖 (30.86)

and the definition

𝐸±
𝑖𝑛(𝑘) =

∫︁ 𝑟𝑖±Δ

𝑟𝑖

𝑑𝑟

(︂
𝑟 − 𝑟𝑖

∆

)︂𝑛
𝑒𝑖𝑘𝑟 , (30.87)

we rewrite Equation (30.85) as

𝐷±
𝑖𝑛(𝑘) = ± 4𝜋

𝑘Ω
Im
[︁
∆𝐸±

𝑖(𝑛+1)(𝑘) + 𝑟𝑖𝐸
±
𝑖𝑛(𝑘)

]︁
.

Finally, using integration by part, we can define 𝐸±
𝑖𝑛 recursively as

𝐸±
𝑖𝑛(𝑘) =

1

𝑖𝑘

[︁
(±)𝑛𝑒𝑖𝑘(𝑟𝑖±Δ) − 𝑛

∆
𝐸±
𝑖(𝑛−1)(𝑘)

]︁
. (30.88)

Starting from the 𝑛 = 0 term,

𝐸±
𝑖0(𝑘) =

1

𝑖𝑘
𝑒𝑖𝑘𝑟𝑖

(︀
𝑒±𝑖𝑘Δ − 1

)︀
. (30.89)
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𝑘 ̸= 0, Coulomb case

To efficiently treat the Coulomb divergence at the origin, it is convenient to use a basis set 𝑐coul
𝑖𝛼 of the form

𝑐coul
𝑖𝛼 =

𝑐𝑖𝛼
𝑟
. (30.90)

An equation identical to (30.85) holds but with the modified definition

𝐷±
𝑖𝑛(𝑘) = ± 4𝜋

𝑘Ω
Im

[︃∫︁ 𝑟𝑖±Δ

𝑟𝑖

𝑑𝑟

(︂
𝑟 − 𝑟𝑖

∆

)︂𝑛
𝑒𝑖𝑘𝑟

]︃
, (30.91)

which can be simply expressed using 𝐸±
𝑖𝑛(𝑘) as

𝐷±
𝑖𝑛(𝑘) = ± 4𝜋

𝑘Ω
Im
[︀
𝐸±
𝑖𝑛(𝑘)

]︀
. (30.92)

𝑘 = 0 Coulomb and non-Coulomb case

The definitions of 𝐷𝑖𝑛(𝑘) given so far are clearly incompatible with the choice 𝑘 = 0 (they involve division by 𝑘). For
the non-Coulomb case, the starting definition is

𝐷±
𝑖𝑛(0) = ±4𝜋

Ω

∫︁ 𝑟𝑖±Δ

𝑟𝑖

𝑟2
(︂
𝑟 − 𝑟𝑖

∆

)︂𝑛
𝑑𝑟 . (30.93)

Using the definition 𝐼±𝑛 = (±)𝑛+1∆/(𝑛+ 1), we can express this as

𝐷±
𝑖𝑛(0) = ±4𝜋

Ω

[︀
∆2𝐼±𝑛+2 + 2𝑟𝑖∆𝐼

±
𝑛+1 + 2𝑟2𝑖 𝐼

±
𝑛

]︀
. (30.94)

For the Coulomb case, we get

𝐷±
𝑖𝑛(0) = ±4𝜋

Ω

(︀
∆𝐼±𝑛+1 + 𝑟𝑖𝐼

±
𝑛

)︀
. (30.95)

30.3.3 Fourier components of the basis functions in 2D

(30.84) still holds provided we define

𝐷±
𝑖𝑛(𝑘) = ± 2𝜋

Ω∆𝑛

𝑛∑︁
𝑗=0

(︂
𝑛

𝑗

)︂
(−𝑟𝑖)𝑛−𝑗

∫︁ 𝑟𝑖±Δ

𝑟𝑖

𝑑𝑟𝑟𝑗+1−𝐶𝐽0(𝑘𝑟) , (30.96)

where 𝐶 = 1(= 0) for the Coulomb(non-Coulomb) case. (30.96) is obtained using the integral definition of the zero
order Bessel function of the first kind:

𝐽0(𝑧) =
1

𝜋

∫︁ 𝜋

0

𝑒𝑖𝑧 cos 𝜃𝑑𝜃 , (30.97)

and the binomial expansion for (𝑟 − 𝑟𝑖)𝑛. The integrals can be computed recursively using the following identities:∫︁
𝑑𝑧𝐽0(𝑧) =

𝑧

2
[𝜋𝐽1(𝑧)𝐻0(𝑧) + 𝐽0(𝑧)(2− 𝜋𝐻1(𝑧))] ,∫︁

𝑑𝑧𝑧𝐽0(𝑧) = 𝑧𝐽1(𝑧) ,∫︁
𝑑𝑧𝑧𝑛𝐽0(𝑧) = 𝑧𝑛𝐽1(𝑧) + (𝑛− 1)𝑥𝑛−1𝐽0(𝑧)− (𝑛− 1)2

∫︁
𝑑𝑧𝑧𝑛−2𝐽0(𝑧) .

(30.98)

The bottom equation of (30.98) is obtained using the second equation in the same set, integration by part, and the
identity

∫︀
𝐽1(𝑧)𝑑𝑧 = −𝐽0(𝑧). In the top equation, 𝐻0 and 𝐻1 are Struve functions.
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30.3.4 Construction of the matrix elements

Using the previous equations, we can construct the matrix elements in (30.78) and proceed solving for 𝑡𝑖. It is some-
times desirable to put some constraints on the value of 𝑡𝑖. For example, when the Coulomb potential is concerned, we
might want to set 𝑡0 = 1. If the first 𝑔 variable is constrained by 𝑡𝑚 = 𝛾𝑚 with 𝑚 = [1, 𝑔], we can simply redefine
(30.78) as

𝐴𝑖𝑗 =
∑︁
𝑘>𝑘𝑐

̃︀𝑐𝑖(𝑘)̃︀𝑐𝑗(𝑘) 𝑖, 𝑗 /∈ [1, 𝑔] ,

𝑏𝑗 =
∑︁
𝑘>𝑘𝑐

(︃̃︀𝑉 (𝑘)−
𝑔∑︁

𝑚=1

𝛾𝑚̃︀𝑐𝑚(𝑘)

)︃̃︀𝑐𝑗(𝑘) 𝑗 /∈ [1, 𝑔] .

(30.99)

30.4 Feature: Cubic spline interpolation

We present the basic equations and algorithms necessary to construct and evaluate cubic interpolating splines in one,
two, and three dimensions. Equations are provided for both natural and periodic boundary conditions.

30.4.1 One dimension

Let us consider the problem in which we have a function 𝑦(𝑥) specified at a discrete set of points 𝑥𝑖, such that
𝑦(𝑥𝑖) = 𝑦𝑖. We wish to construct a piecewise cubic polynomial interpolating function, 𝑓(𝑥), which satisfies the
following conditions:

• 𝑓(𝑥𝑖) = 𝑦𝑖.

• 𝑓 ′(𝑥−𝑖 ) = 𝑓 ′(𝑥+𝑖 ).

• 𝑓 ′′(𝑥−𝑖 ) = 𝑓 ′′(𝑥𝑖+).

Hermite interpolants

In our piecewise representation, we wish to store only the values 𝑦𝑖 and first derivatives, 𝑦′𝑖, of our function at each
point 𝑥𝑖, which we call knots. Given this data, we wish to construct the piecewise cubic function to use between 𝑥𝑖
and 𝑥𝑖+1, which satisfies the preceding conditions. In particular, we wish to find the unique cubic polynomial, 𝑃 (𝑥),
satisfying

𝑃 (𝑥𝑖) = 𝑦𝑖 ,

𝑃 (𝑥𝑖+1) = 𝑦𝑖+1 ,

𝑃 ′(𝑥𝑖) = 𝑦′𝑖 ,

𝑃 ′(𝑥𝑖+1) = 𝑦′𝑖+1 .

(30.100)

ℎ𝑖 ≡ 𝑥𝑖+1 − 𝑥𝑖 ,

𝑡 ≡ 𝑥− 𝑥𝑖
ℎ𝑖

.
(30.101)

We then define the basis functions,

𝑝1(𝑡) = (1 + 2𝑡)(𝑡− 1)2 ,

𝑞1(𝑡) = 𝑡(𝑡− 1)2 ,

𝑝2(𝑡) = 𝑡2(3− 2𝑡) ,

𝑞2(𝑡) = 𝑡2(𝑡− 1) .

(30.102)
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On the interval, (𝑥𝑖, 𝑥𝑖+1], we define the interpolating function

𝑃 (𝑥) = 𝑦𝑖𝑝1(𝑡) + 𝑦𝑖+1𝑝2(𝑡) + ℎ
[︀
𝑦′𝑖𝑞1(𝑡) + 𝑦′𝑖+1𝑞2(𝑡)

]︀
. (30.103)

It can be easily verified that 𝑃 (𝑥) satisfies conditions of equations 1 through 3 of (30.100). It is now left to determine
the proper values for the 𝑦′𝑖 s such that the continuity conditions given previously are satisfied.

By construction, the value of the function and derivative will match at the knots; that is,

𝑃 (𝑥−𝑖 ) = 𝑃 (𝑥+𝑖 ), 𝑃 ′(𝑥−𝑖 ) = 𝑃 ′(𝑥+𝑖 ) .

Then we must now enforce only the second derivative continuity:

𝑃 ′′(𝑥−𝑖 ) = 𝑃 ′′(𝑥+𝑖 ) ,

1

ℎ2𝑖−1

[︀
6𝑦𝑖−1 − 6𝑦𝑖 + ℎ𝑖−1

(︀
2𝑦′𝑖−1 + 4𝑦′𝑖

)︀]︀
=

1

ℎ2𝑖

[︀
− 6𝑦𝑖 + 6𝑦𝑖+1 + ℎ𝑖

(︀
−4𝑦′𝑖 − 2𝑦′𝑖+1

)︀]︀
.

Let us define

𝜆𝑖 ≡
ℎ𝑖

2(ℎ𝑖 + ℎ𝑖−1)
,

𝜇𝑖 ≡
ℎ𝑖−1

2(ℎ𝑖 + ℎ𝑖−1)
=

1

2
− 𝜆𝑖 .

(30.104)

Then we may rearrange

𝜆𝑖𝑦
′
𝑖−1 + 𝑦′𝑖 + 𝜇𝑖𝑦

′
𝑖+1 = 3

[︂
𝜆𝑖
𝑦𝑖 − 𝑦𝑖−1

ℎ𝑖−1
+ 𝜇𝑖

𝑦𝑖+1 − 𝑦𝑖
ℎ𝑖

]︂
⏟  ⏞  

𝑑𝑖

.
(30.105)

This equation holds for all 0 < 𝑖 < (𝑁 − 1), so we have a tridiagonal set of equations. The equations for 𝑖 = 0 and
𝑖 = 𝑁 − 1 depend on the boundary conditions we are using.

Periodic boundary conditions

For periodic boundary conditions, we have

𝑦′0 + 𝜇0𝑦
′
1 . . . +𝜆0𝑦

′
𝑁−1 = 𝑑0 ,

𝜆1𝑦
′
0 + 𝑦′1 + 𝜇1𝑦

′
2 . . . = 𝑑1 ,

𝜆2𝑦
′
1 + 𝑦′2+ 𝜇2𝑦

′
3 . . . = 𝑑2 ,

...
𝜇𝑁−1𝑦

′
0 +𝜆𝑁−1𝑦

′
𝑁−1 +𝑦′𝑁−2 = 𝑑3 .

(30.106)

Or, in matrix form, we have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝜇0 0 0 . . . 0 𝜆0
𝜆1 1 𝜇1 0 . . . 0 0
0 𝜆2 1 𝜇2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 𝜆𝑁−3 1 𝜇𝑁−3 0
0 0 0 0 𝜆𝑁−2 1 𝜇𝑁−2

𝜇𝑁−1 0 0 0 0 𝜆𝑁−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦′0
𝑦′1
𝑦′2
...

𝑦′𝑁−3

𝑦′𝑁−2

𝑦′𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑0
𝑑1
𝑑2
...

𝑑𝑁−3

𝑑𝑁−2

𝑑𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (30.107)

The system is tridiagonal except for the two elements in the upper right and lower left corners. These terms complicate
the solution a bit, although it can still be done in 𝒪(𝑁) time. We first proceed down the rows, eliminating the the first
non-zero term in each row by subtracting the appropriate multiple of the previous row. At the same time, we eliminate
the first element in the last row, shifting the position of the first non-zero element to the right with each iteration. When
we get to the final row, we will have the value for 𝑦′𝑁−1. We can then proceed back upward, backsubstituting values
from the rows below to calculate all the derivatives.
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Complete boundary conditions

If we specify the first derivatives of our function at the end points, we have what is known as complete boundary
conditions. The equations in that case are trivial to solve:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0
𝜆1 1 𝜇1 0 . . . 0 0
0 𝜆2 1 𝜇2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 𝜆𝑁−3 1 𝜇𝑁−3 0
0 0 0 0 𝜆𝑁−2 1 𝜇𝑁−2

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦′0
𝑦′1
𝑦′2
...

𝑦′𝑁−3

𝑦′𝑁−2

𝑦′𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑0
𝑑1
𝑑2
...

𝑑𝑁−3

𝑑𝑁−2

𝑑𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (30.108)

This system is completely tridiagonal, and we may solve trivially by performing row eliminations downward, then
proceeding upward as before.

Natural boundary conditions

If we do not have information about the derivatives at the boundary conditions, we may construct a natural spline,
which assumes the second derivatives are zero at the end points of our spline. In this case our system of equations is
the following: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 0 0 . . . 0 0

𝜆1 1 𝜇1 0 . . . 0 0
0 𝜆2 1 𝜇2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 𝜆𝑁−3 1 𝜇𝑁−3 0
0 0 0 0 𝜆𝑁−2 1 𝜇𝑁−2

0 0 0 0 0 1
2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦′0
𝑦′1
𝑦′2
...

𝑦′𝑁−3

𝑦′𝑁−2

𝑦′𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑0
𝑑1
𝑑2
...

𝑑𝑁−3

𝑑𝑁−2

𝑑𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (30.109)

with

𝑑0 =
3

2

𝑦1 − 𝑦1
ℎ0

, 𝑑𝑁−1 =
3

2

𝑦𝑁−1 − 𝑦𝑁−2

ℎ𝑁−1
. (30.110)

30.4.2 Bicubic splines

It is possible to extend the cubic spline interpolation method to functions of two variables, that is, 𝐹 (𝑥, 𝑦). In this
case, we have a rectangular mesh of points given by 𝐹𝑖𝑗 ≡ 𝐹 (𝑥𝑖, 𝑦𝑗). In the case of 1D splines, we needed to store
the value of the first derivative of the function at each point, in addition to the value. In the case of bicubic splines, we
need to store four quantities for each mesh point:

𝐹𝑖𝑗 ≡ 𝐹 (𝑥𝑖, 𝑦𝑖) ,

𝐹 𝑥𝑖𝑗 ≡ 𝜕𝑥𝐹 (𝑥𝑖, 𝑦𝑖) ,

𝐹 𝑦𝑖𝑗 ≡ 𝜕𝑦𝐹 (𝑥𝑖, 𝑦𝑖) ,

𝐹 𝑥𝑦 ≡ 𝜕𝑥𝜕𝑦𝐹 (𝑥𝑖, 𝑦𝑖) .

(30.111)
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Consider the point (𝑥, 𝑦) at which we wish to interpolate 𝐹 . We locate the rectangle that contains this point, such that
𝑥𝑖 <= 𝑥 < 𝑥𝑖+1 and 𝑦𝑖 <= 𝑥 < 𝑦𝑖+1. Let

ℎ ≡ 𝑥𝑖+1 − 𝑥𝑖 ,
𝑙 ≡ 𝑦𝑖+1 − 𝑦𝑖 ,

𝑢 ≡ 𝑥− 𝑥𝑖
ℎ

,

𝑣 ≡ 𝑦 − 𝑦𝑖
𝑙

.

(30.112)

Then, we calculate the interpolated value as

𝐹 (𝑥, 𝑦) =

⎛⎜⎜⎝
𝑝1(𝑢)
𝑝2(𝑢)
ℎ𝑞1(𝑢)
ℎ𝑞2(𝑢)

⎞⎟⎟⎠
𝑇 ⎛⎜⎜⎝

(*20𝑐)𝐹𝑖,𝑗 𝐹𝑖+1,𝑗 𝐹 𝑦𝑖,𝑗 𝐹 𝑦𝑖,𝑗+1

𝐹𝑖+1,𝑗 𝐹𝑖+1,𝑗+1 𝐹 𝑦𝑖+1,𝑗 𝐹 𝑦𝑖+1,𝑗+1

𝐹 𝑥𝑖,𝑗 𝐹 𝑥𝑖,𝑗+1 𝐹 𝑥𝑦𝑖,𝑗 𝐹 𝑥𝑦𝑖,𝑗+1

𝐹 𝑥𝑖+1,𝑗 𝐹 𝑥𝑖+1,𝑗+1 𝐹 𝑥𝑦𝑖+1,𝑗 𝐹 𝑥𝑦𝑖+1,𝑗+1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑝1(𝑣)
𝑝2(𝑣)
𝑘𝑞1(𝑣)
𝑘𝑞2(𝑣)

⎞⎟⎟⎠ . (30.113)

Construction bicubic splines

We now address the issue of how to compute the derivatives that are needed for the interpolation. The algorithm is
quite simple. For every 𝑥𝑖, we perform the tridiagonal solution as we did in the 1D splines to compute 𝐹 𝑦𝑖𝑗 . Similarly,
we perform a tridiagonal solve for every value of 𝐹 𝑥𝑖𝑗 . Finally, to compute the cross-derivative we may either to the
tridiagonal solve in the 𝑦 direction of 𝐹 𝑥𝑖𝑗 , or solve in the 𝑥 direction for 𝐹 𝑦𝑖𝑗 to obtain the cross-derivatives 𝐹 𝑥𝑦𝑖𝑗 . Hence,
only minor modifications to the 1𝐷 interpolations are necessary.

30.4.3 Tricubic splines

Bicubic interpolation required two 4-component vectors and a 4 × 4 matrix. By extension, tricubic interpolation
requires three 4-component vectors and a 4× 4× 4 tensor. We summarize the forms of these vectors in the following:

ℎ ≡ 𝑥𝑖+1 − 𝑥𝑖 ,
𝑙 ≡ 𝑦𝑖+1 − 𝑦𝑖 ,
𝑚 ≡ 𝑧𝑖+1 − 𝑧𝑖 ,

𝑢 ≡ 𝑥− 𝑥𝑖
ℎ

,

𝑣 ≡ 𝑦 − 𝑦𝑖
𝑙

,

𝑤 ≡ 𝑧 − 𝑧𝑖
𝑚

.

(30.114)

�⃗� =
(︀
𝑝1(𝑢) 𝑝2(𝑢) ℎ𝑞1(𝑢) ℎ𝑞2(𝑢)

)︀𝑇
,

�⃗� =
(︀
𝑝1(𝑣) 𝑝2(𝑣) 𝑘𝑞1(𝑣) 𝑘𝑞2(𝑣)

)︀𝑇
,

�⃗� =
(︀
𝑝1(𝑤) 𝑝2(𝑤) 𝑙𝑞1(𝑤) 𝑙𝑞2(𝑤)

)︀𝑇
.

(30.115)
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴000 = 𝐹𝑖,𝑗,𝑘 𝐴001 = 𝐹𝑖,𝑗,𝑘+1 𝐴002 = 𝐹 𝑧𝑖,𝑗,𝑘 𝐴003 = 𝐹 𝑧𝑖,𝑗,𝑘+1

𝐴010 = 𝐹𝑖,𝑗+1,𝑘 𝐴011 = 𝐹𝑖,𝑗+1,𝑘+1 𝐴012 = 𝐹 𝑧𝑖,𝑗+1,𝑘 𝐴013 = 𝐹 𝑧𝑖,𝑗+1,𝑘+1

𝐴020 = 𝐹 𝑦𝑖,𝑗,𝑘 𝐴021 = 𝐹 𝑦𝑖,𝑗,𝑘+1 𝐴022 = 𝐹 𝑦𝑧𝑖,𝑗,𝑘 𝐴023 = 𝐹 𝑦𝑧𝑖,𝑗,𝑘+1

𝐴030 = 𝐹 𝑦𝑖,𝑗+1,𝑘 𝐴031 = 𝐹 𝑦𝑖,𝑗+1,𝑘+1 𝐴032 = 𝐹 𝑦𝑧𝑖,𝑗+1,𝑘 𝐴033 = 𝐹 𝑦𝑧𝑖,𝑗+1,𝑘+1

𝐴100 = 𝐹𝑖+1,𝑗,𝑘 𝐴101 = 𝐹𝑖+1,𝑗,𝑘+1 𝐴102 = 𝐹 𝑧𝑖+1,𝑗,𝑘 𝐴103 = 𝐹 𝑧𝑖+1,𝑗,𝑘+1

𝐴110 = 𝐹𝑖+1,𝑗+1,𝑘 𝐴111 = 𝐹𝑖+1,𝑗+1,𝑘+1 𝐴112 = 𝐹 𝑧𝑖+1,𝑗+1,𝑘 𝐴113 = 𝐹 𝑧𝑖+1,𝑗+1,𝑘+1

𝐴120 = 𝐹 𝑦𝑖+1,𝑗,𝑘 𝐴121 = 𝐹 𝑦𝑖+1,𝑗,𝑘+1 𝐴122 = 𝐹 𝑦𝑧𝑖+1,𝑗,𝑘 𝐴123 = 𝐹 𝑦𝑧𝑖+1,𝑗,𝑘+1

𝐴130 = 𝐹 𝑦𝑖+1,𝑗+1,𝑘 𝐴131 = 𝐹 𝑦𝑖+1,𝑗+1,𝑘+1 𝐴132 = 𝐹 𝑦𝑧𝑖+1,𝑗+1,𝑘 𝐴133 = 𝐹 𝑦𝑧𝑖+1,𝑗+1,𝑘+1

𝐴200 = 𝐹 𝑥𝑖,𝑗,𝑘 𝐴201 = 𝐹 𝑥𝑖,𝑗,𝑘+1 𝐴202 = 𝐹 𝑥𝑧𝑖,𝑗,𝑘 𝐴203 = 𝐹 𝑥𝑧𝑖,𝑗,𝑘+1

𝐴210 = 𝐹 𝑥𝑖,𝑗+1,𝑘 𝐴211 = 𝐹 𝑥𝑖,𝑗+1,𝑘+1 𝐴212 = 𝐹 𝑥𝑧𝑖,𝑗+1,𝑘 𝐴213 = 𝐹 𝑥𝑧𝑖,𝑗+1,𝑘+1

𝐴220 = 𝐹 𝑥𝑦𝑖,𝑗,𝑘 𝐴221 = 𝐹 𝑥𝑦𝑖,𝑗,𝑘+1 𝐴222 = 𝐹 𝑥𝑦𝑧𝑖,𝑗,𝑘 𝐴223 = 𝐹 𝑥𝑦𝑧𝑖,𝑗,𝑘+1

𝐴230 = 𝐹 𝑥𝑦𝑖,𝑗+1,𝑘 𝐴231 = 𝐹 𝑥𝑦𝑖,𝑗+1,𝑘+1 𝐴232 = 𝐹 𝑥𝑦𝑧𝑖,𝑗+1,𝑘 𝐴233 = 𝐹 𝑥𝑦𝑧𝑖,𝑗+1,𝑘+1

𝐴300 = 𝐹 𝑥𝑖+1,𝑗,𝑘 𝐴301 = 𝐹 𝑥𝑖+1,𝑗,𝑘+1 𝐴302 = 𝐹 𝑥𝑧𝑖+1,𝑗,𝑘 𝐴303 = 𝐹 𝑥𝑧𝑖+1,𝑗,𝑘+1

𝐴310 = 𝐹 𝑥𝑖+1,𝑗+1,𝑘 𝐴311 = 𝐹 𝑥𝑖+1,𝑗+1,𝑘+1 𝐴312 = 𝐹 𝑥𝑧𝑖+1,𝑗+1,𝑘 𝐴313 = 𝐹 𝑥𝑧𝑖+1,𝑗+1,𝑘+1

𝐴320 = 𝐹 𝑥𝑦𝑖+1,𝑗,𝑘 𝐴321 = 𝐹 𝑥𝑦𝑖+1,𝑗,𝑘+1 𝐴322 = 𝐹 𝑥𝑦𝑧𝑖+1,𝑗,𝑘 𝐴323 = 𝐹 𝑥𝑦𝑧𝑖+1,𝑗,𝑘+1

𝐴330 = 𝐹 𝑥𝑦𝑖+1,𝑗+1,𝑘 𝐴331 = 𝐹 𝑥𝑦𝑖+1,𝑗+1,𝑘+1 𝐴332 = 𝐹 𝑥𝑦𝑧𝑖+1,𝑗+1,𝑘 𝐴333 = 𝐹 𝑥𝑦𝑧𝑖+1,𝑗+1,𝑘+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30.116)

Now, we can write

𝐹 (𝑥, 𝑦, 𝑧) =

3∑︁
𝑖=0

𝑎𝑖

3∑︁
𝑗=0

𝑏𝑗

3∑︁
𝑘=0

𝑐𝑘 𝐴𝑖,𝑗,𝑘 . (30.117)

The appropriate derivatives of 𝐹 may be computed by a generalization of the previous method used for bicubic splines.

30.5 Feature: B-spline orbital tiling (band unfolding)

In continuum QMC simulations, it is necessary to evaluate the electronic orbitals of a system at real-space positions
hundreds of millions of times. It has been found that if these orbitals are represented in a localized, B-spline basis,
each evaluation takes a small, constant time that is independent of system size.

Unfortunately, the memory required for storing the B-spline grows with the second power of the system size. If we are
studying perfect crystals, however, this can be reduced to linear scaling if we tile the primitive cell. In this approach, a
supercell is constructed by tiling the primitive cell 𝑁1 ×𝑁2 ×𝑁3 in the three lattice directions. The orbitals are then
represented in real space only in the primitive cell and an 𝑁1 ×𝑁2 ×𝑁3 k-point mesh. To evaluate an orbital at any
point in the supercell, it is only necessary to wrap that point back into the primitive cell, evaluate the spline, and then
multiply the phase factor, 𝑒−𝑖k·r.

Here, we show that this approach can be generalized to a tiling constructed with a 3 × 3 nonsingular matrix of
integers, of which the preceding approach is a special case. This generalization brings with it a number of advantages.
The primary reason for performing supercell calculations in QMC is to reduce finite-size errors. These errors result
from three sources: (1) the quantization of the crystal momentum, (2) the unphysical periodicity of the exchange-
correlation (XC) hole of the electron, and (3) the kinetic-energy contribution from the periodicity of the long-range
Jastrow correlation functions. The first source of error can be largely eliminated by twist averaging. If the simulation
cell is large enough that XC hole does not “leak” out of the simulation cell, the second source can be eliminated either
through use of the MPC interaction or the a postiori correction of Chiesa et al.

The satisfaction of the leakage requirement is controlled by whether the minimum distance, 𝐿min, from one supercell
image to the next is greater than the width of the XC hole. Therefore, given a choice, it is best to use a cell that is
as nearly cubic as possible since this choice maximizes 𝐿min for a given number of atoms. Most often, however, the
primitive cell is not cubic. In these cases, if we wish to choose the optimal supercell to reduce finite-size effects,
we cannot use the simple primitive tiling scheme. In the generalized scheme we present, it is possible to choose far
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better supercells (from the standpoint of finite-size errors), while retaining the storage efficiency of the original tiling
scheme.

30.5.1 The mathematics

Consider the set of primitive lattice vectors, {ap
1,a

p
2,a

p
3}. We may write these vectors in a matrix, L𝑝, whose rows

are the primitive lattice vectors. Consider a nonsingular matrix of integers, S. A corresponding set of supercell lattice
vectors, {as

1,a
s
2,a

s
3}, can be constructed by the matrix product

as
𝑖 = 𝑆𝑖𝑗a

p
𝑗 . (30.118)

If the primitive cell contains 𝑁𝑝 atoms, the supercell will then contain 𝑁𝑠 = |det(S)|𝑁𝑝 atoms.

30.5.2 Example: FeO

As an example, consider the primitive cell for antiferromagnetic FeO (wustite) in the rocksalt structure. The primitive
vectors, given in units of the lattice constant, are given by

ap
1 =

1

2
x̂ +

1

2
ŷ + ẑ ,

ap
2 =

1

2
x̂ + ŷ +

1

2
ẑ ,

ap
3 = x̂ +

1

2
ŷ +

1

2
ẑ .

(30.119)

This primitive cell contains two iron atoms and two oxygen atoms. It is a very elongated cell with acute angles and,
thus, has a short minimum distance between adjacent images.

The smallest cubic cell consistent with the AFM ordering can be constructed with the matrix

S =

⎡⎣ −1 −1 3
−1 3 −1

3 −1 −1

⎤⎦ . (30.120)

This cell has 2|det(S)| = 32 iron atoms and 32 oxygen atoms. In this example, we may perform the simulation in the
32-iron supercell, while storing the orbitals only in the 2-iron primitive cell, for a savings of a factor of 16.

The k-point mesh

To be able to use the generalized tiling scheme, we need to have the appropriate number of bands to occupy in the
supercell. This may be achieved by appropriately choosing the k-point mesh. In this section, we explain how these
points are chosen.

For simplicity, let us assume that the supercell calculation will be performed at the Γ-point. We can easily lift this
restriction later. The fact that supercell calculation is performed at Γ implies that the k-points used in the primitive-cell
calculation must be G-vectors of the superlattice. This still leaves us with an infinite set of vectors. We may reduce
this set to a finite number by considering that the orbitals must form a linearly independent set. Orbitals with k-vectors
k𝑝1 and k𝑝2 will differ by at most a constant factor of k𝑝1 − k𝑝2 = G𝑝, where G𝑝 is a reciprocal lattice vector of the
primitive cell.

Combining these two considerations gives us a prescription for generating our k-point mesh. The mesh may be taken
to be the set of k-point which are G-vectors of the superlattice, reside within the first Brillouin zone (FBZ) of the
primitive lattice, whose members do not differ a G-vector of the primitive lattice. Upon constructing such a set, we
find that the number of included k-points is equal to |det(S)|, precisely the number we need. This can by considering
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the fact that the supercell has a volume |det(S)| times that of the primitive cell. This implies that the volume of the
supercell’s FBZ is |det(S)|−1 times that of the primitive cell. Hence, |det(S)| G-vectors of the supercell will fit in
the FBZ of the primitive cell. Removing duplicate k-vectors, which differ from another by a reciprocal lattice vector,
avoids double-counting vectors that lie on zone faces.

Formulae

Let A be the matrix whose rows are the direct lattice vectors, {a𝑖}. Then, let the matrix B be defined as 2𝜋(A−1)†.
Its rows are the primitive reciprocal lattice vectors. Let A𝑝 and A𝑠 represent the primitive and superlattice matrices,
respectively, and similarly for their reciprocals. Then we have

A𝑠 = SA𝑝 ,

B𝑠 = 2𝜋
[︀
(SA𝑝)

−1
]︀†
,

= 2𝜋
[︀
A−1
𝑝 S−1

]︀†
,

= 2𝜋(S−1)†(A−1
𝑝 )† ,

= (S−1)†B𝑝 .

(30.121)

Consider a k-vector, k. It may alternatively be written in basis of reciprocal lattice vectors as t.

k = (t†B)† ,

= B†t ,

t = (B†)−1k ,

= (B−1)†k ,

=
Ak

2𝜋
.

(30.122)

We may then express a twist vector of the primitive lattice, t𝑝, in terms of the superlattice.

t𝑠 =
A𝑠k

2𝜋
,

=
A𝑠B

†
𝑝t𝑝

2𝜋
,

=
SA𝑝B

†
𝑝t𝑝

2𝜋
,

=
2𝜋SA𝑝A

−1
𝑝 t𝑝

2𝜋
,

= St𝑝 .

(30.123)

This gives the simple result that twist vectors transform in precisely the same way as direct lattice vectors.

30.6 Feature: Hybrid orbital representation

𝜑(r) =

ℓmax∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑌 𝑚ℓ (Ω̂)𝑢ℓ𝑚(𝑟) , (30.124)

where 𝑢𝑙𝑚(𝑟) are complex radial functions represented in some radial basis (e.g., splines).
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30.6.1 Real spherical harmonics

If 𝜑(r) can be written as purely real, we can change the representation so that

𝜑(r) =

𝑙max∑︁
𝑙=0

ℓ∑︁
𝑚=−ℓ

𝑌ℓ𝑚(Ω̂)�̄�𝑙𝑚(𝑟) , (30.125)

where 𝑌 𝑚ℓ are the real spherical harmonics defined by

𝑌ℓ𝑚 =

⎧⎪⎨⎪⎩
𝑌 0
ℓ if 𝑚 = 0

1
2

(︀
𝑌 𝑚ℓ + (−1)𝑚 𝑌 −𝑚

ℓ

)︀
= Re [Ym

ℓ ] if 𝑚 > 0
1
𝑖2

(︀
𝑌 −𝑚
ℓ − (−1)𝑚 𝑌 𝑚ℓ

)︀
= Im

[︀
Y−m
ℓ

]︀
if 𝑚 < 0 .

(30.126)

We need then to relate �̄�ℓ𝑚 to 𝑢ℓ𝑚. We wish to express

Re [𝜑(r)] =

ℓmax∑︁
ℓ=0

ℓ∑︁
m=−ℓ

Re
[︁
Ym
ℓ (Ω̂)uℓm(r)

]︁
(30.127)

in terms of �̄�ℓ𝑚(𝑟) and 𝑌ℓ𝑚.

Re [Ym
ℓ uℓm] = Re [Ym

ℓ ] Re [uℓm]− Im [Ym
ℓ ] Im [uℓm] . (30.128)

For 𝑚 > 0,

Re [Ym
ℓ ] = Yℓm and Im [Ym

ℓ ] = Yℓ−m . (30.129)

For 𝑚 < 0,

Re [Ym
ℓ ] = (−1)mYℓ−m and Im [Ym

ℓ ] = −(−1)mYℓm . (30.130)

Then for 𝑚 > 0,

�̄�ℓ𝑚 = Re [uℓm] + (−1)mRe [uℓ−m] ,

�̄�ℓ−𝑚 = −Im [uℓm] + (−1)mIm [uℓ−m] .
(30.131)

30.6.2 Projecting to atomic orbitals

Inside a muffin tin, orbitals are represented as products of spherical harmonics and 1D radial functions, primarily
represented by splines. For a muffin tin centered at I,

𝜑𝑛(r) =
∑︁
ℓ,𝑚

𝑌 𝑚ℓ ( ˆr− I)𝑢𝑙𝑚 (|r− I|) . (30.132)

Let use consider the case that our original representation for 𝜑(r) is of the form

𝜑𝑛,k(r) =
∑︁
G

𝑐𝑛G+k𝑒
𝑖(G+k)·r . (30.133)

Recall that

𝑒𝑖k·r = 4𝜋
∑︁
ℓ,𝑚

𝑖ℓ𝑗ℓ(|r||k|)𝑌 𝑚ℓ (k̂) [𝑌 𝑚ℓ (r̂)]
*
. (30.134)

Conjugating,

𝑒−𝑖k·r = 4𝜋
∑︁
ℓ,𝑚

(−𝑖)ℓ𝑗ℓ(|r||k|)
[︁
𝑌 𝑚ℓ (k̂)

]︁*
𝑌 𝑚ℓ (r̂) . (30.135)
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Setting k→ −𝑘,

𝑒𝑖k·r = 4𝜋
∑︁
ℓ,𝑚

𝑖ℓ𝑗ℓ(|r||k|)
[︁
𝑌 𝑚ℓ (k̂)

]︁*
𝑌 𝑚ℓ (r̂) . (30.136)

Then,

𝑒𝑖k·(r−I) = 4𝜋
∑︁
ℓ,𝑚

𝑖ℓ𝑗ℓ(|r− I||k|)
[︁
𝑌 𝑚ℓ (k̂)

]︁*
𝑌 𝑚ℓ ( ˆr− I) . (30.137)

𝑒𝑖k·r = 4𝜋𝑒𝑖k·I
∑︁
ℓ,𝑚

𝑖ℓ𝑗ℓ(|r− I||k|)
[︁
𝑌 𝑚ℓ (k̂)

]︁*
𝑌 𝑚ℓ ( ˆr− I) . (30.138)

Then

𝜑𝑛,k(r) =
∑︁
G

4𝜋𝑐𝑛G+k𝑒
𝑖(G+k)·I

∑︁
ℓ,𝑚

𝑖ℓ𝑗ℓ(|G + k||r− I|)
[︁
𝑌 𝑚ℓ ( ˆG + k)

]︁*
𝑌 𝑚ℓ ( ˆr− I) . (30.139)

Comparing with (30.132),

𝑢𝑛ℓ𝑚(𝑟) = 4𝜋𝑖ℓ
∑︁
𝐺

𝑐𝑛G+k𝑒
𝑖(G+k)·I𝑗ℓ (|G + k|𝑟|)

[︁
𝑌 𝑚ℓ ( ˆG + k)

]︁*
. (30.140)

If we had adopted the opposite sign convention for Fourier transforms (as is unfortunately the case in wfconvert), we
would have

𝑢𝑛ℓ𝑚(𝑟) = 4𝜋(−𝑖)ℓ
∑︁
𝐺

𝑐𝑛G+k𝑒
−𝑖(G+k)·I𝑗ℓ (|G + k|𝑟|)

[︁
𝑌 𝑚ℓ ( ˆG + k)

]︁*
. (30.141)

30.7 Feature: Electron-electron-ion Jastrow factor

The general form of the 3-body Jastrow we describe here depends on the three interparticle distances, (𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼).

𝐽3 =
∑︁
𝐼∈ions

∑︁
𝑖,𝑗∈elecs;𝑖 ̸=𝑗

𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼) . (30.142)

Note that we constrain the form of 𝑈 such that 𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼) = 𝑈(𝑟𝑖𝑗 , 𝑟𝑗𝐼 , 𝑟𝑖𝐼) to preserve the particle symmetry of
the wavefunction. We then compute the gradient as

∇𝑖𝐽3 =
∑︁
𝐼∈ions

∑︁
𝑗 ̸=𝑖

[︂
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑖𝑗

r𝑖 − r𝑗
|r𝑖 − r𝑗 |

+
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑖𝐼

r𝑖 − I

|r𝑖 − I|

]︂
. (30.143)

To compute the Laplacian, we take

∇2
𝑖𝐽3 = ∇𝑖 · (∇𝑖𝐽3) ,

=
∑︁
𝐼∈ions

∑︁
𝑗 ̸=𝑖

[︃
𝜕2𝑈

𝜕𝑟2𝑖𝑗
+

2

𝑟𝑖𝑗

𝜕𝑈

𝜕𝑟𝑖𝑗
+ 2

𝜕2𝑈

𝜕𝑟𝑖𝑗𝜕𝑟𝑖𝐼

r𝑖𝑗 · r𝑖𝐼
𝑟𝑖𝑗𝑟𝑖𝐼

+
𝜕2𝑈

𝜕𝑟2𝑖𝐼
+

2

𝑟𝑖𝐼

𝜕𝑈

𝜕𝑟𝑖𝐼

]︃
.

We now wish to compute the gradient of these terms w.r.t. the ion position, 𝐼 .

∇𝐼𝐽3 = −
∑︁
𝑗 ̸=𝑖

[︂
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑖𝐼

r𝑖 − I

|r𝑖 − I|
+
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑗𝐼

r𝑗 − I

|r𝑗 − I|

]︂
. (30.144)
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For the gradient w.r.t. 𝑖 of the gradient w.r.t. 𝐼 , the result is a tensor:

∇𝐼∇𝑖𝐽3 = ∇𝐼
∑︁
𝑗 ̸=𝑖

[︂
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑖𝑗

r𝑖 − r𝑗
|r𝑖 − r𝑗 |

+
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑖𝐼

r𝑖 − I

|r𝑖 − I|

]︂
,

= −
∑︁
𝑗 ̸=𝑖

[︂
𝜕2𝑈

𝜕𝑟𝑖𝑗𝑟𝑖𝐼
r̂𝑖𝑗 ⊗ r̂𝑖𝐼 +

(︂
𝜕2𝑈

𝜕𝑟2𝑖𝐼
− 1

𝑟𝑖𝐼

𝜕𝑈

𝜕𝑟𝑖𝐼

)︂
r̂𝑖𝐼 ⊗ r̂𝑖𝐼 +

𝜕𝑈

𝜕𝑟𝑖𝑗𝑟𝑗𝐼
r̂𝑖𝑗 ⊗ r̂𝑗𝐼 +

𝜕2𝑈

𝜕𝑟𝑖𝐼𝜕𝑟𝑗𝐼
r̂𝑖𝐼 ⊗ r̂𝑗𝐼 +

1

𝑟𝑖𝐼

𝜕𝑈

𝜕𝑟𝑖𝐼

←→
1

]︂
.

∇𝐼∇𝑖𝐽3 = ∇𝐼
∑︁
𝑗 ̸=𝑖

[︂
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑖𝑗

r𝑖 − r𝑗
|r𝑖 − r𝑗 |

+
𝜕𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝐼 , 𝑟𝑗𝐼)

𝜕𝑟𝑖𝐼

r𝑖 − I

|r𝑖 − I|

]︂
,

=
∑︁
𝑗 ̸=𝑖

[︂
− 𝜕2𝑈

𝜕𝑟𝑖𝑗𝜕𝑟𝑖𝐼
r̂𝑖𝑗 ⊗ r̂𝑖𝐼 +

(︂
−𝜕

2𝑈

𝜕𝑟2𝑖𝐼
+

1

𝑟𝑖𝐼

𝜕𝑈

𝜕𝑟𝑖𝐼

)︂
r̂𝑖𝐼 ⊗ r̂𝑖𝐼 −

1

𝑟𝑖𝐼

𝜕𝑈

𝜕𝑟𝑖𝐼

←→
1

]︂
.

For the Laplacian,

∇𝐼∇2
𝑖𝐽3 = ∇𝐼 [∇𝑖 · (∇𝑖𝐽3)] ,

= ∇𝐼
∑︁
𝑗 ̸=𝑖

[︃
𝜕2𝑈

𝜕𝑟2𝑖𝑗
+

2

𝑟𝑖𝑗

𝜕𝑈

𝜕𝑟𝑖𝑗
+ 2

𝜕2𝑈

𝜕𝑟𝑖𝑗𝜕𝑟𝑖𝐼

r𝑖𝑗 · r𝑖𝐼
𝑟𝑖𝑗𝑟𝑖𝐼

+
𝜕2𝑈

𝜕𝑟2𝑖𝐼
+

2

𝑟𝑖𝐼

𝜕𝑈

𝜕𝑟𝑖𝐼

]︃
,

=
∑︁
𝑗 ̸=𝑖

[︂
𝜕3𝑈

𝜕𝑟𝑖𝐼𝜕2𝑟𝑖𝑗
+

2

𝑟𝑖𝑗

𝜕2𝑈

𝜕𝑟𝑖𝐼𝜕𝑟𝑖𝑗
+ 2

(︂
𝜕3𝑈

𝜕𝑟𝑖𝑗𝜕2𝑟𝑖𝐼
− 1

𝑟𝑖𝐼

𝜕2𝑈

𝜕𝑟𝑖𝑗𝜕𝑟𝑖𝐼

)︂
r𝑖𝑗 · r𝑖𝐼
𝑟𝑖𝑗𝑟𝑖𝐼

+
𝜕3𝑈

𝜕3𝑟𝑖𝐼
− 2

𝑟2𝑖𝐼

𝜕𝑈

𝜕𝑟𝑖𝐼
+

2

𝑟𝑖𝐼

𝜕2𝑈

𝜕2𝑟𝑖𝐼

]︂
I− r𝑖
|I− r𝑖|

+

∑︁
𝑗 ̸=𝑖

[︃
𝜕3𝑈

𝜕𝑟2𝑖𝑗𝜕𝑟𝑗𝐼
+

2

𝑟𝑖𝑗

𝜕2𝑈

𝜕𝑟𝑗𝐼𝜕𝑟𝑖𝑗
+ 2

𝜕3𝑈

𝜕𝑟𝑖𝑗𝜕𝑟𝑖𝐼𝜕𝑟𝑗𝐼

r𝑖𝑗 · r𝑖𝐼
𝑟𝑖𝑗𝑟𝑖𝐼

+
𝜕3𝑈

𝜕𝑟2𝑖𝐼𝜕𝑟𝑗𝐼
+

2

𝑟𝑖𝐼

𝜕2𝑈

𝜕𝑟𝑖𝐼𝜕𝑟𝑗𝐼

]︃
I− r𝑗
|r𝑗 − I|

+

∑︁
𝑗 ̸=𝑖

[︂
− 2

𝑟𝑖𝐼

𝜕2𝑈

𝜕𝑟𝑖𝑗𝜕𝑟𝑖𝐼

]︂
r𝑖𝑗
𝑟𝑖𝑗

.

30.8 Feature: Reciprocal-space Jastrow factors

30.8.1 Two-body Jastrow

𝐽2 =
∑︁
G̸=0

∑︁
𝑖 ̸=𝑗

𝑎G𝑒
𝑖G·(r𝑖−r𝑗) . (30.145)

This may be rewritten as

𝐽2 =
∑︁
G̸=0

∑︁
𝑖 ̸=𝑗

𝑎G𝑒
𝑖G·r𝑖𝑒−𝑖G·r𝑗 ,

=
∑︁
G̸=0

𝑎G

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[︃∑︁

𝑖

𝑒𝑖G·r𝑖

]︃
⏟  ⏞  

𝜌G

⎡⎣∑︁
𝑗

𝑒−𝑖G·r𝑗

⎤⎦
⏟  ⏞  

𝜌−G

−1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(30.146)

The −1 is just a constant term and may be subsumed into the 𝑎G coefficient by a simple redefinition. This leaves a
simple, but general, form:

𝐽2 =
∑︁
G̸=0

𝑎G𝜌G𝜌−G . (30.147)
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We may now further constrain this on physical grounds. First, we recognize that 𝐽2 should be real. Since 𝜌−G = 𝜌*G,
it follows that 𝜌G𝜌−G = |𝜌G|2 is real, so that 𝑎G must be real. Furthermore, we group the G’s into (+G,−G) pairs
and sum over only the positive vectors to save time.

30.8.2 One-body Jastrow

The 1-body Jastrow has a similar form but depends on the displacement from the electrons to the ions in the system.

𝐽1 =
∑︁
G̸=0

∑︁
𝛼

∑︁
𝑖∈I𝛼

∑︁
𝑗∈elec.

𝑏𝛼G𝑒
𝑖G·(I𝛼𝑖 −r𝑗) , (30.148)

where 𝛼 denotes the different ionic species. We may rewrite this in terms of 𝜌𝛼G:

𝐽1 =
∑︁
G ̸=0

[︃∑︁
𝛼

𝑏𝛼G𝜌
𝛼
G

]︃
𝜌−G , (30.149)

where

𝜌𝛼G =
∑︁
𝑖∈I𝛼

𝑒𝑖G·I𝛼𝑖 . (30.150)

We note that in the preceding equation, for a single configuration of the ions, the sum in brackets can be rewritten as a
single constant. This implies that the per-species 1-body coefficients, 𝑏𝛼G, are underdetermined for single configuration
of the ions. In general, if we have𝑁 species, we need𝑁 linearly independent ion configurations to uniquely determine
𝑏𝛼G. For this reason, we will drop the 𝛼 superscript of 𝑏G for now.

If we do desire to find a reciprocal space 1-body Jastrow that is transferable to systems with different ion positions and
𝑁 ionic species, we must perform compute 𝑏G for𝑁 different ion configurations. We may then construct𝑁 equations
at each value of G to solve for the 𝑁 unknown values, 𝑏𝛼G.

In the 2-body case, 𝑎G was constrained to be real by the fact that 𝜌G𝜌−G was real. However, in the 1-body case, there
is no such guarantee about 𝜌𝛼G𝜌G. Therefore, in general, 𝑏G may be complex.

30.8.3 Symmetry considerations

For a crystal, many of the G-vectors will be equivalent by symmetry. It is useful then to divide the G-vectors into
symmetry-related groups and then require that they share a common coefficient. Two vectors, G and G′, may be
considered to be symmetry related if, for all 𝛼 and 𝛽

𝜌𝛼G𝜌
𝛽
−G = 𝜌𝛼G′𝜌

𝛽
−G′ . (30.151)

For the 1-body term, we may also omit from our list of G-vectors those for which all species structure factors are zero.
This is equivalent to saying that if we are tiling a primitive cell we should include only the G-vectors of the primitive
cell and not the supercell. Note that this is not the case for the 2-body term since the XC hole should not have the
periodicity of the primitive cell.

30.8.4 Gradients and Laplacians

∇r𝑖𝐽2 =
∑︁
G̸=0

𝑎G [(∇r𝑖𝜌G) 𝜌−G + c.c.] ,

=
∑︁
G̸=0

2G𝑎GRe
(︀
𝑖𝑒𝑖G·r𝑖𝜌−G

)︀
,

=
∑︁
G̸=0

−2G𝑎GIm
(︀
𝑒𝑖G·r𝑖𝜌−G

)︀
.

(30.152)
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The Laplacian is then given by

∇2𝐽2 =
∑︁
G̸=0

𝑎G
[︀(︀
∇2𝜌G

)︀
𝜌−G + c.c. + 2 (∇𝜌G) · (∇𝜌−G)

]︀
,

=
∑︁
G̸=0

𝑎G
[︀
−2𝐺2Re(𝑒𝑖G·r𝑖𝜌−G) + 2

(︀
𝑖G𝑒𝑖G·r𝑖

)︀
·
(︀
−𝑖G𝑒−𝑖G·r𝑖

)︀]︀
,

= 2
∑︁
G̸=0

𝐺2𝑎G
[︀
−Re

(︀
𝑒𝑖G·r𝑖𝜌−G

)︀
+ 1
]︀
.

(30.153)
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CHAPTER

THIRTYONE

DEVELOPMENT GUIDE

The section gives guidance on how to extend the functionality of QMCPACK. Future examples will likely include
topics such as the addition of a Jastrow function or a new QMC method.

31.1 QMCPACK coding standards

This chapter presents what we collectively have agreed are best practices for the code. This includes formatting style,
naming conventions, documentation conventions, and certain prescriptions for C++ language use. At the moment only
the formatting can be enforced in an objective fashion.

New development should follow these guidelines, and contributors are expected to adhere to them as they represent
an integral part of our effort to continue QMCPACK as a world-class, sustainable QMC code. Although some of the
source code has a ways to go to live up to these ideas, new code, even in old files, should follow the new conventions
not the local conventions of the file whenever possible. Work on the code with continuous improvement in mind rather
than a commitment to stasis.

The current workflow conventions for the project are described in the wiki on the GitHub repository. It will save you
and all the maintainers considerable time if you read these and ask questions up front.

A PR should follow these standards before inclusion in the mainline. You can be sure of properly following the
formatting conventions if you use clang-format. The mechanics of clang-format setup and use can be found at https:
//github.com/QMCPACK/qmcpack/wiki/Source-formatting.

The clang-format file found at qmcpack/src/.clang-format should be run over all code touched in a PR before
a pull request is prepared. We also encourage developers to run clang-tidy with the qmcpack/src/.clang-tidy
configuration over all new code.

As much as possible, try to break up refactoring, reformatting, feature, and bugs into separate, small PRs. Aim for
something that would take a reviewer no more than an hour. In this way we can maintain a good collective development
velocity.

31.2 Files

Each file should start with the header.

//////////////////////////////////////////////////////////////////////////////////////
// This file is distributed under the University of Illinois/NCSA Open Source License.
// See LICENSE file in top directory for details.
//
// Copyright (c) 2021 QMCPACK developers
//

(continues on next page)
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(continued from previous page)

// File developed by: Name, email, affiliation
//
// File created by: Name, email, affiliation
//////////////////////////////////////////////////////////////////////////////////////

If you make significant changes to an existing file, add yourself to the list of “developed by” authors.

31.2.1 File organization

Header files should be placed in the same directory as their implementations. Unit tests should be written for all new
functionality. These tests should be placed in a tests subdirectory below the implementations.

31.2.2 File names

Each class should be defined in a separate file with the same name as the class name. Use separate .cpp implemen-
tation files whenever possible to aid in incremental compilation.

The filenames of tests are composed by the filename of the object tested and the prefix test_. The filenames of fake
and mock objects used in tests are composed by the prefixes fake_ and mock_, respectively, and the filename of the
object that is imitated.

31.2.3 Header files

All header files should be self-contained (i.e., not dependent on following any other header when it is included).
Nor should they include files that are not necessary for their use (i.e., headers needed only by the implementation).
Implementation files should not include files only for the benefit of files they include.

There are many header files that currently violate this. Each header must use #define guards to prevent multiple
inclusion. The symbol name of the #define guards should be NAMESPACE(s)_CLASSNAME_H.

31.2.4 Includes

Related header files should be included without any path. Header files from external projects and standard libraries
should be includes using the <iostream> convention, while headers that are part of the QMCPACK project should
be included using the "our_header.h" convention.

We are now using a new header file inclusion style following the modern CMake transition in QMCPACK, while the
legacy code may still use the legacy style. Newly written code and refactored code should be transitioned to the new
style.

New style for modern CMake

In QMCPACK, include paths are handled by modern CMake target dependency. Every top level folder is at least one
target. For example, src/Particle/CMakeLists.txt defines qmcparticle target. It propagates include path
qmcpack/src/Particle to compiling command lines in CMake via

TARGET_INCLUDE_DIRECTORIES(qmcparticle PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}")

For this reason, the file qmcpack/src/Particle/Lattice/ParticleBConds3DSoa.h should be included
as
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#include "Lattice/ParticleBConds3DSoa.h"

If the compiled file is not part of the same target as qmcparticle, the target it belongs to should have a dependency on
qmcparticle. For example, test source files under qmcpack/src/Particle/tests are not part of qmcparticle
and thus requires the following additional CMake setting

TARGET_LINK_LIBRARIES(${UTEST_EXE} qmcparticle)

Legacy style

Header files should be included with the full path based on the src directory. For example, the file qmcpack/src/
QMCWaveFunctions/SPOSet.h should be included as

#include "QMCWaveFunctions/SPOSet.h"

Even if the included file is located in the same directory as the including file, this rule should be obeyed.

Ordering

For readability, we suggest using the following standard order of includes:

1. related header

2. std C library headers

3. std C++ library headers

4. Other libraries’ headers

5. QMCPACK headers

In each section the included files should be sorted in alphabetical order.

31.3 Naming

The balance between description and ease of implementation should be balanced such that the code remains self-
documenting within a single terminal window. If an extremely short variable name is used, its scope must be shorter
than ∼ 40 lines. An exception is made for template parameters, which must be in all CAPS. Legacy code contains a
great variety of hard to read code style, read this section and do not imitate existing code that violates it.

31.3.1 Namespace names

Namespace names should be one word, lowercase.
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31.3.2 Type and class names

Type and class names should start with a capital letter and have a capital letter for each new word. Underscores (_)
are not allowed. It’s redundant to end these names with Type or _t.

:: \no using ValueMatrix_t = Matrix<Value>; using RealType = double;

31.3.3 Variable names

Variable names should not begin with a capital letter, which is reserved for type and class names. Underscores (_)
should be used to separate words.

31.3.4 Class data members

Class private/protected data members names should follow the convention of variable names with a trailing underscore
(_). The use of public member functions is discourage, rethink the need for it in the first place. Instead get and set
functions are the preferred access method.

31.3.5 (Member) function names

Function names should start with a lowercase character and have a capital letter for each new word. The exception are
the special cases for prefixed multiwalker (mw_) and flex (flex_) batched API functions. Coding convention should
follow after those prefixes.

31.3.6 Template Parameters

Template parameters names should be in all caps with (_) separating words. It’s redundant to end these names with
_TYPE,

31.3.7 Lambda expressions

Named lambda expressions follow the naming convention for functions:

auto myWhatever = [](int i) { return i + 4; };

31.3.8 Macro names

Macro names should be all uppercase and can include underscores (_). The underscore is not allowed as first or last
character.
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31.3.9 Test case and test names

Test code files should be named as follows:

class DiracMatrix;
//leads to
test_dirac_matrix.cpp
//which contains test cases named
TEST_CASE("DiracMatrix_update_row","[wavefunction][fermion]")

where the test case covers the updateRow and [wavefunction][fermion] indicates the test belongs to the
fermion wavefunction functionality.

31.4 Comments

31.4.1 Comment style

Use the // Comment syntax for actual comments.

Use

/** base class for Single-particle orbital sets

*
* SPOSet stands for S(ingle)P(article)O(rbital)Set which contains

* a number of single-particle orbitals with capabilities of

* evaluating \f$ \psi_j({\bf r}_i)\f$

*/

or

///index in the builder list of sposets
int builder_index;

31.4.2 Documentation

Doxygen will be used for source documentation. Doxygen commands should be used when appropriate guidance on
this has been decided.

File docs

Do not put the file name after the \file Doxygen command. Doxygen will fill it in for the file the tag appears in.

/** \file

* File level documentation

*/
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Class docs

Every class should have a short description (in the header of the file) of what it is and what is does. Comments for
public class member functions follow the same rules as general function comments. Comments for private members
are allowed but are not mandatory.

Function docs

For function parameters whose type is non-const reference or pointer to non-const memory, it should be specified if
they are input (In:), output (Out:) or input-output parameters (InOut:).

Example:

/** Updates foo and computes bar using in_1 .. in_5.

* \param[in] in_3

* \param[in] in_5

* \param[in,out] foo

* \param[out] bar

*/

//This is probably not what our clang-format would do
void computeFooBar(Type in_1, const Type& in_2, Type& in_3,

const Type* in_4, Type* in_5, Type& foo,
Type& bar);

Variable documentation

Name should be self-descriptive. If you need documentation consider renaming first.

31.4.3 Golden rule of comments

If you modify a piece of code, also adapt the comments that belong to it if necessary.

31.5 Formatting and “style”

Use the provided clang-format style in src/.clang-format to format .h, .hpp, .cu, and .cpp files. Many of
the following rules will be applied to the code by clang-format, which should allow you to ignore most of them if you
always run it on your modified code.

You should use clang-format support and the .clangformat file with your editor, use a Git precommit hook to
run clang-format or run clang-format manually on every file you modify. However, if you see numerous formatting
updates outside of the code you have modified, first commit the formatting changes in a separate PR.
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31.5.1 Indentation

Indentation consists of two spaces. Do not use tabs in the code.

31.5.2 Line length

The length of each line of your code should be at most 120 characters.

31.5.3 Horizontal spacing

No trailing white spaces should be added to any line. Use no space before a comma (,) and a semicolon (;), and add
a space after them if they are not at the end of a line.

31.5.4 Preprocessor directives

The preprocessor directives are not indented. The hash is the first character of the line.

31.5.5 Binary operators

The assignment operators should always have spaces around them.

31.5.6 Unary operators

Do not put any space between an unary operator and its argument.

31.5.7 Types

The using syntax is preferred to typedef for type aliases. If the actual type is not excessively long or complex,
simply use it; renaming simple types makes code less understandable.

31.5.8 Pointers and references

Pointer or reference operators should go with the type. But understand the compiler reads them from right to left.

Type* var;
Type& var;

//Understand this is incompatible with multiple declarations
Type* var1, var2; // var1 is a pointer to Type but var2 is a Type.
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31.5.9 Templates

The angle brackets of templates should not have any external or internal padding.

template<class C>
class Class1;

Class1<Class2<type1>> object;

31.5.10 Vertical spacing

Use empty lines when it helps to improve the readability of the code, but do not use too many. Do not use empty lines
after a brace that opens a scope or before a brace that closes a scope. Each file should contain an empty line at the end
of the file. Some editors add an empty line automatically, some do not.

31.5.11 Variable declarations and definitions

• Avoid declaring multiple variables in the same declaration, especially if they are not fundamental types:

int x, y; // Not recommended
Matrix a("my-matrix"), b(size); // Not allowed

// Preferred
int x;
int y;
Matrix a("my-matrix");
Matrix b(10);

• Use the following order for keywords and modifiers in variable declarations:

// General type
[static] [const/constexpr] Type variable_name;

// Pointer
[static] [const] Type* [const] variable_name;

// Integer
// the int is not optional not all platforms support long, etc.
[static] [const/constexpr] [signedness] [size] int variable_name;

// Examples:
static const Matrix a(10);

const double* const d(3.14);
constexpr unsigned long l(42);
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31.5.12 Function declarations and definitions

The return type should be on the same line as the function name. Parameters should also be on the same line unless
they do not fit on it, in which case one parameter per line aligned with the first parameter should be used.

Also include the parameter names in the declaration of a function, that is,

// calculates a*b+c
double function(double a, double b, double c);

// avoid
double function(double, double, double);

// dont do this
double function(BigTemplatedSomething<double> a, BigTemplatedSomething<double> b,

BigTemplatedSomething<double> c);

// do this
double function(BigTemplatedSomething<double> a,

BigTemplatedSomething<double> b,
BigTemplatedSomething<double> c);

31.5.13 Conditionals

Examples:

if (condition)
statement;

else
statement;

if (condition)
{

statement;
}
else if (condition2)
{

statement;
}
else
{

statement;
}

31.5.14 Switch statement

Switch statements should always have a default case.

Example:

switch (var)
{

case 0:
statement1;
statement2;

(continues on next page)
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(continued from previous page)

break;

case 1:
statement1;
statement2;
break;

default:
statement1;
statement2;

}

31.5.15 Loops

Examples:

for (statement; condition; statement)
statement;

for (statement; condition; statement)
{

statement1;
statement2;

}

while (condition)
statement;

while (condition)
{

statement1;
statement2;

}

do
{

statement;
}
while (condition);

31.5.16 Class format

public, protected, and private keywords are not indented.

Example:

class Foo : public Bar
{
public:

Foo();
explicit Foo(int var);

void function();
void emptyFunction() {}

(continues on next page)
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(continued from previous page)

void setVar(const int var)
{
var_ = var;

}
int getVar() const
{
return var_;

}

private:
bool privateFunction();

int var_;
int var2_;

};

Constructor initializer lists

Examples:

// When everything fits on one line:
Foo::Foo(int var) : var_(var)
{

statement;
}

// If the signature and the initializer list do not
// fit on one line, the colon is indented by 4 spaces:
Foo::Foo(int var)

: var_(var), var2_(var + 1)
{

statement;
}

// If the initializer list occupies more lines,
// they are aligned in the following way:
Foo::Foo(int var)

: some_var_(var),
some_other_var_(var + 1)

{
statement;

}

// No statements:
Foo::Foo(int var)

: some_var_(var) {}
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31.5.17 Namespace formatting

The content of namespaces is not indented. A comment should indicate when a namespace is closed. (clang-format
will add these if absent). If nested namespaces are used, a comment with the full namespace is required after opening
a set of namespaces or an inner namespace.

Examples:

namespace ns
{
void foo();
} // ns

namespace ns1
{
namespace ns2
{
// ns1::ns2::
void foo();

namespace ns3
{
// ns1::ns2::ns3::
void bar();
} // ns3
} // ns2

namespace ns4
{
namespace ns5
{
// ns1::ns4::ns5::
void foo();
} // ns5
} // ns4
} // ns1

31.6 QMCPACK C++ guidance

The guidance here, like any advice on how to program, should not be treated as a set of rules but rather the hard-won
wisdom of many hours of suffering development. In the past, many rules were ignored, and the absolute worst results
of that will affect whatever code you need to work with. Your PR should go much smoother if you do not ignore them.

31.6.1 Encapsulation

A class is not just a naming scheme for a set of variables and functions. It should provide a logical set of methods,
could contain the state of a logical object, and might allow access to object data through a well-defined interface related
variables, while preserving maximally ability to change internal implementation of the class.

Do not use struct as a way to avoid controlling access to the class. Only in rare cases where a class is a fully public
data structure struct is this appropriate. Ignore (or fix one) the many examples of this in QMCPACK.

Do not use inheritance primarily as a means to break encapsulation. If your class could aggregate or compose another
class, do that, and access it solely through its public interface. This will reduce dependencies.
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31.6.2 Casting

In C++ source, avoid C style casts; they are difficult to search for and imprecise in function. An exception is made for
controlling implicit conversion of simple numerical types.

Explicit C++ style casts make it clear what the safety of the cast is and what sort of conversion is expected to be
possible.

int c = 2;
int d = 3;
double a;
a = (double)c / d; // Ok

const class1 c1;
class2* c2;
c2 = (class2*)&c1; // NO
SPOSetAdvanced* spo_advanced = new SPOSetAdvanced();

SPOSet* spo = (SPOSet*)spo_advanced; // NO
SPOSet* spo = static_cast<SPOSet*>(spo_advanced); // OK if upcast, dangerous if
→˓downcast

31.6.3 Pre-increment and pre-decrement

Use the pre-increment (pre-decrement) operator when a variable is incremented (decremented) and the value of the
expression is not used. In particular, use the pre-increment (pre-decrement) operator for loop counters where i is not
used:

for (int i = 0; i < N; ++i)
{

doSomething();
}

for (int i = 0; i < N; i++)
{

doSomething(i);
}

The post-increment and post-decrement operators create an unnecessary copy that the compiler cannot optimize away
in the case of iterators or other classes with overloaded increment and decrement operators.

31.6.4 Alternative operator representations

Alternative representations of operators and other tokens such as and, or, and not instead of &&, ||, and ! are not
allowed. For the reason of consistency, the far more common primary tokens should always be used.
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31.6.5 Use of const

• Add the const qualifier to all function parameters that are not modified in the function body.

• For parameters passed by value, add only the keyword in the function definition.

• Member functions should be specified const whenever possible.

// Declaration
int computeFoo(int bar, const Matrix& m)

// Definition
int computeFoo(const int bar, const Matrix& m)
{
int foo = 42;

// Compute foo without changing bar or m.
// ...

return foo;
}

class MyClass
{
int count_
...
int getCount() const { return count_;}

}

31.6.6 Smart pointers

Use of smart pointers is being adopted to help make QMCPACK memory leak free. Prior to C++11, C++ uses C-style
pointers. A C-style pointer can have several meanings and the ownership of a piece of help memory may not be clear.
This leads to confusion and causes memory leaks if pointers are not managed properly. Since C++11, smart pointers
were introduced to resolve this issue. In addition, it demands developers to think about the ownership and lifetime of
declared pointer objects.

std::unique_ptr

A unique pointer is the unique owner of a piece of allocated memory. Pointers in per-walker data structure with distinct
contents should be unique pointers. For example, every walker has a trial wavefunction object which contains an SPO
object pointer. Because the SPO object has a vector to store SPO evaluation results, it cannot be shared between two
trial wavefunction objects. For this reason the SPO object pointer should be an unique pointer.

In QMCPACK, most raw pointers can be directly replaced with std::unique_ptr. Corresponding use of new
operator can be replaced with std:make_unique.
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std::shared_ptr

A shared pointer is the shared owner of a piece of allocated memory. Moving a pointer ownership from one place to
another should not use shared pointers but C++ move semantics. Shared contents between walkers may be candidates
for shared pointers. For example, although the Jastrow factor object must be unique per walker, the pointer to the
parameter data structure can be a shared pointer. During Jastrow optimization, any update to the parameter data
managed by the shared pointer will be effective immediately in all the Jastrow objects. In another example, spline
coefficients are managed by a shared pointer which achieves a single copy in memory shared by an SPOSet and all of
its clones.

31.7 Particles and distance tables

31.7.1 ParticleSets

The ParticleSet class stores particle positions and attributes (charge, mass, etc).

The R member stores positions. For calculations, the R variable needs to be transferred to the structure-of-arrays (SoA)
storage in RSoA. This is done by the update method. In the future the interface may change to use functions to set
and retrieve positions so the SoA transformation of the particle data can happen automatically. For now, it is crucial to
call P.update() to populate RSoA anytime P.R is changed. Otherwise, the distance tables associated with R will
be uninitialized or out-of-date.

const SimulationCell sc;
ParticleSet elec(sc), ions(sc);
elec.setName("e");
ions.setName("ion0");

// initialize ions
ions.create({2});
ions.R[0] = {0.0, 0.0, 0.0};
ions.R[1] = {0.5, 0.5, 0.5};
ions.update(); // transfer to RSoA

// initialize elec
elec.create({1,1});
elec.R[0] = {0.0, 0.0, 0.0};
elec.R[1] = {0.0, 0.25, 0.0};
const int itab = elec.addTable(ions);
elec.update(); // update RSoA and distance tables

// d_table is an electron-ion distance table
const auto& d_table = elec.getDistTableAB(itab);

A particular distance table is retrieved with getDistTable. Use addTable to add a ParticleSet and return
the index of the distance table. If the table already exists the index of the existing table will be returned.

The mass and charge of each particle is stored in Mass and Z. The flag, SameMass, indicates if all the particles have
the same mass (true for electrons).
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Groups

Particles can belong to different groups. For electrons, the groups are up and down spins. For ions, the groups are the
atomic elements. The group type for each particle can be accessed through the GroupID member. The number of
groups is returned from groups(). The total number particles is accessed with getTotalNum(). The number of
particles in a group is groupsize(int igroup). The particle indices for each group are found with first(int
igroup) and last(int igroup).

31.7.2 Distance tables

Distance tables store distances between particles. There are symmetric (AA) tables for distance between like particles
(electron-electron or ion-ion) and asymmetric (AB) tables for distance between unlike particles (electron-ion)

The Distances and Displacements members contain the data. The indexing order is target index first, then
source. For electron-ion tables, the sources are the ions and the targets are the electrons.

31.7.3 Looping over particles

Some sample code on how to loop over all the particles in an electron-ion distance table:

// d_table is an electron-ion distance table

for (int jat = 0; j < d_table.targets(); jat++) { // Loop over electrons
for (int iat = 0; i < d_table.sources(); iat++) { // Loop over ions

d_table.Distances[jat][iat];
}

}

Interactions sometimes depend on the type of group of the particles. The code can loop over all particles and use
GroupID[idx] to choose the interaction. Alternately, the code can loop over the number of groups and then loop
from the first to last index for those groups. This method can attain higher performance by effectively hoisting tests
for group ID out of the loop.

An example of the first approach is

// P is a ParticleSet

for (int iat = 0; iat < P.getTotalNum(); iat++) {
int group_idx = P.GroupID[iat];
// Code that depends on the group index

}

An example of the second approach is

// P is a ParticleSet
assert(P.IsGrouped == true); // ensure particles are grouped

for (int ig = 0; ig < P.groups(); ig++) { // loop over groups
for (int iat = P.first(ig); iat < P.last(ig); iat++) { // loop over elements in

→˓each group
// Code that depends on group

}
}
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31.8 Wavefunction

A full TrialWaveFunction is formulated as a product of all the components. Each component derives from
WaveFunctionComponent.

𝜓 =
∏︁
𝑐

𝜓𝑐

QMCPACK doesn’t directly use the product form but mostly uses the log of the wavefunction. It is a natural fit for
QMC algorithms and offers a numerical advantage on computers. The log value grows linearly instead of exponen-
tially, beyond the range of double precision, with respect to the electron counts in a Slater-Jastrow wave function.

The code contains an example of a wavefunction component for a Helium atom using a simple form and is described
in Helium Wavefunction Example

31.8.1 Mathematical preliminaries

The wavefunction evaluation functions compute the log of the wavefunction, the gradient and the Laplacian of the log
of the wavefunction. Expanded, the gradient and Laplacian are

G = {∇𝑖 ln(𝜓)} =

{︃∑︁
𝑐

∇𝑖 ln(𝜓𝑐)

}︃
, G̃ = {∇𝑖 ln(𝜓)} =

{︃
∇𝑖𝜓
𝜓

}︃

L = {∇2
𝑖 ln(𝜓)} =

{︃∑︁
𝑐

∇2
𝑖 ln(𝜓𝑐)

}︃
, L̃ = {∇2

𝑖 ln(𝜓)} =

{︃
∇2
𝑖𝜓

𝜓
− �̃�𝑖 · �̃�𝑖

}︃ (31.1)

where 𝑖 is the electron index. In this separable form, each wavefunction component computes its G̃
WaveFunctionComponent::G and L̃ WaveFunctionComponent::L. The sum over components are stored
in TrialWaveFunction::G and TrialWaveFunction::L. The ∇2𝜓

𝜓 needed by kinetic part of the local en-
ergy can be computed as

∇2
𝑖𝜓

𝜓
= Li + G𝑖 ·G𝑖

see QMCHamiltonians/BareKineticEnergy.h.

31.8.2 Wavefunction evaluation

The process for creating a new wavefunction component class is to derive from WaveFunctionComponent and imple-
ment a number pure virtual functions. To start most of them can be empty.

The following four functions evaluate the wavefunction values and spatial derivatives:

evaluateLog Computes the log of the wavefunction and the gradient and Laplacian (of the log of the wavefunction)
for all particles. The input is theParticleSet(P) (of the electrons). The log of the wavefunction should be stored
in the LogValue member variable, and used as the return value from the function. The gradient is stored in G and
the Laplacian in L.

ratio Computes the wavefunction ratio (not the log) for a single particle move (𝜓𝑛𝑒𝑤/𝜓𝑜𝑙𝑑). The inputs are the
ParticleSet(P) and the particle index (iat).

evalGrad Computes the gradient for a given particle. The inputs are the ParticleSet(P) and the particle index
(iat).

ratioGrad Computes the wavefunction ratio and the gradient at the new position for a single particle move. The
inputs are the ParticleSet(P) and the particle index (iat). The output gradient is in grad_iat;
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The updateBuffer function needs to be implemented, but to start it can simply call evaluateLog.

The put function should be implemented to read parameter specifics from the input XML file.

31.8.3 Function use

For debugging it can be helpful to know the under what conditions the various routines are called.

The VMC and DMC loops initialize the walkers by calling evaluateLog. For all-electron moves, each timestep
advance calls evaluateLog. If the use_drift parameter is no, then only the wavefunction value is used for
sampling. The gradient and Laplacian are used for computing the local energy.

For particle-by-particle moves, each timestep advance

1. calls evalGrad

2. computes a trial move

3. calls ratioGrad for the wavefunction ratio and the gradient at the trial position. (If the use_drift param-
eter is no, the ratio function is called instead.)

The following example shows part of an input block for VMC with all-electron moves and drift.

<qmc method="vmc" target="e" move="alle">
<parameter name="use_drift">yes</parameter>

</qmc>

31.8.4 Particle distances

The ParticleSet parameter in these functions refers to the electrons. The distance tables that store the inter-
particle distances are stored as an array.

To get the electron-ion distances, add the ion ParticleSet using addTable and save the returned index. Use that
index to get the ion-electron distance table.

const int ei_id = elecs.addTable(ions); // in the constructor only
const auto& ei_table = elecs.getDistTable(ei_id); // when consuming a distance table

Getting the electron-electron distances is very similar, just add the electron ParticleSet using addTable.

Only the lower triangle for the electron-electron table should be used. It is the only part of the distance table valid
throughout the run. During particle-by-particle move, there are extra restrictions. When a move of electron iel is
proposed, only the lower triangle parts [0,iel)[0,iel) [iel, Nelec)[iel, Nelec) and the row [iel][0:Nelec) are valid. In
fact, the current implementation of distance based two and three body Jastrow factors in QMCPACK only needs the
row [iel][0:Nelec).

In ratioGrad, the new distances are stored in the Temp_r and Temp_dr members of the distance tables.
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31.8.5 Setup

A builder processes XML input, creates the wavefunction, and adds it to targetPsi. Builders derive from
WaveFunctionComponentBuilder.

The new builder hooks into the XML processing in WaveFunctionFactory.cpp in the build function.

31.8.6 Caching values

The acceptMove and restore methods are called on accepted and rejected moves for the component to update
cached values.

31.8.7 Threading

The makeClone function needs to be implemented to work correctly with OpenMP threading. There will be one copy
of the component created for each thread. If there is no extra storage, calling the copy constructor will be sufficient. If
there are cached values, the clone call may need to create space.

31.8.8 Parameter optimization

The checkInVariables, checkOutVariables, and resetParameters functions manage the variational
parameters. Optimizable variables also need to be registered when the XML is processed.

Variational parameter derivatives are computed in the evaluateDerivatives function. It computes the deriva-
tives of both the log of the wavefunction and kinetic energy with respect to optimizable parameters and adds the results
to the corresponding output arrays.

The kinetic energy derivatives are computed as∑︁
𝑖

− 1

2𝑚𝑖
(𝜕𝛼L𝑖 + 2G𝑖 · 𝜕𝛼G𝑖)

with each WaveFunctionComponent contributing

−1

2
𝜕𝛼�̃�−𝐺 · 𝜕𝛼�̃�

Right now 1/𝑚 factor is applied in TrialWaveFunction. This is a bug when the particle set doesn’t hold equal
mass particles.

31.8.9 Helium Wavefunction Example

The code contains an example of a wavefunction component for a Helium atom using STO orbitals and a Pade Jastrow.

to The wavefunction is

𝜓 =
1√
𝜋

exp(−𝑍𝑟1) exp(−𝑍𝑟2) exp(𝐴/(1 +𝐵𝑟12)) (31.2)

where 𝑍 = 2 is the nuclear charge, 𝐴 = 1/2 is the electron-electron cusp, and 𝐵 is a variational parameter. The
electron-ion distances are 𝑟1 and 𝑟2, and 𝑟12 is the electron-electron distance. The wavefunction is the same as the one
expressed with built-in components in examples/molecules/He/he_simple_opt.xml.
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The code is in src/QMCWaveFunctions/ExampleHeComponent.cpp. The builder is in src/
QMCWaveFunctions/ExampleHeBuilder.cpp. The input file is in examples/molecules/He/
he_example_wf.xml. A unit test compares results from the wavefunction evaluation functions for consistency
in src/QMCWaveFunctions/tests/test_example_he.cpp.

The recommended approach for creating a new wavefunction component is to copy the example and the unit test.
Implement the evaluation functions and ensure the unit test passes.

31.9 Linear Algebra

Like in many methods which solve the Schrödinger equation, linear algebra plays a critical role in QMC algorithms
and thus is crucial to the performance of QMCPACK. There are a few components in QMCPACK use BLAS/LAPACK
with their own characteristics.

31.9.1 Real space QMC

Single particle orbitals

Spline evaluation as commonly used in solid-state simulations does not use any dense linear algebra library calls.
LCAO evaluation as commonly used in molecular calculations relies on BLAS2 GEMV to compute SPOs from a
basis set.

Slater determinants

Slater determinants are calculated on 𝑁 × 𝑁 Slater matrices. 𝑁 is the number of electrons for a given spin. In the
actually implementation, operations on the inverse matrix of Slater matrix for each walker dominate the computation.
To initialize it, DGETRF and DGETRI from LAPACK are called. The inverse matrix can be stored out of place.
During random walking, inverse matrices are updated by either Sherman-Morrison rank-1 update or delayed update.
Update algorithms heavily relies on BLAS. All the BLAS operations require S,C,D,Z cases.

Sherman-Morrison rank-1 update uses BLAS2 GEMV and GER on 𝑁 ×𝑁 matrices.

Delayed rank-K update uses

• BLAS1 SCOPY on 𝑁 array.

• BLAS2 GEMV, GER on 𝑘 × 𝑁 and 𝑘 × 𝑘 matrices. 𝑘 ranges from 1 to 𝐾 when updates are delayed and
accumulated.

• BLAS3 GEMM at the final update.

– ’T’, ’N’, K, N, N

– ’N’, ’N’, N, K, K

– ’N’, ’N’, N, N, K

The optimal K depends on the hardware but it usually ranges from 32 to 256.

QMCPACK solves systems with a few to thousands of electrons. To make all the BLAS/LAPACK operation efficient
on accelerators. Batching is needed and optimized for 𝑁 < 2000. Non-batched functions needs to be optimized for
𝑁 > 500. Note: 2000 and 500 are only rough estimates.
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to be added.

31.9.2 Auxiliary field QMC

The AFQMC implementation in QMCPACK relies heavily on linear algebra operations from BLAS/LAPACK. The
performance of the code is netirely dependent on the performance of these libraries. See below for a detailed list of the
main routines used from BLAS/LAPACK. Since the AFQMC code can work with both single and double precision
builds, all 4 versions of these routines (S,C,D,Z) are generally needed, for this reason we omit the data type label.

• BLAS1: SCAL, COPY, DOT, AXPY

• BLAS2: GEMV, GER

• BLAS3: GEMM

• LAPACK: GETRF, GETRI, GELQF, UNGLQ, ORGLQ, GESVD, HEEVR, HEGVX

While the dimensions of the matrix operations will depend entirely on the details of the calculation, typical matrix
dimensions range from the 100s, for small system sizes, to over 20000 for the largest calculations attempted so far.
For builds with GPU accelerators, we make use of batched and strided implementations of these routines. Batched
implementations of GEMM, GETRF, GETRI, GELQF and UNGLQ are particularly important for the performance of
the GPU build on small to medium size problems. Batched implementations of DOT, AXPY and GEMV would also
be quite useful, but they are not yet generally available. On GPU builds, the code uses batched implementations of
these routines when available by default.

31.10 Slater-backflow wavefunction implementation details

For simplicity, consider𝑁 identical fermions of the same spin (e.g., up electrons) at spatial locations {r1, r2, . . . , r𝑁}.
Then the Slater determinant can be written as

𝑆 = det𝑀 , (31.3)

where each entry in the determinant is an SPO evaluated at a particle position

𝑀𝑖𝑗 = 𝜑𝑖(r𝑗) . (31.4)

When backflow transformation is applied to the determinant, the particle coordinates r𝑖 that go into the SPOs are
replaced by quasi-particle coordinates x𝑖:

𝑀𝑖𝑗 = 𝜑𝑖(x𝑗) , (31.5)

where

x𝑖 = r𝑖 +

𝑁∑︁
𝑗=1,𝑗 ̸=𝑖

𝜂(𝑟𝑖𝑗)(r𝑖 − r𝑗) . (31.6)

𝑟𝑖𝑗 = |r𝑖 − r𝑗 |. The integers i,j label the particle/quasi-particle. There is a one-to-one correspondence between the
particles and the quasi-particles, which is simplest when 𝜂 = 0.
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31.10.1 Value

The evaluation of the Slater-backflow wavefunction is almost identical to that of a Slater wavefunction. The only
difference is that the quasi-particle coordinates are used to evaluate the SPOs. The actual value of the determinant is

stored during the inversion of the matrix 𝑀 (cgetrf→cgetri). Suppose 𝑀 = 𝐿𝑈 , then 𝑆 =
𝑁∏︀
𝑖=1

𝐿𝑖𝑖𝑈𝑖𝑖.

// In DiracDeterminantWithBackflow::evaluateLog(P,G,L)
Phi->evaluate(BFTrans->QP, FirstIndex, LastIndex, psiM,dpsiM,grad_grad_psiM);
psiMinv = psiM;
LogValue=InvertWithLog(psiMinv.data(),NumPtcls,NumOrbitals

,WorkSpace.data(),Pivot.data(),PhaseValue);

QMCPACK represents the complex value of the wavefunction in polar coordinates 𝑆 = 𝑒𝑈𝑒𝑖𝜃. Specifically,
LogValue 𝑈 and PhaseValue 𝜃 are handled separately. In the following, we will consider derivatives of the
log value only.

31.10.2 Gradient

To evaluate particle gradient of the log value of the Slater-backflow wavefunction, we can use the log det identity in
(31.7). This identity maps the derivative of log det𝑀 with respect to a real variable 𝑝 to a trace over 𝑀−1𝑑𝑀 :

𝜕

𝜕𝑝
log det𝑀 = tr

(︂
𝑀−1 𝜕𝑀

𝜕𝑝

)︂
. (31.7)

Following Kwon, Ceperley, and Martin [[KCM93]], the particle gradient

𝐺𝛼𝑖 ≡
𝜕

𝜕𝑟𝛼𝑖
log det𝑀 =

𝑁∑︁
𝑗=1

3∑︁
𝛽=1

𝐹 𝛽𝑗𝑗𝐴
𝛼𝛽
𝑗𝑗 , (31.8)

where the quasi-particle gradient matrix

𝐴𝛼𝛽𝑖𝑗 ≡
𝜕𝑥𝛽𝑗
𝜕𝑟𝛼𝑖

, (31.9)

and the intermediate matrix

𝐹𝛼𝑖𝑗 ≡
∑︁
𝑘

𝑀−1
𝑖𝑘 𝑑𝑀

𝛼
𝑘𝑗 , (31.10)

with the SPO derivatives (w.r. to quasi-particle coordinates)

𝑑𝑀𝛼
𝑖𝑗 ≡

𝜕𝑀𝑖𝑗

𝜕𝑥𝛼𝑗
. (31.11)

Notice that we have made the name change of 𝜑 → 𝑀 from the notations of ref. [[KCM93]]. This name change is
intended to help the reader associate M with the QMCPACK variable psiM.

// In DiracDeterminantWithBackflow::evaluateLog(P,G,L)
for(int i=0; i<num; i++) // k in above formula
{

for(int j=0; j<NumPtcls; j++)
{
for(int k=0; k<OHMMS_DIM; k++) // alpha in above formula
{

myG(i) += dot(BFTrans->Amat(i,FirstIndex+j),Fmat(j,j));
}

}
}
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(31.8) is still relatively simple to understand. The 𝐴 matrix maps changes in particle coordinates 𝑑r to changes in
quasi-particle coordinates 𝑑x. Dotting A into F propagates 𝑑x to 𝑑𝑀 . Thus 𝐹 ·𝐴 is the term inside the trace operator
of (31.7). Finally, performing the trace completes the evaluation of the derivative.

31.10.3 Laplacian

The particle Laplacian is given in [[KCM93]] as

𝐿𝑖 ≡
∑︁
𝛽

𝜕2

𝜕(𝑟𝛽𝑖 )2
log det𝑀 =

∑︁
𝑗𝛼

𝐵𝛼𝑖𝑗𝐹
𝛼
𝑗𝑗 −

∑︁
𝑗𝑘

∑︁
𝛼𝛽𝛾

𝐴𝛼𝛽𝑖𝑗 𝐴
𝛼𝛾
𝑖𝑘 ×

(︃
𝐹𝛼𝑘𝑗𝐹

𝛾
𝑗𝑘 − 𝛿𝑗𝑘

∑︁
𝑚

𝑀−1
𝑗𝑚𝑑2𝑀𝛽𝛾

𝑚𝑗

)︃
, (31.12)

where the quasi-particle Laplacian matrix

𝐵𝛼𝑖𝑗 ≡
∑︁
𝛽

𝜕2𝑥𝛼𝑗

𝜕(𝑟𝛽𝑖 )2
, (31.13)

with the second derivatives of the single-particles orbitals being

𝑑2𝑀𝛼𝛽
𝑖𝑗 ≡

𝜕2𝑀𝑖𝑗

𝜕𝑥𝛼𝑗 𝜕𝑥
𝛽
𝑗

. (31.14)

Schematically, 𝐿𝑖 has contributions from three terms of the form 𝐵𝐹,𝐴𝐴𝐹𝐹, 𝑎𝑛𝑑𝑡𝑟(𝐴𝐴,𝑀𝑑2𝑀), respectively.
𝐴,𝐵,𝑀, 𝑑2𝑀, and 𝐹 can be calculated and stored before the calculations of 𝐿𝑖. The first 𝐵𝐹 term can be directly
calculated in a loop over quasi-particle coordinates 𝑗𝛼.

// In DiracDeterminantWithBackflow::evaluateLog(P,G,L)
for(int j=0; j<NumPtcls; j++)

for(int a=0; a<OHMMS_DIM; k++)
myL(i) += BFTrans->Bmat_full(i,FirstIndex+j)[a]*Fmat(j,j)[a];

Notice that 𝐵𝛼𝑖𝑗 is stored in Bmat_full, NOT Bmat.

The remaining two terms both involve 𝐴𝐴. Thus, it is best to define a temporary tensor 𝐴𝐴:

𝑖𝐴𝐴
𝛽𝛾
𝑗𝑘 ≡

∑︁
𝛼

𝐴𝛼𝛽𝑖𝑗 𝐴
𝛼𝛾
𝑖𝑗 , (31.15)

which we will overwrite for each particle 𝑖. Similarly, define 𝐹𝐹 :

𝐹𝐹𝛼𝛾𝑗𝑘 ≡ 𝐹
𝛼
𝑘𝑗𝐹

𝛾
𝑗𝑘 , (31.16)

which is simply the outer product of 𝐹 ⊗ 𝐹 . Then the 𝐴𝐴𝐹𝐹 term can be calculated by fully contracting 𝐴𝐴 with
𝐹𝐹 .

// In DiracDeterminantWithBackflow::evaluateLog(P,G,L)
for(int j=0; j<NumPtcls; j++)

for(int k=0; k<NumPtcls; k++)
for(int i=0; i<num; i++)
{

Tensor<RealType,OHMMS_DIM> AA = dot(transpose(BFTrans->Amat(i,FirstIndex+j)),
→˓BFTrans->Amat(i,FirstIndex+k));

HessType FF = outerProduct(Fmat(k,j),Fmat(j,k));
myL(i) -= traceAtB(AA,FF);

}

31.10. Slater-backflow wavefunction implementation details 389



QMCPACK Manual

Finally, define the SPO derivative term:

𝑀𝑑2𝑀𝛽𝛾
𝑗 ≡

∑︁
𝑚

𝑀−1
𝑗𝑚𝑑2𝑀𝛽

𝑚𝑗 , (31.17)

then the last term is given by the contraction of 𝑀𝑑2𝑀 (q_j) with the diagonal of 𝐴𝐴.

for(int j=0; j<NumPtcls; j++)
{

HessType q_j;
q_j=0.0;
for(int k=0; k<NumPtcls; k++)
q_j += psiMinv(j,k)*grad_grad_psiM(j,k);

for(int i=0; i<num; i++)
{
Tensor<RealType,OHMMS_DIM> AA = dot(

transpose(BFTrans->Amat(i,FirstIndex+j)),
BFTrans->Amat(i,FirstIndex+j)

);
myL(i) += traceAtB(AA,q_j);

}
}

31.10.4 Wavefunction parameter derivative

To use the robust linear optimization method of [[TU07]], the trial wavefunction needs to know its contributions to the
overlap and hamiltonian matrices. In particular, we need derivatives of these matrices with respect to wavefunction
parameters. As a consequence, the wavefunction 𝜓 needs to be able to evaluate 𝜕

𝜕𝑝 ln𝜓 and 𝜕
𝜕𝑝

ℋ𝜓
𝜓 , where 𝑝 is a

parameter.

When 2-body backflow is considered, a wavefunction parameter 𝑝 enters the 𝜂 function only (equation (31.6)). r, 𝜑,
and 𝑀 do not explicitly dependent on 𝑝. Derivative of the log value is almost identical to particle gradient. Namely,
(31.8) applies upon the substitution 𝑟𝛼𝑖 → 𝑝.

𝜕

𝜕𝑝
ln det𝑀 =

𝑁∑︁
𝑗=1

3∑︁
𝛽=1

𝐹 𝛽𝑗𝑗

(︁
𝑝𝐶

𝛽
𝑗

)︁
, (31.18)

where the quasi-particle derivatives are stored in Cmat

𝑝𝐶
𝛼
𝑖 ≡

𝜕

𝜕𝑝
𝑥𝛼𝑖 . (31.19)

The change in local kinetic energy is a lot more difficult to calculate

𝜕𝑇local

𝜕𝑝
=

𝜕

𝜕𝑝

{︃(︃
𝑁∑︁
𝑖=1

1

2𝑚𝑖
∇2
𝑖

)︃
ln det𝑀

}︃
=

𝑁∑︁
𝑖=1

1

2𝑚𝑖

𝜕

𝜕𝑝
𝐿𝑖 , (31.20)

where 𝐿𝑖 is the particle Laplacian defined in (31.12) To evaluate (31.20), we need to calculate parameter derivatives
of all three terms defined in the Laplacian evaluation. Namely (𝐵)(𝐹 ), (𝐴𝐴)(𝐹𝐹 ), and tr(𝐴𝐴,𝑀𝑑2𝑀), where we
have put parentheses around previously identified data structures. After 𝜕

𝜕𝑝 hits, each of the three terms will split into
two terms by the product rule. Each smaller term will contain a contraction of two data structures. Therefore, we will
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need to calculate the parameter derivatives of each data structure defined in the Laplacian evaluation:

𝑝𝑋
𝛼𝛽
𝑖𝑗 ≡

𝜕

𝜕𝑝
𝐴𝛼𝛽𝑖𝑗 ,

𝑝𝑌
𝛼
𝑖𝑗 ≡

𝜕

𝜕𝑝
𝐵𝛼𝑖𝑗 ,

𝑝𝑑𝐹
𝛼
𝑖𝑗 ≡

𝜕

𝜕𝑝
𝐹𝛼𝑖𝑗 ,

𝑝𝑖𝐴𝐴
′𝛽𝛾
𝑗𝑘 ≡

𝜕

𝜕𝑝
𝑖𝐴𝐴

𝛽𝛾
𝑗𝑘 ,

𝑝𝐹𝐹
′𝛼𝛾
𝑗𝑘 ≡

𝜕

𝜕𝑝
𝐹𝐹𝛼𝛾𝑗𝑘 ,

𝑝𝑀𝑑2𝑀 ′𝛽𝛾
𝑗 ≡

𝜕

𝜕𝑝
𝑀𝑑2𝑀𝛽𝛾

𝑗 .

(31.21)

X and Y are stored as Xmat and Ymat_full (NOT Ymat) in the code. dF is dFa. 𝐴𝐴′ is not fully stored;
intermediate values are stored in Aij_sum and a_j_sum. 𝐹𝐹 ′ is calculated on the fly as 𝑑𝐹 ⊗ 𝐹 + 𝐹 ⊗ 𝑑𝐹 .
𝑀𝑑2𝑀 ′ is not stored; intermediate values are stored in q_j_prime.

31.11 Scalar estimator implementation

31.11.1 Introduction: Life of a specialized OperatorBase

Almost all observables in QMCPACK are implemented as specialized derived classes of the OperatorBase base class.
Each observable is instantiated in HamiltonianFactory and added to QMCHamiltonian for tracking. QMCHamilto-
nian tracks two types of observables: main and auxiliary. Main observables contribute to the local energy. These
observables are elements of the simulated Hamiltonian such as kinetic or potential energy. Auxiliary observables are
expectation values of matrix elements that do not contribute to the local energy. These Hamiltonians do not affect the
dynamics of the simulation. In the code, the main observables are labeled by “physical” flag; the auxiliary observables
have“physical” set to false.

Initialization

When an <estimator type="est_type" name="est_name" other_stuff="value"/> tag is
present in the <hamiltonian/> section, it is first read by HamiltonianFactory. In general, the type of the
estimator will determine which specialization of OperatorBase should be instantiated, and a derived class with
myName="est_name" will be constructed. Then, the put() method of this specific class will be called to read
any other parameters in the <estimator/> XML node. Sometimes these parameters will instead be read by Hamil-
tonianFactory because it can access more objects than OperatorBase.

Cloning

When OpenMP threads are spawned, the estimator will be cloned by the CloneManager, which is a parent class of
many QMC drivers.

// In CloneManager.cpp
#pragma omp parallel for shared(w,psi,ham)
for(int ip=1; ip<NumThreads; ++ip)
{

wClones[ip]=new MCWalkerConfiguration(w);

(continues on next page)
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(continued from previous page)

psiClones[ip]=psi.makeClone(*wClones[ip]);
hClones[ip]=ham.makeClone(*wClones[ip],*psiClones[ip]);

}

In the preceding snippet, ham is the reference to the estimator on the master thread. If the implemented estimator does
not allocate memory for any array, then the default constructor should suffice for the makeClone method.

// In SpeciesKineticEnergy.cpp
OperatorBase* SpeciesKineticEnergy::makeClone(ParticleSet& qp, TrialWaveFunction& psi)
{

return new SpeciesKineticEnergy(*this);
}

If memory is allocated during estimator construction (usually when parsing the XML node in the put method), then
the makeClone method should perform the same initialization on each thread.

OperatorBase* LatticeDeviationEstimator::makeClone(ParticleSet& qp, TrialWaveFunction&
→˓ psi)
{

LatticeDeviationEstimator* myclone = new LatticeDeviationEstimator(qp,spset,tgroup,
→˓sgroup);
myclone->put(input_xml);
return myclone;

}

Evaluate

After the observable class (derived class of OperatorBase) is constructed and prepared (by the put() method), it is ready
to be used in a QMCDriver. A QMCDriver will call H.auxHevaluate(W,thisWalker) after every accepted
move, where H is the QMCHamiltonian that holds all main and auxiliary Hamiltonian elements, W is a MCWalker-
Configuration, and thisWalker is a pointer to the current walker being worked on. As shown in the following, this
function goes through each auxiliary Hamiltonian element and evaluates it using the current walker configuration.
Under the hood, observables are calculated and dumped to the main particle set’s property list for later collection.

// In QMCHamiltonian.cpp
// This is more efficient.
// Only calculate auxH elements if moves are accepted.
void QMCHamiltonian::auxHevaluate(ParticleSet& P, Walker_t& ThisWalker)
{
#if !defined(REMOVE_TRACEMANAGER)

collect_walker_traces(ThisWalker,P.current_step);
#endif

for(int i=0; i<auxH.size(); ++i)
{
auxH[i]->setHistories(ThisWalker);
RealType sink = auxH[i]->evaluate(P);
auxH[i]->setObservables(Observables);

#if !defined(REMOVE_TRACEMANAGER)
auxH[i]->collect_scalar_traces();

#endif
auxH[i]->setParticlePropertyList(P.PropertyList,myIndex);

}
}
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For estimators that contribute to the local energy (main observables), the return value of evaluate() is used in accumu-
lating the local energy. For auxiliary estimators, the return value is not used (sink local variable above); only the value
of Value is recorded property lists by the setObservables() method as shown in the preceding code snippet. By default,
the setObservables() method will transfer auxH[i]->Value to P.PropertyList[auxH[i]->myIndex].
The same property list is also kept by the particle set being moved by QMCDriver. This list is updated by
auxH[i]->setParticlePropertyList(P.PropertyList,myIndex), where myIndex is the starting
index of space allocated to this specific auxiliary Hamiltonian in the property list kept by the target particle set P.

Collection

The actual statistics are collected within the QMCDriver, which owns an EstimatorManager object. This object (or a
clone in the case of multithreading) will be registered with each mover it owns. For each mover (such as VMCUpdateP-
byP derived from QMCUpdateBase), an accumulate() call is made, which by default, makes an accumulate(walkerset)
call to the EstimatorManager it owns. Since each walker has a property set, EstimatorManager uses that local copy to
calculate statistics. The EstimatorManager performs block averaging and file I/O.

31.11.2 Single scalar estimator implementation guide

Almost all of the defaults can be used for a single scalar observable. With any luck, only the put() and evaluate()
methods need to be implemented. As an example, this section presents a step-by-step guide for implementing a
verb|SpeciesKineticEnergy| estimator that calculates the kinetic energy of a specific species instead of the entire parti-
cle set. For example, a possible input to this estimator can be:

<estimator type="specieskinetic" name="ukinetic" group="u"/>

<estimator type="specieskinetic" name="dkinetic" group="d"/>.

This should create two extra columns in the scalar.dat file that contains the kinetic energy of the up and down
electrons in two separate columns. If the estimator is properly implemented, then the sum of these two columns should
be equal to the default Kinetic column.

Barebone

The first step is to create a barebone class structure for this simple scalar estimator. The goal is to be able to instantiate
this scalar estimator with an XML node and have it print out a column of zeros in the scalar.dat file.

To achieve this, first create a header file “SpeciesKineticEnergy.h” in the QMCHamiltonians folder, with only the
required functions declared as follows:

// In SpeciesKineticEnergy.h
#ifndef QMCPLUSPLUS_SPECIESKINETICENERGY_H
#define QMCPLUSPLUS_SPECIESKINETICENERGY_H

#include <Particle/WalkerSetRef.h>
#include <QMCHamiltonians/OperatorBase.h>

namespace qmcplusplus
{

class SpeciesKineticEnergy: public OperatorBase
{
public:

SpeciesKineticEnergy(ParticleSet& P):tpset(P){ };

(continues on next page)
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bool put(xmlNodePtr cur); // read input xml node, required
bool get(std::ostream& os) const; // class description, required

Return_t evaluate(ParticleSet& P);
inline Return_t evaluate(ParticleSet& P, std::vector<NonLocalData>& Txy)
{ // delegate responsity inline for speed
return evaluate(P);

}

// pure virtual functions require overrider
void resetTargetParticleSet(ParticleSet& P) { } // required
OperatorBase* makeClone(ParticleSet& qp, TrialWaveFunction& psi); // required

private:
ParticleSet& tpset;

}; // SpeciesKineticEnergy

} // namespace qmcplusplus
#endif

Notice that a local reference tpset to the target particle set P is saved in the constructor. The target particle set carries
much information useful for calculating observables. Next, make “SpeciesKineticEnergy.cpp,” and make vacuous
definitions.

// In SpeciesKineticEnergy.cpp
#include <QMCHamiltonians/SpeciesKineticEnergy.h>
namespace qmcplusplus
{

bool SpeciesKineticEnergy::put(xmlNodePtr cur)
{

return true;
}

bool SpeciesKineticEnergy::get(std::ostream& os) const
{

return true;
}

SpeciesKineticEnergy::Return_t SpeciesKineticEnergy::evaluate(ParticleSet& P)
{

Value = 0.0;
return Value;

}

OperatorBase* SpeciesKineticEnergy::makeClone(ParticleSet& qp, TrialWaveFunction& psi)
{

// no local array allocated, default constructor should be enough
return new SpeciesKineticEnergy(*this);

}

} // namespace qmcplusplus

Now, head over to HamiltonianFactory and instantiate this observable if an XML node is found requesting it. Look
for “gofr” in HamiltonianFactory.cpp, for example, and follow the if block.
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// In HamiltonianFactory.cpp
#include <QMCHamiltonians/SpeciesKineticEnergy.h>
else if(potType =="specieskinetic")
{

SpeciesKineticEnergy* apot = new SpeciesKineticEnergy(*target_particle_set);
apot->put(cur);
targetH->addOperator(apot,potName,false);

}

The last argument of addOperator() (i.e., the false flag) is crucial. This tells QMCPACK that the observable we
implemented is not a physical Hamiltonian; thus, it will not contribute to the local energy. Changes to the local
energy will alter the dynamics of the simulation. Finally, add “SpeciesKineticEnergy.cpp” to HAMSRCS in “CMake-
Lists.txt” located in the QMCHamiltonians folder. Now, recompile QMCPACK and run it on an input that requests
<estimator type="specieskinetic" name="ukinetic"/> in the hamiltonian block. A column
of zeros should appear in the scalar.dat file under the name “ukinetic.”

Evaluate

The evaluate() method is where we perform the calculation of the desired observable. In a first iteration, we will
simply hard-code the name and mass of the particles.

// In SpeciesKineticEnergy.cpp
#include <QMCHamiltonians/BareKineticEnergy.h> // laplaician() defined here
SpeciesKineticEnergy::Return_t SpeciesKineticEnergy::evaluate(ParticleSet& P)
{

std::string group="u";
RealType minus_over_2m = -0.5;

SpeciesSet& tspecies(P.getSpeciesSet());

Value = 0.0;
for (int iat=0; iat<P.getTotalNum(); iat++)
{
if (tspecies.speciesName[ P.GroupID(iat) ] == group)
{

Value += minus_over_2m*laplacian(P.G[iat],P.L[iat]);
}

}
return Value;

// Kinetic column has:
// Value = -0.5*( Dot(P.G,P.G) + Sum(P.L) );

}

Voila—you should now be able to compile QMCPACK, rerun, and see that the values in the “ukinetic” column are no
longer zero. Now, the only task left to make this basic observable complete is to read in the extra parameters instead
of hard-coding them.
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Parse extra input

The preferred method to parse extra input parameters in the XML node is to implement the put() function of our
specific observable. Suppose we wish to read in a single string that tells us whether to record the kinetic energy of the
up electron (group=“u”) or the down electron (group=“d”). This is easily achievable using the OhmmsAttributeSet
class,

// In SpeciesKineticEnergy.cpp
#include <OhmmsData/AttributeSet.h>
bool SpeciesKineticEnergy::put(xmlNodePtr cur)
{

// read in extra parameter "group"
OhmmsAttributeSet attrib;
attrib.add(group,"group");
attrib.put(cur);

// save mass of specified group of particles
SpeciesSet& tspecies(tpset.getSpeciesSet());
int group_id = tspecies.findSpecies(group);
int massind = tspecies.getAttribute("mass");
minus_over_2m = -1./(2.*tspecies(massind,group_id));

return true;
}

where we may keep “group” and “minus_over_2m” as local variables to our specific class.

// In SpeciesKineticEnergy.h
private:

ParticleSet& tpset;
std::string group;
RealType minus_over_2m;

Notice that the previous operations are made possible by the saved reference to the target particle set. Last but not
least, compile and run a full example (i.e., a short DMC calculation) with the following XML nodes in your input:

<estimator type="specieskinetic" name="ukinetic" group="u"/>

<estimator type="specieskinetic" name="dkinetic" group="d"/>

Make sure the sum of the “ukinetic” and “dkinetic” columns is exactly the same as the Kinetic columns at every
block.

For easy reference, a summary of the complete list of changes follows:

// In HamiltonianFactory.cpp
#include "QMCHamiltonians/SpeciesKineticEnergy.h"
else if(potType =="specieskinetic")
{

SpeciesKineticEnergy* apot = new SpeciesKineticEnergy(*targetPtcl);
apot->put(cur);
targetH->addOperator(apot,potName,false);

}

// In SpeciesKineticEnergy.h
#include <Particle/WalkerSetRef.h>
#include <QMCHamiltonians/OperatorBase.h>

(continues on next page)
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namespace qmcplusplus
{

class SpeciesKineticEnergy: public OperatorBase
{
public:

SpeciesKineticEnergy(ParticleSet& P):tpset(P){ };

// xml node is read by HamiltonianFactory, eg. the sum of following should be
→˓equivalent to Kinetic
// <estimator name="ukinetic" type="specieskinetic" target="e" group="u"/>
// <estimator name="dkinetic" type="specieskinetic" target="e" group="d"/>
bool put(xmlNodePtr cur); // read input xml node, required
bool get(std::ostream& os) const; // class description, required

Return_t evaluate(ParticleSet& P);
inline Return_t evaluate(ParticleSet& P, std::vector<NonLocalData>& Txy)
{ // delegate responsity inline for speed
return evaluate(P);

}

// pure virtual functions require overrider
void resetTargetParticleSet(ParticleSet& P) { } // required
OperatorBase* makeClone(ParticleSet& qp, TrialWaveFunction& psi); // required

private:
ParticleSet& tpset; // reference to target particle set
std::string group; // name of species to track
RealType minus_over_2m; // mass of the species !! assume same mass
// for multiple species, simply initialize multiple estimators

}; // SpeciesKineticEnergy

} // namespace qmcplusplus
#endif

// In SpeciesKineticEnergy.cpp
#include <QMCHamiltonians/SpeciesKineticEnergy.h>
#include <QMCHamiltonians/BareKineticEnergy.h> // laplaician() defined here
#include <OhmmsData/AttributeSet.h>

namespace qmcplusplus
{

bool SpeciesKineticEnergy::put(xmlNodePtr cur)
{

// read in extra parameter "group"
OhmmsAttributeSet attrib;
attrib.add(group,"group");
attrib.put(cur);

// save mass of specified group of particles
int group_id = tspecies.findSpecies(group);
int massind = tspecies.getAttribute("mass");
minus_over_2m = -1./(2.*tspecies(massind,group_id));

(continues on next page)

31.11. Scalar estimator implementation 397



QMCPACK Manual

(continued from previous page)

return true;
}

bool SpeciesKineticEnergy::get(std::ostream& os) const
{ // class description

os << "SpeciesKineticEnergy: " << myName << " for species " << group;
return true;

}

SpeciesKineticEnergy::Return_t SpeciesKineticEnergy::evaluate(ParticleSet& P)
{

Value = 0.0;
for (int iat=0; iat<P.getTotalNum(); iat++)
{
if (tspecies.speciesName[ P.GroupID(iat) ] == group)
{

Value += minus_over_2m*laplacian(P.G[iat],P.L[iat]);
}

}
return Value;

}

OperatorBase* SpeciesKineticEnergy::makeClone(ParticleSet& qp, TrialWaveFunction& psi)
{ //default constructor

return new SpeciesKineticEnergy(*this);
}

} // namespace qmcplusplus

31.11.3 Multiple scalars

It is fairly straightforward to create more than one column in the scalar.dat file with a single observable class.
For example, if we want a single SpeciesKineticEnergy estimator to simultaneously record the kinetic energies of all
species in the target particle set, we only have to write two new methods: addObservables() and setObservables(), then
tweak the behavior of evaluate(). First, we will have to override the default behavior of addObservables() to make
room for more than one column in the scalar.dat file as follows,

// In SpeciesKineticEnergy.cpp
void SpeciesKineticEnergy::addObservables(PropertySetType& plist, BufferType&
→˓collectables)
{

myIndex = plist.size();
for (int ispec=0; ispec<num_species; ispec++)
{ // make columns named "$myName_u", "$myName_d" etc.
plist.add(myName + "_" + species_names[ispec]);

}
}

where “num_species” and “species_name” can be local variables initialized in the constructor. We should also initialize
some local arrays to hold temporary data.

// In SpeciesKineticEnergy.h
private:

(continues on next page)
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int num_species;
std::vector<std::string> species_names;
std::vector<RealType> species_kinetic,vec_minus_over_2m;

// In SpeciesKineticEnergy.cpp
SpeciesKineticEnergy::SpeciesKineticEnergy(ParticleSet& P):tpset(P)
{

SpeciesSet& tspecies(P.getSpeciesSet());
int massind = tspecies.getAttribute("mass");

num_species = tspecies.size();
species_kinetic.resize(num_species);
vec_minus_over_2m.resize(num_species);
species_names.resize(num_species);
for (int ispec=0; ispec<num_species; ispec++)
{
species_names[ispec] = tspecies.speciesName[ispec];
vec_minus_over_2m[ispec] = -1./(2.*tspecies(massind,ispec));

}
}

Next, we need to override the default behavior of setObservables() to transfer multiple values to the property
list kept by the main particle set, which eventually goes into the scalar.dat file.

// In SpeciesKineticEnergy.cpp
void SpeciesKineticEnergy::setObservables(PropertySetType& plist)
{ // slots in plist must be allocated by addObservables() first

copy(species_kinetic.begin(),species_kinetic.end(),plist.begin()+myIndex);
}

Finally, we need to change the behavior of evaluate() to fill the local vector “species_kinetic” with appropriate observ-
able values.

SpeciesKineticEnergy::Return_t SpeciesKineticEnergy::evaluate(ParticleSet& P)
{

std::fill(species_kinetic.begin(),species_kinetic.end(),0.0);

for (int iat=0; iat<P.getTotalNum(); iat++)
{
int ispec = P.GroupID(iat);
species_kinetic[ispec] += vec_minus_over_2m[ispec]*laplacian(P.G[iat],P.L[iat]);

}

Value = 0.0; // Value is no longer used
return Value;

}

That’s it! The SpeciesKineticEnergy estimator no longer needs the “group” input and will automatically output the
kinetic energy of every species in the target particle set in multiple columns. You should now be able to run with
<estimator type="specieskinetic" name="skinetic"/> and check that the sum of all columns that
start with “skinetic” is equal to the default “Kinetic” column.
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31.11.4 HDF5 output

If we desire an observable that will output hundreds of scalars per simulation step (e.g., SkEstimator), then it is
preferred to output to the stat.h5 file instead of the scalar.dat file for better organization. A large chunk of data
to be registered in the stat.h5 file is called a “Collectable” in QMCPACK. In particular, if a OperatorBase object is
initialized with UpdateMode.set(COLLECTABLE,1), then the “Collectables” object carried by the main particle
set will be processed and written to the stat.h5 file, where “UpdateMode” is a bit set (i.e., a collection of flags)
with the following enumeration:

// In OperatorBase.h
///enum for UpdateMode
enum {PRIMARY=0,

OPTIMIZABLE=1,
RATIOUPDATE=2,
PHYSICAL=3,
COLLECTABLE=4,
NONLOCAL=5,
VIRTUALMOVES=6

};

As a simple example, to put the two columns we produced in the previous section into the stat.h5 file, we will first
need to declare that our observable uses “Collectables.”

// In constructor add:
hdf5_out = true;
UpdateMode.set(COLLECTABLE,1);

Then make some room in the “Collectables” object carried by the target particle set.

// In addObservables(PropertySetType& plist, BufferType& collectables) add:
if (hdf5_out)
{

h5_index = collectables.size();
std::vector<RealType> tmp(num_species);
collectables.add(tmp.begin(),tmp.end());

}

Next, make some room in the stat.h5 file by overriding the registerCollectables() method.

// In SpeciesKineticEnergy.cpp
void SpeciesKineticEnergy::registerCollectables(std::vector<observable_helper>&
→˓h5desc, hid_t gid) const
{

if (hdf5_out)
{
std::vector<int> ndim(1,num_species);
observable_helper h5o(myName);
h5o.set_dimensions(ndim,h5_index);
h5o.open(gid);
h5desc.push_back(h5o);

}
}

Finally, edit evaluate() to use the space in the “Collectables” object.

// In SpeciesKineticEnergy.cpp
SpeciesKineticEnergy::Return_t SpeciesKineticEnergy::evaluate(ParticleSet& P)

(continues on next page)
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{
RealType wgt = tWalker->Weight; // MUST explicitly use DMC weights in Collectables!
std::fill(species_kinetic.begin(),species_kinetic.end(),0.0);

for (int iat=0; iat<P.getTotalNum(); iat++)
{
int ispec = P.GroupID(iat);
species_kinetic[ispec] += vec_minus_over_2m[ispec]*laplacian(P.G[iat],P.L[iat]);
P.Collectables[h5_index + ispec] += vec_minus_over_2m[ispec]*laplacian(P.G[iat],P.

→˓L[iat])*wgt;
}

Value = 0.0; // Value is no longer used
return Value;

}

There should now be a new entry in the stat.h5 file containing the same columns of data as the stat.h5 file.
After this check, we should clean up the code by

• making “hdf5_out” and input flag by editing the put() method and

• disabling output to scalar.dat when the “hdf5_out” flag is on.

31.12 Estimator output

31.12.1 Estimator definition

For simplicity, consider a local property 𝑂(R), where R is the collection of all particle coordinates. An estimator for
𝑂(R) is a weighted average over walkers:

𝐸[𝑂] =

⎛⎝𝑁𝑡𝑜𝑡
𝑤𝑎𝑙𝑘𝑒𝑟∑︁
𝑖=1

𝑤𝑖𝑂(Ri)

⎞⎠ /

⎛⎝𝑁𝑡𝑜𝑡
𝑤𝑎𝑙𝑘𝑒𝑟∑︁
𝑖=1

𝑤𝑖

⎞⎠ . (31.22)

𝑁 𝑡𝑜𝑡
𝑤𝑎𝑙𝑘𝑒𝑟 is the total number of walkers collected in the entire simulation. Notice that 𝑁 𝑡𝑜𝑡

𝑤𝑎𝑙𝑘𝑒𝑟 is typically far larger
than the number of walkers held in memory at any given simulation step. 𝑤𝑖 is the weight of walker 𝑖.

In a VMC simulation, the weight of every walker is 1.0. Further, the number of walkers is constant at each step.
Therefore, (31.22) simplifies to

𝐸𝑉𝑀𝐶 [𝑂] =
1

𝑁𝑠𝑡𝑒𝑝𝑁𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
𝑤𝑎𝑙𝑘𝑒𝑟

∑︁
𝑠,𝑒

𝑂(Rs,e) . (31.23)

Each walker Rs,e is labeled by step index s and ensemble index e.

In a DMC simulation, the weight of each walker is different and may change from step to step. Further, the ensemble
size varies from step to step. Therefore, (31.22) simplifies to

𝐸𝐷𝑀𝐶 [𝑂] =
1

𝑁𝑠𝑡𝑒𝑝

∑︁
𝑠

{︃(︃∑︁
𝑒

𝑤𝑠,𝑒𝑂(Rs,e)

)︃
/

(︃∑︁
𝑒

𝑤𝑠,𝑒

)︃}︃
. (31.24)

We will refer to the average in the {} as ensemble average and to the remaining averages as block average. The process
of calculating 𝑂(R) is evaluate.
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31.12.2 Class relations

A large number of classes are involved in the estimator collection process. They often have misleading class or method
names. Check out the document gotchas in the following list:

1. EstimatorManager is an unused copy of EstimatorManagerBase. EstimatorManagerBase is
the class used in the QMC drivers. (PR #371 explains this.)

2. EstimatorManagerBase::Estimators is completely different from QMCDriver::Estimators,
which is subtly different from OperatorBase::Estimators. The first is a list of pointers to
ScalarEstimatorBase. The second is the master estimator (one per MPI group). The third is the slave
estimator that exists one per OpenMP thread.

3. QMCHamiltonian is NOT a parent class of OperatorBase. Instead, QMCHamiltonian owns two lists
of OperatorBase named H and auxH.

4. QMCDriver::H is NOT the same as QMCHamiltonian::H. The first is a pointer to a QMCHamiltonian.
QMCHamiltonian::H is a list.

5. EstimatorManager::stopBlock(std::vector) is completely different from
EstimatorManager:: stopBlock(RealType), which is the same as stopBlock(RealType,
true) but that is subtly different from stopBlock(RealType, false). The first three methods are
intended to be called by the master estimator, which exists one per MPI group. The last method is intended to
be called by the slave estimator, which exists one per OpenMP thread.

31.12.3 Estimator output stages

Estimators take four conceptual stages to propagate to the output files: evaluate, load ensemble, unload ensemble, and
collect. They are easier to understand in reverse order.

Collect stage

File output is performed by the master EstimatorManager owned by QMCDriver. The first 8+ entries
in EstimatorManagerBase::AverageCache will be written to scalar.dat. The remaining entries
in AverageCache will be written to stat.h5. File writing is triggered by EstimatorManagerBase
::collectBlockAverages inside EstimatorManagerBase::stopBlock.

// In EstimatorManagerBase.cpp::collectBlockAverages
if(Archive)
{

*Archive << std::setw(10) << RecordCount;
int maxobjs=std::min(BlockAverages.size(),max4ascii);
for(int j=0; j<maxobjs; j++)

*Archive << std::setw(FieldWidth) << AverageCache[j];
for(int j=0; j<PropertyCache.size(); j++)

*Archive << std::setw(FieldWidth) << PropertyCache[j];

*Archive << std::endl;
for(int o=0; o<h5desc.size(); ++o)

h5desc[o]->write(AverageCache.data(),SquaredAverageCache.data());
H5Fflush(h_file,H5F_SCOPE_LOCAL);

}

EstimatorManagerBase::collectBlockAverages is triggered from the master-thread estimator via either
stopBlock(std::vector) or stopBlock(RealType, true). Notice that file writing is NOT triggered
by the slave-thread estimator method stopBlock(RealType, false).
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// In EstimatorManagerBase.cpp
void EstimatorManagerBase::stopBlock(RealType accept, bool collectall)
{

//take block averages and update properties per block
PropertyCache[weightInd]=BlockWeight;
PropertyCache[cpuInd] = MyTimer.elapsed();
PropertyCache[acceptInd] = accept;
for(int i=0; i<Estimators.size(); i++)
Estimators[i]->takeBlockAverage(AverageCache.begin(),SquaredAverageCache.begin());

if(Collectables)
{
Collectables->takeBlockAverage(AverageCache.begin(),SquaredAverageCache.begin());

}
if(collectall)
collectBlockAverages(1);

}

// In ScalarEstimatorBase.h
template<typename IT>
inline void takeBlockAverage(IT first, IT first_sq)
{

first += FirstIndex;
first_sq += FirstIndex;
for(int i=0; i<scalars.size(); i++)
{

*first++ = scalars[i].mean();

*first_sq++ = scalars[i].mean2();
scalars_saved[i]=scalars[i]; //save current block
scalars[i].clear();

}
}

At the collect stage, calarEstimatorBase::scalars must be populated with ensemble-averaged data. Two
derived classes of ScalarEstimatorBase are crucial: LocalEnergyEstimator will carry Properties,
where as CollectablesEstimator will carry Collectables.

Unload ensemble stage

LocalEnergyEstimator::scalars are populated by ScalarEstimatorBase::accumulate,
whereas CollectablesEstimator::scalars are populated by CollectablesEstimator::
accumulate_all. Both accumulate methods are triggered by EstimatorManagerBase::accumulate.
One confusing aspect about the unload stage is that EstimatorManagerBase::accumulate has a master
and a slave call signature. A slave estimator such as QMCUpdateBase::Estimators should unload a subset
of walkers. Thus, the slave estimator should call accumulate(W,it,it_end). However, the master estimator,
such as SimpleFixedNodeBranch::myEstimator, should unload data from the entire walker ensemble. This
is achieved by calling accumulate(W).

void EstimatorManagerBase::accumulate(MCWalkerConfiguration& W)
{ // intended to be called by master estimator only

BlockWeight += W.getActiveWalkers();
RealType norm=1.0/W.getGlobalNumWalkers();
for(int i=0; i< Estimators.size(); i++)
Estimators[i]->accumulate(W,W.begin(),W.end(),norm);

if(Collectables)//collectables are normalized by QMC drivers

(continues on next page)
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Collectables->accumulate_all(W.Collectables,1.0);
}

void EstimatorManagerBase::accumulate(MCWalkerConfiguration& W
, MCWalkerConfiguration::iterator it
, MCWalkerConfiguration::iterator it_end)

{ // intended to be called slaveEstimator only
BlockWeight += it_end-it;
RealType norm=1.0/W.getGlobalNumWalkers();
for(int i=0; i< Estimators.size(); i++)
Estimators[i]->accumulate(W,it,it_end,norm);

if(Collectables)
Collectables->accumulate_all(W.Collectables,1.0);

}

// In LocalEnergyEstimator.h
inline void accumulate(const Walker_t& awalker, RealType wgt)
{ // ensemble average W.Properties

// expect ePtr to be W.Properties; expect wgt = 1/GlobalNumberOfWalkers
const RealType* restrict ePtr = awalker.getPropertyBase();
RealType wwght= wgt* awalker.Weight;
scalars[0](ePtr[WP::LOCALENERGY],wwght);
scalars[1](ePtr[WP::LOCALENERGY]*ePtr[WP::LOCALENERGY],wwght);
scalars[2](ePtr[LOCALPOTENTIAL],wwght);
for(int target=3, source=FirstHamiltonian; target<scalars.size(); ++target,

→˓++source)
scalars[target](ePtr[source],wwght);

}

// In CollectablesEstimator.h
inline void accumulate_all(const MCWalkerConfiguration::Buffer_t& data, RealType wgt)
{ // ensemble average W.Collectables

// expect data to be W.Collectables; expect wgt = 1.0
for(int i=0; i<data.size(); ++i)
scalars[i](data[i], wgt);

}

At the unload ensemble stage, the data structures Properties and Collectables must be populated by appro-
priately normalized values so that the ensemble average can be correctly taken. QMCDriver is responsible for the
correct loading of data onto the walker ensemble.

Load ensemble stage

Properties in the MC ensemble of walkers QMCDriver::W is populated by QMCHamiltonian
::saveProperties. The master QMCHamiltonian::LocalEnergy, ::KineticEnergy, and
::Observables must be properly populated at the end of the evaluate stage.

// In QMCHamiltonian.h
template<class IT>
inline
void saveProperty(IT first)
{ // expect first to be W.Properties

(continues on next page)
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first[LOCALPOTENTIAL]= LocalEnergy-KineticEnergy;
copy(Observables.begin(),Observables.end(),first+myIndex);

}

Collectables’s load stage is combined with its evaluate stage.

Evaluate stage

The master QMCHamiltonian::Observables is populated by slave OperatorBase ::setObservables.
However, the call signature must be OperatorBase::setObservables (QMCHamiltonian::
Observables). This call signature is enforced by QMCHamiltonian::evaluate and
QMCHamiltonian::

auxHevaluate.

// In QMCHamiltonian.cpp
QMCHamiltonian::Return_t
QMCHamiltonian::evaluate(ParticleSet& P)
{

LocalEnergy = 0.0;
for(int i=0; i<H.size(); ++i)
{
myTimers[i]->start();
LocalEnergy += H[i]->evaluate(P);
H[i]->setObservables(Observables);

#if !defined(REMOVE_TRACEMANAGER)
H[i]->collect_scalar_traces();

#endif
myTimers[i]->stop();
H[i]->setParticlePropertyList(P.PropertyList,myIndex);

}
KineticEnergy=H[0]->Value;
P.PropertyList[WP::LOCALENERGY]=LocalEnergy;
P.PropertyList[LOCALPOTENTIAL]=LocalEnergy-KineticEnergy;
// auxHevaluate(P);
return LocalEnergy;

}

// In QMCHamiltonian.cpp
void QMCHamiltonian::auxHevaluate(ParticleSet& P, Walker_t& ThisWalker)
{
#if !defined(REMOVE_TRACEMANAGER)

collect_walker_traces(ThisWalker,P.current_step);
#endif

for(int i=0; i<auxH.size(); ++i)
{
auxH[i]->setHistories(ThisWalker);
RealType sink = auxH[i]->evaluate(P);
auxH[i]->setObservables(Observables);

#if !defined(REMOVE_TRACEMANAGER)
auxH[i]->collect_scalar_traces();

#endif
auxH[i]->setParticlePropertyList(P.PropertyList,myIndex);

(continues on next page)
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}
}

31.12.4 Estimator use cases

VMCSingleOMP pseudo code

bool VMCSingleOMP::run()
{

masterEstimator->start(nBlocks);
for (int ip=0; ip<NumThreads; ++ip)
Movers[ip]->startRun(nBlocks,false); // slaveEstimator->start(blocks, record)

do // block
{
#pragma omp parallel
{

Movers[ip]->startBlock(nSteps); // slaveEstimator->startBlock(steps)
RealType cnorm = 1.0/static_cast<RealType>(wPerNode[ip+1]-wPerNode[ip]);
do // step
{

wClones[ip]->resetCollectables();
Movers[ip]->advanceWalkers(wit, wit_end, recompute);
wClones[ip]->Collectables *= cnorm;
Movers[ip]->accumulate(wit, wit_end);

} // end step
Movers[ip]->stopBlock(false); // slaveEstimator->stopBlock(acc, false)

} // end omp
masterEstimator->stopBlock(estimatorClones); // write files

} // end block
masterEstimator->stop(estimatorClones);

}

DMCOMP pseudo code

bool DMCOMP::run()
{

masterEstimator->setCollectionMode(true);

masterEstimator->start(nBlocks);
for(int ip=0; ip<NumThreads; ip++)
Movers[ip]->startRun(nBlocks,false); // slaveEstimator->start(blocks, record)

do // block
{
masterEstimator->startBlock(nSteps);
for(int ip=0; ip<NumThreads; ip++)

Movers[ip]->startBlock(nSteps); // slaveEstimator->startBlock(steps)

do // step
{

#pragma omp parallel

(continues on next page)
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{
wClones[ip]->resetCollectables();
// advanceWalkers
} // end omp

//branchEngine->branch
{ // In WalkerControlMPI.cpp::branch
wgt_inv=WalkerController->NumContexts/WalkerController->EnsembleProperty.Weight;
walkers.Collectables *= wgt_inv;
slaveEstimator->accumulate(walkers);
}
masterEstimator->stopBlock(acc) // write files

} // end for step
} // end for block

masterEstimator->stop();
}

31.12.5 Summary

Two ensemble-level data structures, ParticleSet::Properties and ::Collectables, serve as intermedi-
aries between evaluate classes and output classes to scalar.dat and stat.h5. Properties appears in both
scalar.dat and stat.h5, whereas Collectables appears only in stat.h5. Properties is overwrit-
ten by QMCHamiltonian::Observables at the end of each step. QMCHamiltonian::Observables is
filled upon call to QMCHamiltonian::evaluate and ::auxHevaluate. Collectables is zeroed at the
beginning of each step and accumulated upon call to ::auxHevaluate.

Data are output to scalar.dat in four stages: evaluate, load, unload, and collect. In the evaluate stage,
QMCHamiltonian::Observables is populated by a list of OperatorBase. In the load stage,
QMCHamiltonian::Observables is transferred to Properties by QMCDriver. In the unload stage,
Properties is copied to LocalEnergyEstimator::scalars. In the collect stage,
LocalEnergyEstimator::scalars is block-averaged to EstimatorManagerBase
::AverageCache and dumped to file. For Collectables, the evaluate and load stages are combined in a call
to QMCHamiltonian::auxHevaluate. In the unload stage, Collectables is copied to
CollectablesEstimator::scalars. In the collect stage, CollectablesEstimator
::scalars is block-averaged to EstimatorManagerBase::AverageCache and dumped to file.

31.12.6 Appendix: dmc.dat

There is an additional data structure, ParticleSet::EnsembleProperty, that is managed by
WalkerControlBase::EnsembleProperty and directly dumped to dmc.dat via its own averaging
procedure. dmc.dat is written by WalkerControlBase::measureProperties, which is called by
WalkerControlBase::branch, which is called by SimpleFixedNodeBranch
::branch, for example.
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CHAPTER

THIRTYTWO

APPENDICES

32.1 Appendix A: Derivation of twist averaging efficiency

In this appendix we derive the relative statistical efficiency of twist averaging with an irreducible (weighted) set of
k-points versus using uniform weights over an unreduced set of k-points (e.g., a full Monkhorst-Pack mesh).

Consider the weighted average of a set of statistical variables {𝑥𝑚} with weights {𝑤𝑚}:

𝑥𝑇𝐴 =

∑︀
𝑚 𝑤𝑚𝑥𝑚∑︀
𝑚 𝑤𝑚

. (32.1)

If produced by a finite QMC run at a set of twist angles/k-points {𝑘𝑚}, each variable mean ⟨𝑥𝑚⟩ has a statistical error
bar 𝜎𝑚, and we can also obtain the statistical error bar of the mean of the twist-averaged quantity ⟨𝑥𝑇𝐴⟩:

𝜎𝑇𝐴 =

(︀∑︀
𝑚 𝑤

2
𝑚𝜎

2
𝑚

)︀1/2∑︀
𝑚 𝑤𝑚

. (32.2)

The error bar of each individual twist 𝜎𝑚 is related to the autocorrelation time 𝜅𝑚, intrinsic variance 𝑣𝑚, and the
number of postequilibration MC steps 𝑁𝑠𝑡𝑒𝑝 in the following way:

𝜎2
𝑚 =

𝜅𝑚𝑣𝑚
𝑁𝑠𝑡𝑒𝑝

. (32.3)

In the setting of twist averaging, the autocorrelation time and variance for different twist angles are often very similar
across twists, and we have

𝜎2
𝑚 = 𝜎2 =

𝜅𝑣

𝑁𝑠𝑡𝑒𝑝
. (32.4)

If we define the total weight as 𝑊 , that is, 𝑊 ≡
∑︀𝑀
𝑚=1 𝑤𝑚, for the weighted case with 𝑀 irreducible twists, the error

bar is

𝜎𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝐴 =

(︁∑︀𝑀
𝑚=1 𝑤

2
𝑚

)︁1/2
𝑊

𝜎 .
(32.5)

For uniform weighting with 𝑤𝑚 = 1, the number of twists is 𝑊 and we have

𝜎𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑇𝐴 =
1√
𝑊
𝜎 . (32.6)

We are interested in comparing the efficiency of choosing weights uniformly or based on the irreducible multiplicity of
each twist angle for a given target error bar 𝜎𝑡𝑎𝑟𝑔𝑒𝑡. The number of MC steps required to reach this target for uniform
weighting is

𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑠𝑡𝑒𝑝 =

1

𝑊

𝜅𝑣

𝜎2
𝑡𝑎𝑟𝑔𝑒𝑡

, (32.7)
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while for nonuniform weighting we have

𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝑠𝑡𝑒𝑝 =

∑︀𝑀
𝑚=1 𝑤

2
𝑚

𝑊 2

𝜅𝑣

𝜎2
𝑡𝑎𝑟𝑔𝑒𝑡

,

=

∑︀𝑀
𝑚=1 𝑤

2
𝑚

𝑊
𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑠𝑡𝑒𝑝 .

The MC efficiency is defined as

𝜉 =
1

𝜎2𝑡
, (32.8)

where 𝜎 is the error bar and 𝑡 is the total CPU time required for the MC run.

The main advantage made possible by irreducible twist weighting is to reduce the equilibration time overhead by
having fewer twists and, hence, fewer MC runs to equilibrate. In the context of twist averaging, the total CPU time for
a run can be considered to be

𝑡 = 𝑁𝑡𝑤𝑖𝑠𝑡(𝑁𝑒𝑞 +𝑁𝑠𝑡𝑒𝑝)𝑡𝑠𝑡𝑒𝑝 , (32.9)

where𝑁𝑡𝑤𝑖𝑠𝑡 is the number of twists,𝑁𝑒𝑞 is the number of MC steps required to reach equilibrium,𝑁𝑠𝑡𝑒𝑝 is the number
of MC steps included in the statistical averaging as before, and 𝑡𝑠𝑡𝑒𝑝 is the wall clock time required to complete a single
MC step. For uniform weighting 𝑁𝑡𝑤𝑖𝑠𝑡 = 𝑊 ; while for irreducible weighting 𝑁𝑡𝑤𝑖𝑠𝑡 = 𝑀 .

We can now calculate the relative efficiency (𝜂) of irreducible vs. uniform twist weighting with the aim of obtaining a
target error bar 𝜎𝑡𝑎𝑟𝑔𝑒𝑡:

𝜂 =
𝜉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝐴

𝜉𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑇𝐴

,

=
𝜎2
𝑡𝑎𝑟𝑔𝑒𝑡𝑡

𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑇𝐴

𝜎2
𝑡𝑎𝑟𝑔𝑒𝑡𝑡

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝑇𝐴

,

=
𝑊 (𝑁𝑒𝑞 +𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚

𝑠𝑡𝑒𝑝 )

𝑀(𝑁𝑒𝑞 +𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝑠𝑡𝑒𝑝 )

,

=
𝑊 (𝑁𝑒𝑞 +𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚

𝑠𝑡𝑒𝑝 )

𝑀(𝑁𝑒𝑞 +
∑︀𝑀

𝑚=1 𝑤
2
𝑚

𝑊 𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑠𝑡𝑒𝑝 )

,

=
𝑊

𝑀

1 + 𝑓

1 +
∑︀𝑀

𝑚=1 𝑤
2
𝑚

𝑊 𝑓
.

In this last expression, 𝑓 is the ratio of the number of usable MC steps to the number that must be discarded during
equilibration (𝑓 = 𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚

𝑠𝑡𝑒𝑝 /𝑁𝑒𝑞); and as before, 𝑊 =
∑︀
𝑚 𝑤𝑚, which is the number of twist angles in the uniform

weighting case. It is important to recall that 𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑠𝑡𝑒𝑝 in 𝑓 is defined relative to uniform weighting and is the number

of MC steps required to reach a target accuracy in the case of uniform twist weights.

The formula for 𝜂 in the preceding can be easily changed with the help of (32.8) to reflect the number of MC steps
obtained in an irreducibly weighted run instead. A good exercise is to consider runs that have already completed
with either uniform or irreducible weighting and calculate the expected efficiency change had the opposite type of
weighting been used.

The break even point (𝜂 = 1) can be found at a usable step fraction of

𝑓 =
𝑊 −𝑀

𝑀
∑︀𝑀

𝑚=1 𝑤
2
𝑚

𝑊 −𝑊
. (32.10)

The relative efficiency (𝜂) is useful to consider in view of certain scenarios. An important case is where the number
of required sampling steps is no larger than the number of equilibration steps (i.e., 𝑓 ≈ 1). For a very simple case
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with eight uniform twists with irreducible multiplicities of 𝑤𝑚 ∈ {1, 3, 3, 1} (𝑊 = 8, 𝑀 = 4), the relative efficiency
of irreducible vs. uniform weighting is 𝜂 = 8

4
2

1+20/8 ≈ 1.14. In this case, irreducible weighting is about 14% more
efficient than uniform weighting.

Another interesting case is one in which the number of sampling steps you can reach with uniform twists before wall
clock time runs out is small relative to the number of equilibration steps (𝑓 → 0). In this limit, 𝜂 ≈ 𝑊/𝑀 . For our
eight-uniform-twist example, this would result in a relative efficiency of 𝜂 = 8/4 = 2, making irreducible weighting
twice as efficient.

A final case of interest is one in which the equilibration time is short relative to the available sampling time (𝑓 →∞),
giving 𝜂 ≈ 𝑊 2/(𝑀

∑︀𝑀
𝑚=1 𝑤

2
𝑚). Again, for our simple example we find 𝜂 = 82/(4 × 20) ≈ 0.8, with uniform

weighting being 25% more efficient than irreducible weighting. For this example, the crossover point for irreducible
weighting being more efficient than uniform weighting is 𝑓 < 2, that is, when the available sampling period is less
than twice the length of the equilibration period. The expected efficiency ratio and crossover point should be checked
for the particular case under consideration to inform the choice between twist averaging methods.

QMCPACK website: http://www.qmcpack.org

Releases & source code: https://github.com/QMCPACK

Google Group: https://groups.google.com/forum/#!forum/qmcpack
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