QMCPACK Manual

QMCPACK Developers

Feb 08, 2023

CONTENTS:

Introduction 3
1.1 Quickstart and a first QMCPACK calculation 3
1.2 Authors and History o e e e e e e e e e 4
1.3 Support and Contacting the Developers 6
1.4 Performance 6
1.5 OpenSource License i v v i i e e e e e e e e e e e e 6
1.6 Contributing to QMCPACK e 7
1.7 QMCPACK Roadmap e 8
Features of QMCPACK 9
2.1 Real-space Monte Carlo e 9
2.2 Auxiliary-Field Quantum Monte Carlo 10
2.3 Supported GPU features for real space QMC 11
Performance Portable Implementation 13
3.1 Inputfiles for batched drivers 14
Obtaining, installing, and validating QM CPACK 15
4.1 Installation Steps L e e e e 15
4.2 Obtaining the latest release version 16
4.3 Obtaining the latest development version it 16
4.4 PrerequiSites v v i e 16
4.5 C++ 17standard library oL e e e e e e 17
4.6 BuildingwithCMake e 17
4.7 Installation instructions for common workstations and supercomputers 25
4.8 Installing via Spack L. 31
4.9 Testing and validation of QMCPACK e e 38
4.10 Automated testing of QMCPACK e e e 42
4.11 Building ppconvert, a pseudopotential format converter L . 42
4.12 Installing Quantum ESPRESSO and pw2qmcpack oo 42
4.13 How to build the fastest executable version of QMCPACK 44
4.14 Troubleshooting the installation L e 45
Running QMCPACK 47
5.1 Command line Optionst i e e e e e e e 47
52 Inputfiles oL e e 47
5.3 Outputfiles o e e e e e e e e e 48
5.4 Stopping arunning simulationo L oL e 48
5.5 Rumninginparallel with MPL 0000 48
5.6 UsingOpenMPthreads. e 48

10

11

12

13

14

15

5.7 Runningon GPUmachines e
Units used in QMCPACK

Input file overview
7.1 Project . . . oL e e e
7.2 Random number initialization e e e e e e e e

Specifying the system to be simulated

8.1 Specifying the Simulation Cell
8.2 Specifying the particle set L L e e
Trial wavefunction specification

9.1 Introduction e e e e e e e e e
9.2 Single-particle orbitals L
9.3 Single determinant wavefunctions L. e
9.4 Multideterminant wavefunctions L. oo e e e
9.5 Backflow Wavefunctions e
0.6 Jastrow Factors L e e e e e
9.7 Gaussian Product Wavefunction e e

Hamiltonian and Observables

10.1 The Hamiltonian e e e e e e e e e
10.2 Pairpotentials oL e e e
10.3 General estimators it e e e e e e e e e e e e e e e
10.4 Forward-Walking Estimators o 0 0 0 i e e e e e e e e
10.5 Chiesa-Ceperley-Zhang Force Estimators o ittt
10.6 Assaraf-Caffarel Force Estimators i e
10.7 Stress estimatorso e e e e e e e e e e e e e e e

Quantum Monte Carlo Methods

11.1 Batched drivers e e e e e e e e
11.2 Variational Monte Carlo e
11.3 Wavefunction optimization o v i it e e e e e e e
11.4 Diffusion Monte Carlo e e
11.5 Reptation Monte Carlo o o o e e e e e e e

Output Overview

12.1 The .scalardatfile L e
12.2 The.opt.xmlfile e e e e
123 The .gqmexmlfile. oL o e
124 The .dmc.datfile 0 . e e e e e e e e e e
12.5 The .bandinfo.datfile
12.6 Checkpointand restart files e e e e e e

Analyzing QMCPACK data

13.1 Using the gmca tool to obtain total energies and related quantities
13.2 Using the gmc-fit tool for statistical time step extrapolation and curve fitting
13.3 Using the qdens tool to obtain electron densities

Periodic LCAO for Solids
14.1 Introduction e
14.2 Generating and using periodic Gaussian-type wavefunctions using PySCF

Selected Configuration Interaction
15.1 Theoretical background e e e e e

53

55
57
57

59
59
61

131
132
133
137
152
158

161
161
162
162
162
162
162

165
165
181
184

187
187
188

193

16 Spin-Orbit Calculations in QMC
16.1 Introduction
16.2 Single-Particle Spinors
16.3 Trial Wavefunction
164 QMCMethods
16.5 Spin-Orbit Effective Core Potentials . . .

17 Auxiliary-Field Quantum Monte Carlo
17.1 Input
17.2 Hamiltonian File formats
17.3 Wavefunction File formats
17.4 Current Feature Implementation Status .
17.5 Advice/Useful Information
17.6 AFQMCTOOLS

18 Examples
18.1 Using QMCPACK directly
182 UsingNexus

19 Lab 1: MC Statistical Analysis
19.1 Topics coveredinthislab
19.2 Lab directories and files
19.3 Atomicunits
19.4 Reviewing statistics
19.5 InspectingMCData
19.6 Averaging quantities in the MC data . . .
19.7 Evaluating MC simulation quality
19.8 Reducing statistical error bars
19.9 Scaling to larger numbers of electrons . .

20 Lab 2: QMC Basics
20.1 Topics coveredinthislab
20.2 Laboutline
20.3 Lab directories and files

20.4 Obtaining and converting a pseudopotential foroxygen L.
20.5 DFT with QE to obtain the orbital part of the wavefunction
20.6 Optimization with QMCPACK to obtain the correlated part of the wavefunction.
20.7 DMC timestep extrapolation I: neutral oxygenatom o i
20.8 DMC time step extrapolation II: oxygen atom ionization potential

20.9 DMC workflow automation with Nexus .

20.10 Automated binding curve of the oxygendimer
20.11 (Optional) Running your system with QMCPACK

20.12 Appendix A: Basic Python constructs . .

21 Lab 3: Advanced molecular calculations
21.1 Topics covered inthislab
21.2 Lab directories and files
21.3 Exercise #1: Basics

21.4 Generation of a Hartree-Fock wavefunction with GAMESS
21.5 Exercise #2: Slater-Jastrow wavefunction options oo e
21.6 Exercise #3: Multideterminant wavefunctions0 e e e e

21.7 Appendix A: GAMESS input
21.8 Appendix B: convert4qme

21.9 Appendix C: Wavefunction optimization XML block

21.10 Appendix D: VMC and DMC XML block

201
201
201
202
203
203

207
207
211
215
217
218
220

225
225
225

227
227
227
229
229
231
232
233
237
240

243
243
243
244
244
245
247
251
253
255
257
263
265

269
269
269
270
270
274
276
279
282
283
284

21.11 Appendix E: Wavefunction XML block 285

Lab 4: Condensed Matter Calculations 291
22.1 Topicscoveredinthislab 291
222 Labdirectories and files 291
223 Preliminarieso e e e e e e e e e e e 292
22.4 Total energy of BCCberyllium e 292
22.5 Handling a 2D system: graphene oL e 295
22.6 Conclusion i e e 296
Lab 5: Excited state calculations 297
23.1 Topicscoveredinthislab oL o 297
23.2 Labdirectories and files 297
23.3 Basics and excited state eXperimentst e e e e e e e e e e e e e e e e e e 297
23.4 Preparation for the excited state calculations L L e 299
23.5 Quasiparticle (electronic) gap calculations Lo 306
23.6 Optical gap calculations L e 307
AFQMC Tutorials 309
24.1 Example 1: Neonatom 0 e e e 309
242 Example 2: Frozen Core L 312
243 Example 3: UHF Trial e 312
244 Example 4: NOMSD Trial o e e e e e e e 312
24.5 Example 5: CASSCFE Trial o e e e e e e 313
24.6 Example 6: Back Propagation L. e 314
247 Example 7: 2x2x2 Diamond supercello oo 315
24.8 Example 8: 2x2x2 Diamond k-point symmetryo 316
Additional Tools 319
25.1 Initialization oL e 319
25.2 POSIPrOCESSING . . v v v v v v v e i e 319
253 CONVEITEIS . « ¢ v v v v v e e e e i e e e e e e e e e e e e e 320
25.4 Obtaining pseudopotentials e e e e e e e e e e e 333
External Tools 337
26.1 Sanitizer Libraries L e e e e 337
2602 Intel VTune o e e e e e e 337
26.3 NVIDIA Tools EXtensions i it ittt e et e 338
26.4 Scitools Understand L oL e e e e e e e e e e 338
Contributing to the Manual 339
Unit Testing 343
28.1 Unittesting framework e e e e e e e e e e 343
28.2 Unittest Organization v v v v v v v v e 343
283 Example e e e 344
284 Addingtests e 345
28.5 Testing with random numbers L. 345
Integration Tests 347
29.1 Integration test Organization e e e e e e e e e 347
29.2 Howtoaddaintegration teSt it L e e e e e e 348
Running QMCPACK on Docker Containers 349

30.1 CurrentImages L e 349

30.2 Running Docker Containers oo it e e e e e e e e e
30.3 Build QMCPACK o on Docker @ e e

31 QMCPACK Design and Feature Documentation
31.1 QMCPACK design o o it e e e e e e e e e e
31.2 Feature: Optimized long-range breakup (Ewald)
31.3 Feature: Optimized long-range breakup (Ewald)2
31.4 Feature: Cubic spline interpolation L e e e
31.5 Feature: B-spline orbital tiling (band unfolding)
31.6 Feature: Hybrid orbital representation e
31.7 Feature: Electron-electron-ion Jastrow factor oo,
31.8 Feature: Reciprocal-space Jastrow factors e

32 Development Guide
32.1 QMCPACK coding standards i i i e e e e e e e e
322 Files e
323 Namingo e e e e
324 COMMENLS .« v v v v v v e
32.5 Formatting and “style” L. e
326 QMCPACK C++guidance v o v v i e
32.7 Particles and distance tables oL e
32.8 Wavefunction L L e e e e e e
329 Linear Algebra L
32.10 Slater-backflow wavefunction implementation details
32.11 Scalar estimator implementation e e e e e e e e e e e e
3212 Estimator OULPUL . . . o v v v v it e

33 Appendices
33.1 Appendix A: Derivation of twist averaging efficiency

Bibliography

353
353
353
365
369
373
375
377
378

381
381
381
383
385
386
392
395
397
400
401
405
415

423
423

427

vi

MMMMMMMMMMMMM

QMCPACK

CONTENTS:

https://qmcpack.org/

QMCPACK Manual

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

QMCPACK is an open-source, high-performance electronic structure code that implements numerous Quantum Monte
Carlo (QMC) algorithms. Its main applications are electronic structure calculations of molecular, periodic 2D, and pe-
riodic 3D solid-state systems. Real-space variational Monte Carlo (VMC), diffusion Monte Carlo (DMC), and a num-
ber of other advanced QMC algorithms are implemented. A full set of orbital-space auxiliary-field QMC (AFQMC)
methods is also implemented. By directly solving the Schrodinger equation, QMC methods offer greater accuracy
than methods such as density functional theory but at a trade-off of much greater computational expense. Distinct
from many other correlated many-body methods, QMC methods are readily applicable to both isolated molecular
systems and to bulk (periodic) systems including metals and insulators. The few systematic errors in these methods
are increasingly testable allowing for greater confidence in predictions and convergence to e.g. chemically accurate
results in some cases.

QMCPACK is written in C++ and is designed with the modularity afforded by object-oriented programming. High par-
allel and computational efficiencies are achievable on the largest supercomputers. Because of the modular architecture,
the addition of new wavefunctions, algorithms, and observables is relatively straightforward. For parallelization, QM-
CPACK uses a fully hybrid (OpenMP,CUDA)/MPI approach to optimize memory usage and to take advantage of the
growing number of cores per SMP node or graphical processing units (GPUs) and accelerators. Finally, QMCPACK
uses standard file formats for input and output in XML and HDFS to facilitate data exchange.

This manual currently serves as an introduction to the essential features of QMCPACK and as a guide to installing and
running it. Over time this manual will be expanded to include a fuller introduction to QMC methods in general and to
include more of the specialized features in QMCPACK.

Besides studying this manual we recommend reading a recent review of QMCPACK developments [[KAB+20]] as
well as the QMCPACK citation paper [[KBB+18]].

1.1 Quickstart and a first QMCPACK calculation

In case you are keen to get started, this section describes how to quickly build and run a first QMCPACK calculation
on a standard UNIX or Linux-like system. The build system usually works without much fuss on these systems. If
C++, MPIL, BLAS/LAPACK, FFTW, HDF5, and CMake are already installed, QMCPACK can be built and run within
five minutes. For supercomputers, cross-compilation systems, and some computer clusters, the build system might
require hints on the locations of libraries and which versions to use, typical of any code; see Obtaining, installing,
and validating QOMCPACK. Installation instructions for common workstations and supercomputers includes complete
examples of installations for common workstations and supercomputers that you can reuse.

To build QMCPACK:
1. Download the latest QMCPACK distribution from http://www.qmcpack.org.
2. Untar the archive (e.g., tar xvf gmcpack_vl.3.tar.gz).
3. Check the instructions in the README file.

http://www.qmcpack.org

QMCPACK Manual

4. Run CMake in a suitable build directory to configure QMCPACK for your system: cd gmcpack/build;
cmake

5. If CMake is unable to find all needed libraries, see Obtaining, installing, and validating OMCPACK for instruc-
tions and specific build instructions for common systems.

6. Build QMCPACK: make or make —j 16; use the latter for a faster parallel build on a system using, for
example, 16 processes.

7. The QMCPACK executable is usually bin/gmcpack. If you build the complex version it is bin/
gmcpack_complex.

QMCPACK is distributed with examples illustrating different capabilities. Most of the examples are designed to run
quickly with modest resources. We’ll run a short diffusion Monte Carlo calculation of a water molecule:

1. Go to the appropriate example directory: cd ../examples/molecules/H20.

2. (Optional) Put the QMCPACK binary on your path: export
PATH=\S$PATH:location-of-gmcpack/build/bin

3. RunQMCPACK: ../../../build/bin/gmcpack simple-H20.xml or gncpack simple-H20.
xml if you followed the step above.

4. The run will output to the screen and generate a number of files:

S1ls H20%

H20.HF .wfs.xml H20.s001.scalar.dat H20.s002.cont.xml
H20.s002.gmc.xml H20.s5002.stat.hb H20.s001.gmc.xml
H20.s001.stat.h5 H20.s002.dmc.dat H20.s002.scalar.dat

5. Partially summarized results are in the standard text files with the suffixes scalar.dat and dmc.dat. They are
viewable with any standard editor.

If you have Python and matplotlib installed, you can use the analysis utility to produce statistics and plots of the data.
See Analyzing OMCPACK data for information on analyzing QMCPACK data.

export PATH=$PATH:location-of-gmcpack/nexus/bin

export PYTHONPATH=$PYTHONPATH:location-of-gmcpack/nexus/library

agmca H20.s002.scalar.dat # For statistical analysis of the DMC data
gqmca -t —g e H20.s002.scalar.dat # Graphical plot of DMC energy

The last command will produce a graph as per Fig. 1.1. This shows the average energy of the DMC walkers at each
timestep. In a real simulation we would have to check equilibration, convergence with walker population, time step,
etc.

Congratulations, you have completed a DMC calculation with QMCPACK!

1.2 Authors and History

Development of QMCPACK was started in the late 2000s by Jeongnim Kim while in the group of Professor David
Ceperley at the University of Illinois at Urbana-Champaign, with later contributions being made at Oak Ridge Na-
tional Laboratory (ORNL). Over the years, many others have contributed, including students and researchers in the
groups of Professor David Ceperley and Professor Richard M. Martin, and increasingly staff and postdocs at Lawrence
Livermore National Laboratory, Sandia National Laboratories, Argonne National Laboratory, and ORNL.

Additional developers, contributors, and advisors include Anouar Benali, Mark A. Berrill, David M. Ceperley, Simone
Chiesa, Raymond C. III Clay, Bryan Clark, Kris T. Delaney, Kenneth P. Esler, Paul R. C. Kent, Jaron T. Krogel, Ying
Wai Li, Ye Luo, Jeremy McMinis, Miguel A. Morales, William D. Parker, Nichols A. Romero, Luke Shulenburger,
Norman M. Tubman, and Jordan E. Vincent. See the authors of [[KAB+20]] and [[KBB+18]].

4 Chapter 1. Introduction

QMCPACK Manual

[JoN] Figure 1

Trace of LocalEnergy

[— reo]
-16.5
5002

5170
[] .
c : _ - -
L MWWM&%W
o .
(]
—-17.5

-18.0

0 500 1000 1500 2000

samples
too+ < 8@

Fig. 1.1: Trace of walker energies produced by the gmca tool for a simple water molecule example.

If you should be added to these lists, please let us know.
Development of QMCPACK has been supported financially by several grants, including the following:

* “Center for Predictive Simulation of Functional Materials”, supported by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational
Materials Sciences Program.

* The Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of
Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosys-
tem, including software, applications, and hardware technology, to support the nation’s exascale computing
imperative.

“Network for ab initio many-body methods: development, education and training” supported through the Pre-

dictive Theory and Modeling for Materials and Chemical Science program by the U.S. Department of Energy
Office of Science, Basic Energy Sciences.

* “QMC Endstation,” supported by Accelerating Delivery of Petascale Computing Environment at the DOE Lead-
ership Computing Facility at ORNL.

» PetaApps, supported by the US National Science Foundation.

Materials Computation Center (MCC), supported by the US National Science Foundation.

1.2. Authors and History 5

QMCPACK Manual

1.3 Support and Contacting the Developers

Questions about installing, applying, or extending QMCPACK can be posted on the QMCPACK Google group at
https://groups.google.com/forum/#!forum/qmcepack. You may also email any of the developers, but we recommend
checking the group first. Particular attention is given to any problem reports. Technical questions can also be posted
on the QMCPACK GitHub repository https://github.com/QMCPACK/qmcpack/issues.

1.4 Performance

QMCPACK implements modern Monte Carlo (MC) algorithms, is highly parallel, and is written using very efficient
code for high per-CPU or on-node performance. In particular, the code is highly vectorizable, giving high performance
on modern central processing units (CPUs) and GPUs. We believe QMCPACK delivers performance either comparable
to or better than other QMC codes when similar calculations are run, particularly for the most common QMC methods
and for large systems. If you find a calculation where this is not the case, or you simply find performance slower
than expected, please post on the Google group or contact one of the developers. These reports are valuable. If your
calculation is sufficiently mainstream we will optimize QMCPACK to improve the performance.

1.5 Open Source License

QMCPACK is distributed under the University of Illinois at Urbana-Champaign/National Center for Supercomputing
Applications (UIUC/NCSA) Open Source License.

University of Illinois/NCSA Open Source License

Copyright (c) 2003, University of Illinois Board of Trustees.
All rights reserved.

Developed by:
Jeongnim Kim
Condensed Matter Physics,
National Center for Supercomputing Applications, University of Illinois
Materials computation Center, University of Illinois
http://www.mcc.uiuc.edu/gmc/

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the

‘" Software''), to deal with the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimers.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimers in
the documentation and/or other materials provided with the
distribution.

* Neither the names of the NCSA, the MCC, the University of Illinois,
nor the names of its contributors may be used to endorse or promote
products derived from this Software without specific prior written
permission.

(continues on next page)

6 Chapter 1. Introduction

https://groups.google.com/forum/#!forum/qmcpack
https://github.com/QMCPACK/qmcpack/issues

QMCPACK Manual

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS WITH THE SOFTWARE.

Copyright is generally believed to remain with the authors of the individual sections of code. See the various notations
in the source code as well as the code history.

1.6 Contributing to QMCPACK

QMCPACK is fully open source, and we welcome contributions. If you are planning a development, early discussions
are encouraged. Please post on the QMCPACK Google group, on the QMCPACK GitHub repository, or contact one
of the developers. We can tell you whether anyone else is working on a similar feature or whether any related work
has been done in the past. Credit for your contribution can be obtained, for example, through citation of a paper or by
becoming one of the authors on the next version of the standard QMCPACK reference citation.

See Development Guide for details about developing for QMCPACK, including instructions on how to work with
GitHub, the style guide, and examples about the code architecture.

Contributions are made under the same license as QMCPACK, the UIUC/NCSA open source license. If this is prob-
lematic, please discuss with a developer.

Please note the following guidelines for contributions:

» Additions should be fully synchronized with the latest release version and the latest develop branch on GitHub.
Merging of code developed on older versions is error prone.

¢ Code should be cleanly formatted, commented, portable, and accessible to other programmers. That is, if you
need to use any clever tricks, add a comment to note this, why the trick is needed, how it works, etc. Although
we appreciate high performance, ease of maintenance and accessibility are also considerations.

* Comment your code. You are not only writing it for the compiler for also for other humans! (We know this is a
repeat of the previous point, but it is important enough to repeat.)

* Write a brief description of the method, algorithms, and inputs and outputs suitable for inclusion in this manual.

» Develop tests that exercise the functionality that can be used for validation and for examples. Where is it
practical to write them, we prefer unit tests and fully deterministic tests ahead of stochastic tests. Stochastic
tests naturally fail on occasion, which is a property that does not scale to hundreds of tests. We can help with
this and tests integration into the test system.

1.6. Contributing to QMICPACK 7

QMCPACK Manual

1.7 QMCPACK Roadmap

A general outline of the QMCPACK roadmap is given in the following sections. Suggestions for improvements from
current and potential users are very welcome, particularly those that would facilitate new uses or new users. For
example, if an interface to a particular quantum chemical or density functional code, or an improved tutorial would be
helpful, these would be given strong consideration.

1.7.1 Code

We will continue to improve the accessibility and usability of QMCPACK through combinations of more convenient
input parameters, improved workflow, integration with more quantum chemical and density functional codes, and a
wider range of examples. Suggestions are very welcome, both from new users of QMC and from those experienced
with other QMC codes.

A main development focus is the creation of a single performance portable version of the code. All features will
consequently be available on all platforms, including accelerators (GPUs) from NVIDIA, AMD, and Intel. These
new implementations are currently referred to as the batched code. As the initial batched implementation is matured,
observables and other functionality will be prioritized based on feedback received.

1.7.2 Documentation and examples

This manual describes the core features of QMCPACK that are required for routine research calculations and standard
QMC workflows, i.e., the VMC and DMC methods, auxiliary field QMC, how to obtain and optimize trial wavefunc-
tions, and simple observables. This covers at least 95% of use cases, and nearly all production research calculations.

Because of its history as an academically developed research code, QMCPACK also contains a variety of additional
QMC methods, trial wavefunction forms, potentials, etc., that, although far from critical, might be very useful for
specialized calculations or particular material or chemical systems. If you are interested in these please ask - generally
the features are immature, but we might have historical inputs available. New descriptions will be added over time
but can also be prioritized and added on request (e.g., if a specialized Jastrow factor would help or a historical Jastrow
form is needed for benchmarking).

8 Chapter 1. Introduction

CHAPTER
TWO

FEATURES OF QMCPACK

Note that besides direct use, most features are also available via Nexus, an advanced workflow tool to automate all as-
pects of QMC calculation from initial DFT calculations through to final analysis. Use of Nexus is highly recommended
for research calculations due to the greater ease of use and increased reproducibility.

2.1

Real-space Monte Carlo

The following list contains the main production-level features of QMCPACK for real-space Monte Carlo. If you do
not see a specific feature that you are interested in, check the remainder of this manual or ask if that specific feature
can be made available.

Variational Monte Carlo (VMC).

Diffusion Monte Carlo (DMC).

Reptation Monte Carlo.

Single and multideterminant Slater Jastrow wavefunctions.

Wavefunction updates using optimized multideterminant algorithm of Clark et al.
Backflow wavefunctions.

One, two, and three-body Jastrow factors.

Excited state calculations via flexible occupancy assignment of Slater determinants.
All electron and nonlocal pseudopotential calculations.

Casula T-moves for variational evaluation of nonlocal pseudopotentials (non-size-consistent and size-consistent
variants).

Spin-orbit coupling from relativistic pseudopotentials following the approach of Melton, Bennett, and Mitas.
Support for twist boundary conditions and calculations on metals.

Wavefunction optimization using the “linear method” of Umrigar and coworkers, with an arbitrary mix of vari-
ance and energy in the objective function.

Blocked, low memory adaptive shift optimizer of Zhao and Neuscamman.
Gaussian, Slater, plane-wave, and real-space spline basis sets for orbitals.

Interface and conversion utilities for plane-wave wavefunctions from Quantum ESPRESSO (Plane-Wave Self-
Consistent Field package [PWSCF]).

Interface and conversion utilities for Gaussian-basis wavefunctions from GAMESS, PySCF, and QP2. Many
more are supported via the molden format and molden2qmc.

QMCPACK Manual

2.2

Easy extension and interfacing to other electronic structure codes via standardized XML and HDF5 inputs.
MPI parallelism, with scaling to millions of cores.

Fully threaded using OpenMP.

Highly efficient vectorized CPU code tailored for modern architectures. [[MLC+17]]

OpenMP-offload-based performance portable GPU implementation, see Supported GPU features for real space
oMC.

Legacy GPU (NVIDIA CUDA) implementation (limited functionality - see Supported GPU features for real
space QMC).

Analysis tools for minimal environments (Perl only) through to Python-based environments with graphs pro-
duced via matplotlib (included with Nexus).

Auxiliary-Field Quantum Monte Carlo

The orbital-space Auxiliary-Field Quantum Monte Carlo (AFQMC) method is now also available in QMCPACK. The
main input data are the matrix elements of the Hamiltonian in a given single particle basis set, which must be produced
from mean-field calculations such as Hartree-Fock or density functional theory. A partial list of the current capabilities
of the code follows. For a detailed description of the available features, see Auxiliary-Field Quantum Monte Carlo.

Phaseless AFQMC algorithm of Zhang et al. [[ZKO03]].
Very efficient GPU implementation for most features.
“Hybrid” and “local energy” propagation schemes.

Hamiltonian matrix elements from (1) Molpro’s FCIDUMP format (which can be produced by Molpro, PySCF,
and VASP) and (2) internal HDF5 format produced by PySCF (see AFQMC section below).

AFQMC calculations with RHF (closed-shell doubly occupied), ROHF (open-shell doubly occupied), and UHF
(spin polarized broken symmetry) symmetry.

Single and multideterminant trial wavefunctions. Multideterminant expansions with either orthogonal or
nonorthogonal determinants.

Fast update scheme for orthogonal multideterminant expansions.

Distributed propagation algorithms for large systems. Enables calculations where data structures do not fit on a
single node.

Complex implementation for PBC calculations with complex integrals.
Sparse representation of large matrices for reduced memory usage.
Mixed and back-propagated estimators.

Specialized implementation for solids with k-point symmetry (e.g. primitive unit cells with k-points).

10

Chapter 2. Features of QICPACK

QMCPACK Manual

2.3 Supported GPU features for real space QMC

There are two GPU implementations in the code base.

¢ Performance portable implementation (recommended). Implements real space QMC methods using OpenMP
offload programming model and accelerated linear algebra libraries. Runs with good performance on NVIDIA
and AMD GPUs, and the Intel GPU support is under development. Unlike the “legacy” implementation, it is
feature complete and users may mix and match CPU-only and GPU-accelerated features.

* Legacy implementation. Fully based on NVIDIA CUDA. Achieves very good speedup on NVIDIA GPUs.
However, only a very limited subset of features is available.

QMCPACK supports running on multi-GPU node architectures via MPI.

Supported GPU features:
Feature Performance portable | Legacy CUDA
QMC methods VMC, WFOpt, DMC VMC, DMC
boundary conditions periodic, mixed, open periodic, open
Complex-valued wavefunction supported supported
Single-Slater determinants accelerated accelerated
Multi-Slater determinants on host now, being ported | not supported
3D B-spline orbitals accelerated accelerated
LCAO orbitals on host now, being ported | not supported
One-body Jastrow factors on host accelerated
Two-body Jastrow factors accelerated accelerated
Other Jastrow factors on host not supported
Nonlocal pseudopotentials accelerated accelerated
Coulomb interaction PBC e-i on host accelerated
Coulomb interaction PBC e-e accelerated accelerated
Coulomb interaction OpenBC on host accelerated
Model periodic Coulomb (MPC) | on host accelerated

Additional information:
¢ Performance portable implementation requires using batched QMC drivers.
* Legacy CUDA implementation only supports T-move vO or no T-move.

* In most features, the algorithmic and implementation details differ a lot between these two GPU implementa-
tions.

2.3.1 Sharing of spline data across multiple GPUs

Sharing of GPU spline data enables distribution of the data across multiple GPUs on a given computational node.
For example, on a two-GPU-per-node system, each GPU would have half of the orbitals. This allows use of larger
overall spline tables than would fit in the memory of individual GPUs and potentially up to the total GPU memory on
a node. To obtain high performance, large electron counts or a high-performing CPU-GPU interconnect is required.
This feature is only supported in the legacy implementation.

To use this feature, the following needs to be done:

* The CUDA Multi-Process Service (MPS) needs to be used (e.g., on OLCF Summit/SummitDev use “-alloc_flags
gpumps” for bsub). If MPI is not detected, sharing will be disabled.

2.3. Supported GPU features for real space QMC 11

QMCPACK Manual

* CUDA_VISIBLE_DEVICES needs to be properly set to control each rank’s visible CUDA devices (e.g., on
OLCF Summit/SummitDev create a resource set containing all GPUs with the respective number of ranks with
“jsrun —task-per-rs Ngpus -g Ngpus”).

¢ In the determinant set definition of the <wavefunction> section, the “gpusharing” parameter needs to be set (i.e.,
<determinantset gpusharing="yes”>). See 3D B-splines orbitals.

12 Chapter 2. Features of QICPACK

CHAPTER
THREE

PERFORMANCE PORTABLE IMPLEMENTATION

The so-called performance portable implementation was developed to present a unified way to run QMC on CPU and
GPU systems, and eliminate the divergence between CPU and GPU code paths that had been introduced in the past,
while still maintaining high performance. This required generalizing all the driver inputs to potentially drive larger
batches of walkers and also eliminating ambiguities in the various input blocks of QMCPACK. Internally many new
code paths have been created, including new QMC drivers for VMC, DMC, and the wavefunction optimizer.

Once this implementation is sufficiently matured and enough features are available, the old non-performance portable
drivers will be deprecated and eventually deleted. The number of changes required to old input files is usually very
small, so use of the new performance portable implementation is encouraged, particularly for new projects.

The performance portable implementation load balances the total number of walkers onto MPI tasks, as per the old
drivers. The new implementation is then able to subdivide the walkers of each MPI task into multiple similarly-sized
crowds. The walkers in each crowd can then be updated simultaneously. This structure enables the walkers to be
efficiently mapped to both CPUs and GPUs. On CPU systems, they then are mapped to OpenMP threads where a
single walker can be computed efficiently by even a single thread. On GPU systems, large numbers of GPU threads
must be used concurrently for high efficiency: Each crowd is first owned by a distinct CPU thread, which in turn
executes batched operations over all the walkers in its crowd on the GPU. Provided the batches are sufficiently large,
this facilitates efficient GPU execution, while the use of multiple crowds can reduce synchronization and allow higher
performance to be obtained. For these reasons the new performance portable drivers are also referred to as batched
drivers, since this is the largest change from the older code.

The new implementation largely uses OpenMP offload for portability, although other technologies are also used and
the implementation has flexible dispatch to help obtain high performance on every platform.

This implementation was designed and implemented as part of the Exascale Computing Project, with a view to bringing
QMCPACK to GPUs from multiple vendors with high-efficiency while creating a more maintainable and easy to
contribute to codebase.

Links to more information in other sections of the manual:

¢ Build instructions: OpenMP target offload section of the Obtaining, installing, and validating OQMCPACK
chapter.

* Supported features: Supported GPU features for real space QMC section of the Features of OMCPACK
chapter.

* Enabling batch drivers Driver version section of the Input file overview chapter.

* Driver Inputs: Batched drivers section of the Quantum Monte Carlo Methods chapter.

13

QMCPACK Manual

3.1 Input files for batched drivers

Use the following changes to update input files to use the batched drivers.

1. Update the project block with the driver_version parameter. For example:

<project id="vmc" series="0">
<parameter name="driver_version">batch</parameter>
</project>

See Driver version for more.
2. Modify the QMC algorithm blocks

The most significant change is the walkers parameter has been replaced with walkers_per_rank or
total_walkers.

See Batched drivers for details.

14 Chapter 3. Performance Portable Implementation

CHAPTER
FOUR

OBTAINING, INSTALLING, AND VALIDATING QMCPACK

This section describes how to obtain, build, and validate QMCPACK. This process is designed to be as simple as
possible and should be no harder than building a modern plane-wave density functional theory code such as Quantum
ESPRESSO, QBox, or VASP. Parallel builds enable a complete compilation in under 2 minutes on a fast multicore

system. If you are unfamiliar with building codes we suggest working with your system administrator to install
QMCPACK.

4.1 Installation steps

To install QMCPACK, follow the steps below. Full details of each step are given in the referenced sections.
1. Download the source code from Obtaining the latest release version or Obtaining the latest development version.
2. Verify that you have the required compilers, libraries, and tools installed (Prerequisites).

3. If you will use Quantum ESPRESSO, download and patch it. The patch adds the pw2qmcpack utility (/nstalling
Quantum ESPRESSO and pw2gmcpack).

4. Run the cmake configure step and build with make (Building with CMake and Quick build instructions (try
first)). Examples for common systems are given in Installation instructions for common workstations and
supercomputers. To activate workflow tests for Quantum ESPRESSO, RMG, or PYSCEF, be sure to specify
QE_BIN, RMG_BIN, or ensure that the python modules are available when cmake is run.

5. Run the tests to verify QMCPACK (7esting and validation of OMCPACK).

Hints for high performance are in How to build the fastest executable version of OMCPACK. Troubleshooting sugges-
tions are in Troubleshooting the installation.

Note that there are two different QMCPACK executables that can be produced: the general one, which is the default,
and the “complex” version, which supports periodic calculations at arbitrary twist angles and k-points. This second
version is enabled via a cmake configuration parameter (see Configuration Options). The general version supports
only wavefunctions that can be made real. If you run a calculation that needs the complex version, QMCPACK will
stop and inform you.

15

QMCPACK Manual

4.2 Obtaining the latest release version

Major releases of QMCPACK are distributed from http://www.qmcpack.org. Because these versions undergo the most
testing, we encourage using them for all production calculations unless there are specific reasons not to do so.

Releases are usually compressed tar files that indicate the version number, date, and often the source code revision
control number corresponding to the release. To obtain the latest release:

* Download the latest QMCPACK distribution from http://www.qmcpack.org.
¢ Untar the archive (e.g., tar xvf gmcpack_vl.3.tar.gz).

Releases can also be obtained from the ‘master’ branch of the QMCPACK git repository, similar to obtaining the
development version (Obtaining the latest development version).

4.3 Obtaining the latest development version

The most recent development version of QMCPACK can be obtained anonymously via

’ git clone https://github.com/QMCPACK/gmcpack.git

Once checked out, updates can be made via the standard git pull.

The ‘develop’ branch of the git repository contains the day-to-day development source with the latest updates, bug
fixes, etc. This version might be useful for updates to the build system to support new machines, for support of the
latest versions of Quantum ESPRESSO, or for updates to the documentation. Note that the development version
might not be fully consistent with the online documentation. We attempt to keep the development version fully
working. However, please be sure to run tests and compare with previous release versions before using for any serious
calculations. We try to keep bugs out, but occasionally they crawl in! Reports of any breakages are appreciated.

4.4 Prerequisites

The following items are required to build QMCPACK. For workstations, these are available via the standard package
manager. On shared supercomputers this software is usually installed by default and is often accessed via a modules
environment—check your system documentation.

Use of the latest versions of all compilers and libraries is strongly encouraged but not absolutely essential. Gen-
erally, newer versions are faster; see How fo build the fastest executable version of OMCPACK for performance
suggestions. Versions of compilers over two years old are unsupported and untested by the developers although they
may still work.

¢ C/C++ compilers such as GNU, Clang, Intel, and IBM XL. C++ compilers are required to support the C++ 17
standard. Use of recent (“current year version”) compilers is strongly encouraged.

e An MPI library such as OpenMPI (http://open-mpi.org) or a vendor-optimized MPL

* BLAS/LAPACK, numerical, and linear algebra libraries. Use platform-optimized libraries where available, such
as Intel MKL. ATLAS or other optimized open source libraries can also be used (http://math-atlas.sourceforge.
net).

* CMake, build utility (http://www.cmake.org).
e Libxml2, XML parser (http://xmlsoft.org).

e HDF5, portable I/O library (http://www.hdfgroup.org/HDF5/). Good performance at large scale requires parallel
version >= 1.10.

16 Chapter 4. Obtaining, installing, and validating QMCPACK

http://www.qmcpack.org
http://www.qmcpack.org
http://open-mpi.org
http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://www.cmake.org
http://xmlsoft.org
http://www.hdfgroup.org/HDF5/

QMCPACK Manual

* BOOST, peer-reviewed portable C++ source libraries (http://www.boost.org). Minimum version is 1.61.0.
* FFTW, FFT library (http://www.fftw.org/).

To build the GPU accelerated version of QMCPACK, an installation of NVIDIA CUDA development tools is required.
Ensure that this is compatible with the C and C++ compiler versions you plan to use. Supported versions are included
in the NVIDIA release notes.

Many of the utilities provided with QMCPACK require Python (v3). The numpy and matplotlib libraries are required
for full functionality.

4.5 C++ 17 standard library

The C++ standard consists of language features—which are implemented in the compiler—and library fea-
tures—which are implemented in the standard library. GCC includes its own standard library and headers, but many
compilers do not and instead reuse those from an existing GCC install. Depending on setup and installation, some of
these compilers might not default to using a GCC with C++ 17 headers (e.g., GCC 4.8 is common as a base system
compiler, but its standard library only supports C++ 11).

The symptom of having header files that do not support the C++ 17 standard is usually compile errors involving
standard include header files. Look for the GCC library version, which should be present in the path to the include file
in the error message, and ensure that it is 8.1 or greater. To avoid these errors occurring at compile time, QMCPACK
tests for a C++ 17 standard library during configuration and will halt with an error if one is not found.

At sites that use modules, it is often sufficient to simply load a newer GCC.

4.5.1 Intel compiler

The Intel compiler version must be 19 or newer due to use of C++17 and bugs and limitations in earlier versions.

If a newer GCC is needed, the —cxx11ib option can be used to point to a different GCC installation. (Alternately, the
—gcc—name or —gxx—name options can be used.) Be sure to pass this flag to the C compiler in addition to the C++
compiler. This is necessary because CMake extracts some library paths from the C compiler, and those paths usually
also contain to the C++ library. The symptom of this problem is C++ 17 standard library functions not found at link
time.

4.6 Building with CMake

The build system for QMCPACK is based on CMake. It will autoconfigure based on the detected compilers and
libraries. The most recent version of CMake has the best detection for the greatest variety of systems. The minimum
required version of CMake is 3.17.0. Most computer installations have a sufficiently recent CMake, though it might
not be the default.

If no appropriate version CMake is available, building it from source is straightforward. Download a version from
https://cmake.org/download/ and unpack the files. Run ./bootstrap from the CMake directory, and then run
make when that finishes. The resulting CMake executable will be in the directory. The executable can be run directly
from that location.

Previously, QMCPACK made extensive use of toolchains, but the build system has since been updated to eliminate the
use of toolchain files for most cases. The build system is verified to work with GNU, Intel, and IBM XLC compilers.
Specific compile options can be specified either through specific environment or CMake variables. When the libraries
are installed in standard locations (e.g., /usr, /ust/local), there is no need to set environment or CMake variables for the
packages.

4.5. C++ 17 standard library 17

http://www.boost.org
http://www.fftw.org/
https://cmake.org/download/

QMCPACK Manual

4.6.1 Quick build instructions (try first)
If you are feeling lucky and are on a standard UNIX-like system such as a Linux workstation, the following might
quickly give a working QMCPACK:

The safest quick build option is to specify the C and C++ compilers through their MPI wrappers. Here we use Intel
MPI and Intel compilers. Move to the build directory, run CMake, and make

cd build
cmake -DCMAKE_C_COMPILER=mpiicc -DCMAKE_CXX_COMPILER=mpiicpc ..
make —3j 8

You can increase the “8” to the number of cores on your system for faster builds. Substitute mpicc and mpicxx or
other wrapped compiler names to suit your system. For example, with OpenMPI use

cd build
cmake —-DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx ..
make —3j 8

If you are feeling particularly lucky, you can skip the compiler specification:

cd build
cmake ..
make —7J 8

The complexities of modern computer hardware and software systems are such that you should check that the autocon-
figuration system has made good choices and picked optimized libraries and compiler settings before doing significant
production. That is, check the following details. We give examples for a number of common systems in /nstallation
instructions for common workstations and supercomputers.

4.6.2 Environment variables

A number of environment variables affect the build. In particular they can control the default paths for libraries, the
default compilers, etc. The list of environment variables is given below:

CXX C++ compiler
ccC C Compiler
MKL_ROOT Path for MKL
HDF5_ROOT Path for HDF5
BOOST_ROOT Path for Boost
FFTW_HOME Path for FFTW

4.6.3 Configuration Options

In addition to reading the environment variables, CMake provides a number of optional variables that can be set to
control the build and configure steps. When passed to CMake, these variables will take precedent over the environment
and default variables. To set them, add -D FLAG=VALUE to the configure line between the CMake command and the
path to the source directory.

* Key QMCPACK build options

QOMC_COMPLEX Build the complex (general twist/k-point) version (l:yes,
—0:no)
QOMC_MIXED_PRECISION Build the mixed precision (mixing double/float) version

(continues on next page)

18 Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

(continued from previous page)

(l:yes (QMC_CUDA=1 default), 0O:no (QMC_CUDA=0 default)).
Mixed precision calculations can be signifiantly faster but,,

—should be

carefully checked validated against full double precision,
—runs,

particularly for large electron counts.
ENABLE_OFFLOAD ON/OFF (default). Enable OpenMP target offload for GPU_
—acceleration.
QMC_CUDA Enable legacy CUDA code path for NVIDIA GPU acceleration,
—~ (l:yes, 0:no)
ENABLE_CUDA ON/OFF (default) . Enable CUDA code path for NVIDIA GPU,_,
—acceleration.

Production quality for AFQMC and real-space performance
—portable implementation.

Use CMAKE_CUDA_ARCHITECTURES, default 70, to set the actual
—~GPU architecture.
QMC_CUDA2HIP ON/OFF (default). To be set ON, it requires either QMC_CUDA
—or ENABLE_CUDA to be ON.

Compile CUDA source code as HIP and use ROCm libraries for,
—AMD GPUs.
ENABLE_SYCL ON/OFF (default). Enable SYCL code path. Only support Intel
—GPUs and OneAPI compilers.

General build options

CMAKE_BUILD_TYPE A variable which controls the type of build
(defaults to Release). Possible values are:
None (Do not set debug/optmize flags, use
CMAKE_C_FLAGS or CMAKE_CXX_FLAGS)
Debug (create a debug build)
Release (create a release/optimized build)
RelWithDebInfo (create a release/optimized build with debug,,

—~info)

MinSizeRel (create an executable optimized for size)
CMAKE_SYSTEM_NAME Set value to CrayLinuxEnvironment when cross—compiling in
—Cray Programming Environment.
CMAKE_C_COMPILER Set the C compiler
CMAKE_CXX_COMPILER Set the C++ compiler
CMAKE_C_FLAGS Set the C flags. Note: to prevent default

debug/release flags from being used, set the CMAKE_BUILD_
—TYPE=None

Also supported: CMAKE_C_FLAGS_DEBUG,

CMAKE_C_FLAGS_RELEASE, and CMAKE_C_FLAGS_RELWITHDEBINFO
CMAKE_CXX_FLAGS Set the C++ flags. Note: to prevent default

debug/release flags from being used, set the CMAKE_BUILD_
—TYPE=None

Also supported: CMAKE_CXX_FLAGS_DEBUG,

CMAKE_CXX_FLAGS_RELEASE, and CMAKE_CXX_ FLAGS_RELWITHDEBINFO
CMAKE_INSTALL_PREFIX Set the install location (if using the optional install step)
INSTALL_NEXUS Install Nexus alongside QMCPACK (if using the optional,
—~install step)

Additional QMCPACK build options

ENABLE_TIMERS ON (default) /OFF. Enable fine-grained timers. Timers are on_
—by default but at level coarse
to avoid potential slowdown in tiny systems.

(continues on next page)

4.6. Building with CMake 19

QMCPACK Manual

(continued from previous page)

For systems beyond tiny sizes (100+ electrons) there is no,

—risk.

QE_BIN Location of Quantum ESPRESSO binaries including pw2gmcpack.
X

RMG_BIN Location of RMG binary (rmg-cpu)

QMC_DATA Specify data directory for QMCPACK performance and
—integration tests

QMC_INCLUDE Add extra include paths

QMC_EXTRA_LIBS Add extra link libraries

QOMC_BUILD_STATIC ON/OFF (default). Add -static flags to build

QOMC_SYMLINK_TEST_FILES Set to zero to require test files to be copied. Avoids,,
—space
saving default use of symbolic links for test files. Useful
if the build is on a separate filesystem from the source,

—~as
required on some HPC systems.
BLAS/LAPACK related
BLA_VENDOR If set, checks only the specified vendor, if not set checks,

—~all the possibilities.

See full list at https://cmake.org/cmake/help/latest/module/
—FindLAPACK.html
MKL_ROOT Path to MKL libraries. Only necessary when auto-detection,
—~fails or overriding is desired.

Scalar and vector math functions

QMC_MATH_VENDOR Select a vendor optimized library for scalar and vector math_,
—functions.
Providers are GENERIC INTEL_VML IBM_MASS AMD_LIBM

libxml2 related

LIBXML2_INCLUDE_DIR Include directory for libxml2

LIBXML2_LIBRARY Libxml2 library

HDFS5 related

HDF5_PREFER_PARALLEL TRUE (default for MPI build)/FALSE, enables/disable parallel,,
—HDF5 library searching.
ENABLE_PHDFS ON (default for parallel HDF5 library)/OFF, enables/disable
—parallel collective I/0.

FFTW related

FFTW_INCLUDE_DIRS Specify include directories for FFTIW
FFTW_LIBRARY_DIRS Specify library directories for FFTIW

CTest related
MPIEXEC_EXECUTABLE Specify the mpi wrapper, e.g. srun, aprun, mpirun, etc.
MPIEXEC_NUMPROC_FLAG Specify the number of mpi processes flag,
e.g. "-n", "-np", etc.
MPIEXEC_PREFLAGS Flags to pass to MPIEXEC_EXECUTABLE directly before the

—executable to run.

20

Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

* Sanitizers Developer Options

ENABLE_SANITIZER 1link with the GNU or Clang sanitizer library for asan, ubsan,
—tsan or msan (default=none)

Clang address sanitizer library asan
Clang address sanitizer library ubsan
Clang thread sanitizer library tsan
Clang thread sanitizer library msan

See Sanitizer Libraries for more information.

4.6.4 Notes for OpenMP target offload to accelerators (experimental)

QMCPACK is currently being updated to support OpenMP target offload and obtain performance portability across
GPUs from different vendors. This is currently an experimental feature and is not suitable for production. Addi-
tional implementation in QMCPACK as well as improvements in open-source and vendor compilers is required for
production status to be reached. The following compilers have been verified:

e LLVM Clang 15. Support NVIDIA GPUs.

-D ENABLE_OFFLOAD=ON

Clang and its downstream compilers support two extra options

OFFLOAD_TARGET for the offload target. default nvptx64-nvidia-cuda.
OFFLOAD_ARCH for the target architecture (sm_80, gfx906, ...) 1if not using the
—compiler default.

[

* AMD ROCm/AOMP LLVM-based compilers. Support AMD GPUs.

’—D ENABLE_OFFLOAD=ON -D OFFLOAD_TARGET=amdgcn-amd-amdhsa —-D OFFLOAD_ARCH=gfx906 ‘

* Intel oneAPI 2022.1.0 icx/icpx compilers. Support Intel GPUs.

’—D ENABLE_OFFLOAD=ON -D OFFLOAD_TARGET=spir64 ‘

* HPE Cray 13. It is derived from Clang and supports NVIDIA and AMD GPUs.

’—D ENABLE_OFFLOAD=ON -D OFFLOAD_TARGET=nvptx64-nvidia-cuda -D OFFLOAD_ARCH=sm_80 ‘

OpenMP offload features can be used together with vendor specific code paths to maximize QMCPACK performance.
Some new CUDA functionality has been implemented to improve performance on NVIDIA GPUs in conjunction with
the offload code paths: For example, using Clang 14 on Summit.

’*D ENABLE_OFFLOAD=ON -D ENABLE_CUDA=ON -D CMAKE_CUDA_ARCHITECTURES=70 ‘

Similarly, HIP features can be enabled in conjunction with the offload code path to improve performance on AMD
GPUs.

-D ENABLE_OFFLOAD=ON -D ENABLE_CUDA=ON -D QMC_CUDA2HIP=ON —-DCMAKE_HIP_
—ARCHITECTURES=gfx906

Similarly, SYCL features can be enabled in conjunction with the offload code path to improve performance on Intel
GPUs.

4.6. Building with CMake 21

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html

QMCPACK Manual

-D ENABLE_OFFLOAD=ON -D ENABLE_SYCL=ON

4.6.5 Installation from CMake

Installation is optional. The QMCPACK executable can be run from the bin directory in the build location. If the
install step is desired, run the make install command to install the QMCPACK executable, the converter, and
some additional executables. Also installed is the gmcpack.settings file that records options used to compile
QMCPACK. Specify the CMAKE_INSTALL_PREF IX CMake variable during configuration to set the install location.

4.6.6 Role of QMC_DATA

QMCPACK includes a variety of optional performance and integration tests that use research quality wavefunctions
to obtain meaningful performance and to more thoroughly test the code. The necessarily large input files are stored
in the location pointed to by QMC_DATA (e.g., scratch or long-lived project space on a supercomputer). These
multi-gigabyte files are not included in the source code distribution to minimize size. The tests are activated if
CMake detects the files when configured. See tests/performance/NiO/README, tests/solids/NiO_afqmc/README,
tests/performance/C-graphite/ README, and tests/performance/C-molecule/README for details of the current tests
and input files and to download them.

Currently the files must be downloaded via https://anl.box.com/s/yxzlic4kxtdtgpvaShcmlom9ixfl3v3c.

The layout of current complete set of files is given below. If a file is missing, the appropriate performance test is
skipped.

QMC_DATA/C—graphite/lda.pwscf.h5
QMC_DATA/C-molecule/Cl2-e48-pp.h5
QMC_DATA/C-molecule/Cl2-e72-ae.hb
OMC_DATA/C-molecule/Cl8-el08-ae.hb
QMC_DATA/C-molecule/Cl8-e72-pp.h5
QMC_DATA/C-molecule/C24-eld44-ae.h5
QMC_DATA/C-molecule/C24-e96-pp.h5
QMC_DATA/C-molecule/C30-el20-pp.h5
QMC_DATA/C-molecule/C30-el80-ae.h5
QMC_DATA/C-molecule/C60-e240-pp.h5
QMC_DATA/NiO/NiO-fcc-supertwistlll-supershift000-S1.h5
QMC_DATA/Ni0/NiO-fcc—supertwistlll-supershift000-S2.h5
QMC_DATA/NiO/NiO-fcc-supertwistlll-supershift000-S4.h5
QMC_DATA/NiO/NiO-fcc-supertwistlll-supershift000-S8.h5
QOMC_DATA/Ni0/NiO-fcc-supertwistlll-supershift000-S16.h5
QMC_DATA/NiO/NiO-fcc-supertwistlll-supershift000-332.h5
QOMC_DATA/NiO/NiO-fcc-supertwistlll-supershift000-S64.h5
QOMC_DATA/Ni0/NiO-fcc-supertwistlll-supershift000-S128.h5
QOMC_DATA/NiO/NiO-fcc-supertwistlll-supershift000-S256.h5
QMC_DATA/NiO/NiO_afm_fcidump.hb
QMC_DATA/NiO/NiO_afm_wfn.dat
QMC_DATA/Ni0/NiO_nm_choldump.h5

22 Chapter 4. Obtaining, installing, and validating QMCPACK

https://anl.box.com/s/yxz1ic4kxtdtgpva5hcmlom9ixfl3v3c

QMCPACK Manual

4.6.7 Configure and build using CMake and make

To configure and build QMCPACK, move to build directory, run CMake, and make

cd build
cmake ..
make -j 8

As you will have gathered, CMake encourages “out of source” builds, where all the files for a specific build configu-
ration reside in their own directory separate from the source files. This allows multiple builds to be created from the
same source files, which is very useful when the file system is shared between different systems. You can also build
versions with different settings (e.g., QMC_COMPLEX) and different compiler settings. The build directory does

not have to be called build—use something descriptive such as build_machinename or build_complex. The “..” in the
CMake line refers to the directory containing CMakeLists.txt. Update the “..” for other build directory locations.

4.6.8 Example configure and build

* Set the environments (the examples below assume bash, Intel compilers, and MKL library)

export CXX=icpc

export CC=icc

export MKL_ROOT=/usr/local/intel/mk1/10.0.3.020
export HDF5_ROOT=/usr/local

export BOOST_ROOT=/usr/local/boost

export FFTW_HOME=/usr/local/fftw

Move to build directory, run CMake, and make

cd build
cmake -D CMAKE_BUILD_TYPE=Release ..
make —-3j 8

4.6.9 Build scripts

We recommended creating a helper script that contains the configure line for CMake. This is particularly useful when
avoiding environment variables, packages are installed in custom locations, or the configure line is long or complex.
In this case it is also recommended to add “rm -rf CMake*” before the configure line to remove existing CMake
configure files to ensure a fresh configure each time the script is called. Deleting all the files in the build directory
is also acceptable. If you do so we recommend adding some sanity checks in case the script is run from the wrong
directory (e.g., checking for the existence of some QMCPACK files).

Some build script examples for different systems are given in the config directory. For example, on Cray systems these
scripts might load the appropriate modules to set the appropriate programming environment, specific library versions,
etc.

An example script build.sh is given below. It is much more complex than usually needed for comprehensiveness:

export CXX=mpic++

export CC=mpicc

export HDF5_ROOT=/opt/hdf5
export BOOST_ROOT=/opt/boost

rm —-rf CMakex

(continues on next page)

4.6. Building with CMake 23

QMCPACK Manual

(continued from previous page)

cmake \
-D CMAKE_BUILD_TYPE=Debug \
-D LIBXML2_INCLUDE_DIR=/usr/include/libxml2 \
-D LIBXML2_LIBRARY=/usr/lib/x86_64-1linux-gnu/libxml2.so \
-D FFTW_INCLUDE_DIRS=/usr/include \
-D FFTW_LIBRARY_DIRS=/usr/lib/x86_64-1linux—gnu \
-D QMC_DATA=/projects/QMCPACK/gmc-data \

4.6.10 Using vendor-optimized numerical libraries (e.g., Intel MKL)

Although QMC does not make extensive use of linear algebra, use of vendor-optimized libraries is strongly recom-
mended for highest performance. BLAS routines are used in the Slater determinant update, the VMC wavefunction
optimizer, and to apply orbital coefficients in local basis calculations. Vectorized math functions are also beneficial
(e.g., for the phase factor computation in solid-state calculations). CMake is generally successful in finding these
libraries, but specific combinations can require additional hints, as described in the following:

Using Intel MKL with non-Intel compilers

To use Intel MKL with, e.g. an MPICH wrapped gcc:

cmake \
—-DCMAKE_C_COMPILER=mpicc —-DCMAKE_CXX_COMPILER=mpicxx \
—-DMKL_ROOT=YOUR_INTEL_MKI_ROOT_DIRECTORY \

MKL_ROOT is only necessary when MKL is not auto-detected successfully or a particular MKL installation is desired.
YOUR_INTEL_MKL_ROOT_DIRECTORY is the directory containing the MKL bin, examples, and lib directories
(etc.) and is often /opt/intel/mkl.

Serial or multithreaded library

Vendors might provide both serial and multithreaded versions of their libraries. Using the right version is critical to
QMCPACK performance. QMCPACK makes calls from both inside and outside threaded regions. When being called
from outside an OpenMP parallel region, the multithreaded version is preferred for the possibility of using all the
available cores. When being called from every thread inside an OpenMP parallel region, the serial version is preferred
for not oversubscribing the cores. Fortunately, nowadays the multithreaded versions of many vendor libraries (MKL,
ESSL) are OpenMP aware. They use only one thread when being called inside an OpenMP parallel region. This
behavior meets exactly both QMCPACK needs and thus is preferred. If the multithreaded version does not provide
this feature of dynamically adjusting the number of threads, the serial version is preferred. In addition, thread safety
is required no matter which version is used.

24 Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

4.6.11 Cross compiling

Cross compiling is often difficult but is required on supercomputers with distinct host and compute processor genera-
tions or architectures. QMCPACK tried to do its best with CMake to facilitate cross compiling.

* On a machine wusing a Cray programming environment, we rely on compiler wrap-
pers providled by Cray to correctly set architecture-specific flags. Please also add
-DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment to cmake. The CMake configure log should
indicate that a Cray machine was detected.

¢ If not on a Cray machine, by default we assume building for the host architecture (e.g., -xHost is added for the
Intel compiler and -march=native is added for GNU/Clang compilers).

e If -x/-ax or -march is specified by the user in CMAKE_C_FLAGS and CMAKE_CXX_FLAGS, we respect the
user’s intention and do not add any architecture-specific flags.

The general strategy for cross compiling should therefore be to manually set CMAKE_C_FLAGS and
CMAKE_CXX_FLAGS for the target architecture. Using make VERBOSE=1 is a useful way to check the final
compilation options. If on a Cray machine, selection of the appropriate programming environment should be suffi-
cient.

4.7 Installation instructions for common workstations and super-
computers

This section describes how to build QMCPACK on various common systems including multiple Linux distributions,
Apple OS X, and various supercomputers. The examples should serve as good starting points for building QMCPACK
on similar machines. For example, the software environment on modern Crays is very consistent. Note that updates
to operating systems and system software might require small modifications to these recipes. See How to build the
fastest executable version of OMCPACK for key points to check to obtain highest performance and Troubleshooting
the installation for troubleshooting hints.

4.7.1 Installing on Ubuntu Linux or other apt-get-based distributions

The following is designed to obtain a working QMCPACK build on, for example, a student laptop, starting from a
basic Linux installation with none of the developer tools installed. Fortunately, all the required packages are available
in the default repositories making for a quick installation. Note that for convenience we use a generic BLAS. For
production, a platform-optimized BLAS should be used.

sudo apt—-get install cmake g++ openmpi-bin libopenmpi-dev libboost-dev

sudo apt-get install libatlas-base-dev liblapack-dev 1libhdf5-dev libxml2-dev fftw3-dev
export CXX=mpiCC

cd build

cmake ..

make -j 8

1s -1 bin/gmcpack

For gmca and other tools to function, we install some Python libraries:

sudo apt-get install python-numpy python-matplotlib

4.7. Installation instructions for common workstations and supercomputers 25

QMCPACK Manual

4.7.2 Installing on CentOS Linux or other yum-based distributions

The following is designed to obtain a working QMCPACK build on, for example, a student laptop, starting from a
basic Linux installation with none of the developer tools installed. CentOS 7 (Red Hat compatible) is using gcc 4.8.2.
The installation is complicated only by the need to install another repository to obtain HDF5 packages that are not
available by default. Note that for convenience we use a generic BLAS. For production, a platform-optimized BLAS
should be used.

sudo yum install make cmake gcc gcc-c++ openmpi openmpi-devel fftw fftw-devel \
boost boost-devel libxml2 libxml2-devel

sudo yum install blas-devel lapack-devel atlas-devel

module load mpi

To set up repoforge as a source for the HDFS5 package, go to http://repoforge.org/use. Install the appropriate up-to-date
release package for your operating system. By default, CentOS Firefox will offer to run the installer. The CentOS 6.5
settings were still usable for HDF5 on CentOS 7 in 2016, but use CentOS 7 versions when they become available.

sudo yum install hdf5 hdf5-devel

To build QMCPACK:

module load mpi/openmpi-x86_64

which mpirun

Sanity check; should print something like /usr/1lib64/openmpi/bin/mpirun
export CXX=mpiCC

cd build

cmake

make —3j 8

1ls -1 bin/gmcpack

4.7.3 Installing on Mac OS X using Macports

These instructions assume a fresh installation of macports and use the gcc 10.2 compiler.
Follow the Macports install instructions at https://www.macports.org/.

¢ Install Xcode and the Xcode Command Line Tools.

* Agree to Xcode license in Terminal: sudo xcodebuild -license.

* Install MacPorts for your version of OS X.

We recommend to make sure macports is updated:

sudo port -v selfupdate # Required for macports first run, recommended in general
sudo port upgrade outdated # Recommended

Install the required tools. For thoroughness we include the current full set of python dependencies. Some of the tests
will be skipped if not all are available.

sudo port install gccll

sudo port select gcc mp—-gccll

sudo port install openmpi-gccll

sudo port select —--set mpi openmpi-gccll-fortran

sudo port install fftw-3 +gccll
sudo port install libxml2

(continues on next page)

26 Chapter 4. Obtaining, installing, and validating QMCPACK

http://repoforge.org/use
https://www.macports.org/

QMCPACK Manual

(continued from previous page)

sudo port install cmake
sudo port install boost +gccll
sudo port install hdf5 +gccll

sudo port install python310

sudo port select —--set python python310

sudo port select --set python3 python310

sudo port install py310-numpy +gccll

sudo port select —--set cython cython310

sudo port install py310-scipy +gccll

sudo port install py310-h5py +gccll

sudo port install py3l0-pandas

sudo port install py310-1lxml

sudo port install py3l0-matplotlib #For graphical plots with gmca

QMCPACK build:

cd build

cmake —-DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpiCXX
make —-j 4 # Adjust for available core count

1ls -1 bin/gmcpack

Run the deterministic tests:

ctest -R deterministic

This recipe was verified on February 28, 2022, on a Mac running OS X 11.6.4 “Big Sur”.

4.7.4 Installing on Mac OS X using Homebrew (brew)

Homebrew is a package manager for OS X that provides a convenient route to install all the QMCPACK dependencies.
The following recipe will install the latest available versions of each package. This was successfully tested under OS
X 10.15.7 “Catalina” on October 26, 2020.

1. Install Homebrew from http://brew.sh/:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

2. Install the prerequisites:

brew install gcc # 10.2.0 when tested
brew install openmpi

brew install cmake

brew install fftw

brew install boost

brew install hdf5

export OMPI_CC=gcc-10

export OMPI_CXX=g++-10

3. Configure and build QMCPACK:

cmake —-DCMAKE_C_COMPILER=/usr/local/bin/mpicc \
—-DCMAKE_CXX_COMPILER=/usr/local/bin/mpicxx

make -j 6 # Adjust for available core count

1ls -1 bin/gmcpack

4.7. Installation instructions for common workstations and supercomputers 27

http://brew.sh/

QMCPACK Manual

4. Run the deterministic tests

ctest -R deterministic

4.7.5 Installing on ALCF Theta, Cray XC40

Theta is a 9.65 petaflops system manufactured by Cray with 3,624 compute nodes. Each node features a second-
generation Intel Xeon Phi 7230 processor and 192 GB DDR4 RAM.

export CRAYPE_LINK_TYPE=dynamic

module load cmake/3.20.4

module unload cray-libsci

module load cray-hdfb5-parallel

module load gcc/8.3.0 # Make C++ 14 standard library available to the Intel compiler
export BOOST_ROOT=/soft/libraries/boost/1.64.0/intel

cmake -DCMAKE_SYSTEM_ NAME=CrayLinuxEnvironment ..

make -3 24

1ls -1 bin/gmcpack

4.7.6 Installing on ALCF Polaris
Polaris is a HPE Apollo Gen10+ based 44 petaflops system. Each node features a AMD EPYC 7543P CPU

and 4 NVIDIA A100 GPUs. A build recipe for Polaris can be found at <gmcpack_source>/config/
build_alcf_polaris_Clang.sh

4.7.7 Installing on ORNL OLCF Summit

Summit is an IBM system at the ORNL OLCF built with IBM Power System AC922 nodes. They have two IBM
Power 9 processors and six NVIDIA Volta V100 accelerators.

Building QMCPACK

Note that these build instructions are preliminary as the software environment is subject to change. As of December
2018, the IBM XL compiler does not support C++14, so we currently use the gnu compiler.

For ease of reproducibility we provide build scripts for Summit.

cd gmcpack
./config/build_olcf_summit.sh
ls bin

Building Quantum ESPRESSO

We provide a build script for the v6.4.1 release of Quantum ESPRESSO (QE). The following can be used to build a
CPU version of QE on Summit, placing the script in the external_codes/quantum_espresso directory.

cd external_codes/quantum_espresso
./build_ge_olcf_summit.sh

Note that performance is not yet optimized although vendor libraries are used. Alternatively, the wavefunction files
can be generated on another system and the converted HDF5 files copied over.

28 Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

4.7.8 Installing on NERSC Cori, Haswell Partition, Cray XC40

Cori is a Cray XC40 that includes 16-core Intel “Haswell” nodes installed at NERSC. In the following example, the
source code is cloned in SHOME/gmc/git_QMCPACK and QMCPACK is built in the scratch space.

mkdir $HOME/gmc

mkdir SHOME/gmc/git_QMCPACK

cd $HOME/gmc_git_QMCPACK

git clone https://github.com/QMCPACK/gmcpack.git

cd gmcpack

git checkout v3.7.0 # Edit for desired version

export CRAYPE_LINK_TYPE=dynamic

module unload cray-libsci

module load boost/1.70.0

module load cray-hdf5-parallel

module load cmake/3.14.4

module load gcc/8.3.0 # Make C++ 14 standard library available to the Intel compiler
cd $SCRATCH

mkdir build_cori_hsw

cd build_cori_hsw

cmake —-DQMC_SYMLINK_TEST_FILES=0 -DCMAKE_SYSTEM NAME=CrayLinuxEnvironment S$HOME/gmc/
<+git_QMCPACK/gmcpack/

nice make -3j 8

ls -1 bin/gmcpack

When the preceding was tested on June 15, 2020, the following module and software versions were present:

build_cori_hsw> module list
Currently Loaded Modulefiles:

1) modules/3.2.11.4 13) xpmem/2.2.20-7.0.1.1_4.8__
—g0475745.ari
2) nsg/1.2.0 14) job/2.2.4-7.0.1.1_3.34___
—g36b56f4.ari
3) altd/2.0 15) dvs/2.12_2.2.156-7.0.1.1_8.6___
—~gb5aab709%e
4) darshan/3.1.7 16) alps/6.6.57-7.0.1.1_5.10___
—~glb735148.ari
5) intel/19.0.3.199 17) rca/2.2.20-7.0.1.1_4.42___
—g8e3fbbb.ari
6) craype-network-aries 18) atp/2.1.3
7) craype/2.6.2 19) PrgEnv-intel/6.0.5
8) udreg/2.3.2-7.0.1.1_3.29_ g8175d3d.ari 20) craype-haswell
9) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari 21) cray-mpich/7.7.10
10) pmi/5.0.14 22) craype-hugepages2M
11) dmapp/7.1.1-7.0.1.1_4.43_ g38cfl34.ari 23) gcc/8.3.0

)

12) gni-headers/5.0.12.0-7.0.1.1_6.27__g3bl768f.ari 24) cmake/3.14.4

The following slurm job file can be used to run the tests:

#!/bin/bash

#SBATCH --gos=debug

#SBATCH —-time=00:10:00

#SBATCH —--nodes=1

#SBATCH --tasks-per—-node=32
#SBATCH —-constraint=haswell
echo —-—- Start “date’

echo -—-—- Working directory: "pwd’

(continues on next page)

4.7. Installation instructions for common workstations and supercomputers 29

QMCPACK Manual

(continued from previous page)

ctest -VV -R deterministic
echo --- End "date’

4.7.9 Installing on NERSC Cori, Xeon Phi KNL partition, Cray XC40

Cori is a Cray XC40 that includes Intel Xeon Phi Knight’s Landing (KNL) nodes. The following build
recipe ensures that the code generation is appropriate for the KNL nodes. The source is assumed to be in
$HOME/qmc/git_ QMCPACK/gmcpack as per the Haswell example.

export CRAYPE_LINK_TYPE=dynamic

module swap craype-haswell craype-mic-knl # Only difference between Haswell and KNL
—recipes

module unload cray-libsci

module load boost/1.70.0

module load cray-hdf5-parallel

module load cmake/3.14.4

module load gcc/8.3.0 # Make C++ 14 standard library available to the Intel compiler
cd $SCRATCH

mkdir build_cori_knl

cd build_cori_knl

cmake —-DQMC_SYMLINK_TEST_FILES=0 -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment S$HOME/gmc/
—+git_QMCPACK/gmcpack/

nice make -3 8

1ls -1 bin/gmcpack

When the preceding was tested on June 15, 2020, the following module and software versions were present:

build_cori_knl> module list
Currently Loaded Modulefiles:

1) modules/3.2.11.4 13) xpmem/2.2.20-7.0.1.1_4.8__
—~g0475745.ari

2) nsg/1.2.0 14) job/2.2.4-7.0.1.1_3.34__
—g36b56fd.ari

3) altd/2.0 15) dvs/2.12_2.2.156-7.0.1.1_8.
—6__gbaab709%e

4) darshan/3.1.7 16) alps/6.6.57-7.0.1.1_5.10__
—glb735148.ari

5) intel/19.0.3.199 17) rca/2.2.20-7.0.1.1_4.42___
—~g8e3fbbb.ari

6) craype-network-aries 18) atp/2.1.3

7) craype/2.6.2 19) PrgEnv-intel/6.0.5

8) udreg/2.3.2-7.0.1.1_3.29_ g8175d3d.ari 20) craype-mic-knl

9) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari 21) cray-mpich/7.7.10

10) pmi/5.0.14 22) craype—hugepages2M

11) dmapp/7.1.1-7.0.1.1_4.43_ g38cfl34.ari 23) gcc/8.3.0

12) gni-headers/5.0.12.0-7.0.1.1_6.27__g3bl768f.ari 24) cmake/3.14.4

30 Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

4.7.10 Installing on systems with ARMv8-based processors

The following build recipe was verified using the ‘Arm Compiler for HPC’ on the ANL JLSE Comanche system with
Cavium ThunderX?2 processors on November 6, 2018.

load armclang compiler

module load Generic-AArch64/RHEL/7/arm-hpc-compiler/18.4

load Arm performance libraries

module load ThunderX2CN99/RHEL/7/arm-hpc-compiler-18.4/armpl/18.4.0

define path to pre-installed packages

export HDF5_ROOT=</path/to/hdf5/install/>

export BOOST_ROOT=</path/to/boost/install> # header-only, no need to build

Then using the following command:

mkdir build_armclang

cd build_armclang

cmake —-DCMAKE_C_COMPILER=armclang -DCMAKE_CXX_COMPILER=armclang++ -DQMC_MPI=0 \
-DLAPACK_LIBRARIES="-L$ARMPL_DIR/lib -larmpl_mp" \
~-DFFTW_INCLUDE_DIR="$ARMPL_DIR/include" \
—-DFFTW_LIBRARIES="$ARMPL_DIR/lib/libarmpl_mp.a" \

make -j 56

Note that armclang is recognized as an ‘unknown’ compiler by CMake v3.13* and below. In this case, we need to
force it as clang to apply necessary flags. To do so, pass the following additionals option to CMake:

-DCMAKE_C_COMPILER_ID=Clang -DCMAKE_CXX_COMPILER_ID=Clang \
-DCMAKE_CXX_COMPILER_VERSION=5.0 —-DCMAKE_CXX_STANDARD_COMPUTED_DEFAULT=98 \

4.7.11 Installing on Windows

Install the Windows Subsystem for Linux and Bash on Windows. Open a bash shell and follow the install directions
for Ubuntu in /nstalling on Ubuntu Linux or other apt-get—based distributions.

4.8 Installing via Spack

Spack is a package manager for scientific software. One of the primary goals of Spack is to reduce the barrier
for users to install scientific software. Spack is intended to work on everything from laptop computers to high-end
supercomputers. More information about Spack can be found at https://spack.readthedocs.io/en/latest. The major
advantage of installation with Spack is that all dependencies are automatically built, potentially including all the
compilers and libraries, and different versions of QMCPACK can easily coexist with each other. The QMCPACK
Spack package also knows how to automatically build and patch QE. In principle, QMCPACK can be installed with a
single Spack command.

4.8. Installing via Spack 31

https://spack.readthedocs.io/en/latest

QMCPACK Manual

4.8.1 Known limitations

The QMCPACK Spack package inherits the limitations of the underlying Spack infrastructure and its dependencies.
The main limitation is that installation can fail when building a dependency such as HDF5, MPICH, etc. For spack
install gmcpack to succeed, it is very important to leverage preinstalled packages on your computer or su-
percomputer. The other frequently encountered challenge is that the compiler configuration is nonintuitive. This is
especially the case with the Intel compiler. If you encounter any difficulties, we recommend testing the Spack compiler
configuration on a simpler package, e.g. HDFS.

Here are some additional limitations that new users should be aware of:
* CUDA support in Spack still has some limitations. It will not catch the most recent compiler-CUDA conflicts.

* The Intel compiler must find a recent and compatible GCC compiler in its path or one must be explicitly set
with the ~gcc—name and ~gxx-name flags in your compilers.yaml.

¢ Cross-compilation is non-intuitive. If the host OS and target OS are the same, but only the processors differ,
you will just need to add the target=<target CPU>. However, if the host OS is different from the target
OS and you will need to add os=<target 0S>. If both the OS and CPU differ between host and target, you
will need to set the arch=<platform string>. For more information, see: https://spack.readthedocs.io/
en/latest/basic_usage.html?highlight=cross%20compilation#architecture-specifiers

4.8.2 Setting up the Spack environment

Begin by cloning Spack from GitHub and configuring your shell as described at https://spack.readthedocs.io/en/latest/
getting_started.html.

The goal of the next several steps is to set up the Spack environment for building. First, we highly recommend
limiting the number of build jobs to a reasonable value for your machine. This can be accomplished by modifying
your ~/ .spack/config.yaml file as follows:

config:
build_jobs: 16

Make sure any existing compilers are properly detected. For many architectures, compilers are properly detected with
no additional effort.

your—-laptop> spack compilers

==> Available compilers

—— gcc sierra-x86_64 ———————— e m

gcc@7.2.0 gcc@6.4.0 gcc@5.5.0 gcc@4.9.4 gcc@4.8.5 gcc@4.7.4 gcc@4.6.4

However, if your compiler is not automatically detected, it is straightforward to add one:

your—-laptop> spack compiler add <path-to-compiler>

The Intel (“classic”) compiler and other commercial compilers may require extra environment variables to work prop-
erly. If you have an module environment set-up by your system administrators, it is recommended that you set the
module name in ~/ . spack/linux/compilers.yaml. Here is an example for the Intel compiler:

- compiler:
environment: {}
extra_rpaths: []
flags: {}
modules:
- intel/18.0.3
operating_system: ubuntuléd.04

(continues on next page)

32 Chapter 4. Obtaining, installing, and validating QMCPACK

https://spack.readthedocs.io/en/latest/basic_usage.html?highlight=cross%20compilation#architecture-specifiers
https://spack.readthedocs.io/en/latest/basic_usage.html?highlight=cross%20compilation#architecture-specifiers
https://spack.readthedocs.io/en/latest/getting_started.html
https://spack.readthedocs.io/en/latest/getting_started.html

QMCPACK Manual

(continued from previous page)

paths:
cc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1linux/bin/
—intel6d/icc
cxx: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1inux/bin/
—intel64/icpc
£77: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1inux/bin/
—intel6d/ifort
fc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1inux/bin/
—intel6d/ifort
spec: intel@18.0.3
target: x86_64

If a module is not available, you will have to set-up the environment variables manually:

- compiler:
environment:
set:
INTEL_LICENSE_FILE: server@national-lab.doe.gov
extra_rpaths:
['/soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1linux/compiler/
—lib/intel64d’,
'/soft/apps/packages/gcc/gcc—6.2.0/1ib64 "]
flags:
cflags: —-gcc—-name=/soft/apps/packages/gcc/gcc—6.2.0/bin/gcc
fflags: —-gcc-name=/soft/apps/packages/gcc/gcc—6.2.0/bin/gcc
cxxflags: —gxx—-name=/soft/apps/packages/gcc/gcc-6.2.0/bin/g++
modules: []
operating_system: ubuntuld.04
paths:
cc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1linux/bin/
—intel6d/icc
cxx: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1inux/bin/
—intel64/icpc
£77: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1inux/bin/
—~intelo6d/ifort
fc: /soft/com/packages/intel/18/u3/compilers_and_libraries_2018.3.222/1inux/bin/
—intel6d/ifort
spec: intel@18.0.3
target: x86_64

This last step is the most troublesome. Pre-installed packages are not automatically detected. If vendor optimized
libraries are already installed, you will need to manually add them to your ~/.spack/packages.yaml. For
example, this works on Mac OS X for the Intel MKL package.

your—-laptop> cat \~/.spack/packages.yaml
packages:
intel-mkl:
paths:
intel-mk1@2018.0.128: /opt/intel/compilers_and_libraries_2018.0.104/mac/mkl
buildable: False

Some trial-and-error might be involved to set the directories correctly. If you do not include enough of the tree path,
Spack will not be able to register the package in its database. More information about system packages can be found
at http://spack.readthedocs.io/en/latest/getting_started.html#system-packages.

Beginning with QMCPACK v3.9.0, Python 3.x is required. However, installing Python with a compiler besides GCC
is tricky. We recommend leveraging your local Python installation by adding an entry in ~/ . spack/packages.

4.8. Installing via Spack 33

http://spack.readthedocs.io/en/latest/getting_started.html#system-packages

QMCPACK Manual

yaml:

packages:
python:
modules:
python@3.7.4: anaconda3/2019.10

Or if a module is not available

packages:
python:
paths:
python@3.7.4: /nfs/gce/software/custom/linux-ubuntul8.04-x86_64/anaconda3/
—2019.10/bin/python
buildable: False

4.8.3 Building QMCPACK

The QMCPACK Spack package has a number of variants to support different compile time options and different
versions of the application. A full list can be displayed by typing:

your laptop> spack info gmcpack
CMakePackage: amcpack

Description:
QOMCPACK, is a modern high-performance open-source Quantum Monte Carlo
(OMC) simulation code.

Homepage: http://www.gmcpack.org/

Tags:
ecp ecp-apps

Preferred version:
3.11.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.11.0

Safe versions:

develop [git] https://github.com/QMCPACK/gmcpack.git
3.11.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.11.0
3.10.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.10.0
3.9.2 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.9.2
3.9.1 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.9.1
3.9.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.9.0
3.8.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.8.0
3.7.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.7.0
3.6.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.6.0
3.5.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.5.0
3.4.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.4.0
3.3.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.3.0
3.2.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.2.0
3.1.1 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.1.1
3.1.0 [git] https://github.com/QMCPACK/gmcpack.git at tag v3.1.0
Variants:
Name [Default] Allowed values Description

(continues on next page)

34 Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

(continued from previous page)

afgmc [off] on, off Install with AFQMC support.
NOTE that if used in
combination with CUDA, only
AFQMC will have CUDA.

build_type [Release] Debug, Release, The build type to build
RelWithDebInfo
complex [off] on, off Build the complex (general
twist/k-point) version
cuda [off] on, off Build with CUDA
cuda_arch [none] none, 53, 20, 62, CUDA architecture

60, 61, 50, 75, 70,
72, 32, 52, 30, 35

da [off] on, off Install with support for basic
data analysis tools

gui [off] on, off Install with Matplotlib (long
installation time)

mixed [off] on, off Build the mixed precision

(mixture of single and double
precision) version for gpu and

cpu

mpi [on] on, off Build with MPI support

phdf5 [on] on, off Build with parallel collective
I/0

ppconvert [off] on, off Install with pseudopotential
converter.

ge [on] on, off Install with patched Quantum
Espresso 6.4.0

timers [off] on, off Build with support for timers

Installation Phases:
cmake build install

Build Dependencies:
blas boost cmake cuda fftw-api hdf5 lapack 1libxml2 mpi python

Link Dependencies:
blas boost cuda fftw-api hdf5 lapack 1libxml2 mpi python

Run Dependencies:
py-matplotlib py-numpy gquantum-espresso

Virtual Packages:
None

For example, to install the complex-valued version of QMCPACK in mixed-precision use:

’yourflaptop> spack install gmcpack+mixed+complex%gcc@7.2.0 "“intel-mkl

where

%gcc@7.2.0

specifies the compiler version to be used and

~“intel-mkl

4.8. Installing via Spack 35

QMCPACK Manual

specifies that the Intel MKL should be used as the BLAS and LAPACK provider. The ~ symbol indicates the the
package to the right of the symbol should be used to fulfill the dependency needed by the installation.

It is also possible to run the QMCPACK regression tests as part of the installation process, for example:

your-laptop> spack install —--test=root gmcpack+mixed+complex%gcc@7.2.0 “intel-mkl

will run the unit and deterministic tests. The current behavior of the QMCPACK Spack package is to complete the
install as long as all the unit tests pass. If the deterministic tests fail, a warning is issued at the command prompt.

For CUDA, you will need to specify and extra cuda_arch parameter otherwise, it will default to cuda_arch=61.

your—laptop> spack install gmcpack+cuda%$intel@18.0.3 cuda_arch=61 "“intel-mkl

Due to limitations in the Spack CUDA package, if your compiler and CUDA combination conflict, you will need to
set a specific version of CUDA that is compatible with your compiler on the command line. For example,

your—laptop> spack install gmcpack+cuda%$intel@18.0.3 cuda_arch=61 "“cuda@l10.0.130 *
—intel-mkl

4.8.4 Loading QMCPACK into your environment

If you already have modules set-up in your environment, the Spack modules will be detected automatically. Otherwise,
Spack will not automatically find the additional packages. A few additional steps are needed. Please see the main
Spack documentation for additional details: https://spack.readthedocs.io/en/latest/module_file_support.html.

4.8.5 Dependencies that need to be compiled with GCC

Failing to compile a QMCPACK dependency is the most common reason that a Spack build fails. We recommend that
you compile the following dependencies with GCC:

For MPI, using MPICH as the provider, try:

A

your—laptop> spack install gmcpack%$intel@18.0.3 "“boost%gcc “pkgconf%gcc “perlS$gcc
—libpciaccess%gcc “cmake$gcc “findutils%$gcc "méd%gcc

For serial,

your—laptop> spack install gmcpack~mpi%intel@18.0.3 “boost%gcc “pkgconf%$gcc “perl%gcc,,
—"~cmake%gcc

4.8.6 Installing QMCPACK with Spack on Linux

Spack works robustly on the standard flavors of Linux (Ubuntu, CentOS, Ubuntu, etc.) using GCC, Clang, NVHPC,
and Intel compilers.

36 Chapter 4. Obtaining, installing, and validating QMCPACK

https://spack.readthedocs.io/en/latest/module_file_support.html

QMCPACK Manual

4.8.7 Installing QMCPACK with Spack on Mac OS X

Spack works on Mac OS X but requires installation of a few packages using Homebrew. You will need to install at
minimum the GCC compilers, CMake, and pkg-config. The Intel compiler for Mac on OS X is not well supported by
Spack packages and will most likely lead to a compile time failure in one of QMCPACK’s dependencies.

4.8.8 Installing QMCPACK with Spack on Cray Supercomputers
Spack now works with the Cray environment. To leverage the installed Cray environment, both a compilers.
yaml and packages.yaml file should be provided by the supercomputing facility. Additionally, Spack packages

compiled by the facility can be reused by chaining Spack installations https://spack.readthedocs.io/en/latest/chain.
html.

4.8.9 Installing Quantum-ESPRESSO with Spack

More information about the QE Spack package can be obtained directly from Spack

spack info quantum-espresso

There are many variants available for QE, most, but not all, are compatible with QMCPACK patch. Here is a mini-
malistic example of the Spack installation command that needs to be invoked:

’your—laptop> spack install gquantum-espresso+gmcpack~patch@6.7%gcc hdfb=parallel

The ~ decorator means deactivate the patch variant. This refers not to the QMCPACK patch, but to the upstream
patching that is present for some versions of QE. These upstream QE patches fix specific critical autoconf/configure
fixes. Unfortunately, some of these QE upstream patches are incompatible with the QMCPACK patch. Note that the
Spack package will prevent you from installing incompatible variants and will emit an error message explaining the
nature of the incompatibility.

A serial (no MPI) installation is also available, but the Spack installation command is non-intuitive for Spack new-
comers:

your—-laptop> spack install gquantum-espresso+gmcpack~patch~mpi~scalapack@6.7%gcc,,
—hdfb5=serial

QE Spack package is well tested with GCC and Intel compilers, but will not work with the NVHPC compiler or in a
cross-compile environment.

4.8.10 Reporting Bugs

Bugs with the QMCPACK Spack package should be filed at the main GitHub Spack repo https://github.com/spack/
spack/issues.

In the GitHub issue, include @naromero77 to get the attention of our developer.

4.8. Installing via Spack 37

https://spack.readthedocs.io/en/latest/chain.html
https://spack.readthedocs.io/en/latest/chain.html
https://github.com/spack/spack/issues
https://github.com/spack/spack/issues

QMCPACK Manual

4.9 Testing and validation of QMCPACK

We strongly encourage running the included tests each time QMCPACK is built. A range of unit and integration
tests ensure that the code behaves as expected and that results are consistent with known-good mean-field, quantum
chemical, and historical QMC results.

The tests include the following:
* Unit tests: to check fundamental behavior. These should always pass.

* Stochastic integration tests: to check computed results from the Monte Carlo methods. These might fail statisti-
cally, but rarely because of the use of three sigma level statistics. These tests are further split into “short” tests,
which have just sufficient length to have valid statistics, and “long” tests, to check behavior to higher statistical
accuracy.

» Converter tests: to check conversion of trial wavefunctions from codes such as QE and GAMESS to QMC-
PACK’s formats. These should always pass.

* Workflow tests: in the case of QE, we test the entire cycle of DFT calculation, trial wavefunction conversion,
and a subsequent VMC run.

 Performance: to help performance monitoring. Only the timing of these runs is relevant.

The test types are differentiated by prefixes in their names, for example,
short-LiH_dimer_ae_vmc_hf_noj_16-1 indicates a short VMC test for the LiH dime.

QMCPACK also includes tests for developmental features and features that are unsupported on certain platforms. To
indicate these, tests that are unstable are labeled with the CTest label “unstable.” For example, they are unreliable,
unsupported, or known to fail from partial implementation or bugs.

When installing QMCPACK you should run at least the unit tests:

ctest -R unit

These tests take only a few seconds to run. All should pass. A failure here could indicate a major problem with the
installation.

A wider range of deterministic integration tests are being developed. The goal is to test much more of QMCPACK
than the unit tests do and to do so in a manner that is reproducible across platforms. All of these should eventually
pass 100% reliably and quickly. At present, some fail on some platforms and for certain build types.

ctest -R deterministic -LE unstable

If time allows, the “short” stochastic tests should also be run. The short tests take a few minutes each on a 16-core
machine—about 1 hour total depending on the platform. You can run these tests using the following command in the
build directory:

ctest -R short -LE unstable # Run the tests with "short" in their name.
Exclude any known unstable tests.

The output should be similar to the following:

Test project build_gcc
Start 1: short-LiH_dimer_ae-vmc_hf noj-16-1

1/44 Test #1: short-LiH_dimer_ae-vmc_hf_noj-16-1 Passed 11.20 sec
Start 2: short-LiH_dimer_ae-vmc_hf noj-16-1-kinetic

2/44 Test #2: short-LiH_dimer_ae-vmc_hf_noj-16-1-kinetic Passed 0.13 sec

42/44 Test #42: short-monoO_lxlxl pp-vmc_sdj-1-16 Passed 10.02 sec

(continues on next page)

38 Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

(continued from previous page)

Start 43: short-monoO_1x1lxl_pp-vmc_sdj-1-16-totenergy

43/44 Test #43: short-monoO_1lxlxl_pp-vmc_sdj-1-16-totenergy Passed 0.08 sec
Start 44: short-monoO_1lxlxl_ pp-vmc_sdj-1-1l6-samples
44/44 Test #44: short-monoO_lxlxl pp-vmc_sdj-1-16-samples Passed 0.08 sec

100% tests passed, 0 tests failed out of 44

Total Test time (real) = 167.14 sec

Note that the number of tests run varies between the standard, complex, and GPU compilations. These tests should
pass with three sigma reliability. That is, they should nearly always pass, and when rerunning a failed test it should
usually pass. Overly frequent failures suggest a problem that should be addressed before any scientific production.

The full set of tests consist of significantly longer versions of the short tests, as well as tests of the conversion utilities.
The runs require several hours each for improved statistics and a much more stringent test of the code. To run all the
tests, simply run CTest in the build directory:

ctest -LE unstable # Run all the stable tests. This will take several hours. ‘

You can also run verbose tests, which direct the QMCPACK output to the standard output:

ctest -V -R short # Verbose short tests ‘

The test system includes specific tests for the complex version of the code.

The input data files for the tests are located in the test s directory. The system-level test directories are grouped into
heg, molecules, and solids, with particular physical systems under each (for example molecules/H4_ae'
). Under each physical system directory there might be tests for multiple QMC methods or parameter variations. The
numerical comparisons and test definitions are in the CMakeLists.txt file in each physical system directory.

If all the QMC tests fail it is likely that the appropriate mpiexec (or mpirun, aprun, srun, jsrun) is not being called or
found. If the QMC runs appear to work but all the other tests fail, it is possible that Python is not working on your
system. We suggest checking some of the test console outputinbuild/Testing/Temporary/LastTest.log
or the output files under build/tests/.

Note that because most of the tests are very small, consisting of only a few electrons, the performance is not repre-
sentative of larger calculations. For example, although the calculations might fit in cache, there will be essentially no
vectorization because of the small electron counts. These tests should therefore not be used for any benchmarking
or performance analysis. Example runs that can be used for testing performance are described in Performance tests.

4.9.1 Deterministic and unit tests

QMCPACK has a set of deterministic tests, predominantly unit tests. All of these tests can be run with the following
command (in the build directory):

ctest -R deterministic -LE unstable

These tests should always pass. Failure could indicate a major problem with the compiler, compiler settings, or a
linked library that would give incorrect results.

The output should look similar to the following:

! The suffix “ae” is short for “all-electron,” and “pp” is short for “pseudopotential.”

4.9. Testing and validation of QMCPACK 39

QMCPACK Manual

Test project gmcpack/build
Start 1: unit_test_numerics

1/11 Test #1: unit_test_numericsvo... Passed 0.06 sec
Start 2: unit_test_utilities
2/11 Test #2: unit_test_utilitiesovv... Passed 0.02 sec

Start 3: unit_test_einspline

10/11 Test #10: unit_test_hamiltonian Passed 1.88 sec

Start 11: unit_test_drivers
11/11 Test #11: unit_test_driversoee.... Passed 0.01 sec

100% tests passed, 0 tests failed out of 11

Label Time Summary:
unit = 2.20 sec

Total Test time (real) = 2.31 sec

Individual unit test executables can be found in build/tests/bin. The source for the unit tests is located in the
tests directory under each directory in src (e.g. src/QMCWavefunctions/tests).

See Unit Testing for more details about unit tests.

4.9.2 Integration tests with Quantum ESPRESSO

As described in Installing Quantum ESPRESSO and pw2gmcpack, it is possible to test entire workflows of trial
wavefunction generation, conversion, and eventual QMC calculation. A patched QE must be installed so that the
pw2gmcpack converter is available.

By adding -D QE_BIN=your_QF_binary_path in the CMake command line when building your QMCPACK,
tests named with the “qe-" prefix will be included in the test set of your build. If CMake finds pw2qmcpack.x and pw.x
in the same location on the PATH, these tests will also be activated. You can test the whole pw > pw2gmcpack >
amcpack workflow by

ctest -R ge

This provides a very solid test of the entire QMC toolchain for plane wave—generated wavefunctions.

4.9.3 Performance tests

Performance tests representative of real research runs are included in the tests/performance directory. They can be used
for benchmarking, comparing machine performance, or assessing optimizations. This is in contrast to the majority of
the conventional integration tests in which the particle counts are too small to be representative. Care is still needed to
remove initialization, I/O, and compute a representative performance measure.

The CTest integration is sufficient to run the benchmarks and measure relative performance from version to version
of QMCPACK and to assess proposed code changes. Performance tests are prefixed with “performance.” To obtain
the highest performance on a particular platform, you must run the benchmarks in a standalone manner and tune
thread counts, placement, walker count (etc.). This is essential to fairly compare different machines. Check with the
developers if you are unsure of what is a fair change.

For the largest problem sizes, the initialization of spline orbitals might take a large portion of overall runtime. When
QMCPACK is run at scale, the initialization is fast because it is fully parallelized. However, the performance tests
usually run on a single node. Consider running QMCPACK once with save_coefs="yes" XML input tag added

40 Chapter 4. Obtaining, installing, and validating QMCPACK

QMCPACK Manual

to the line of ‘determinantset’ to save the converted spline coefficients to the disk and load them for later runs in the
same folder. See 3D B-splines orbitals for more information.

The delayed update algorithm in Single determinant wavefunctions significantly changes the performance character-
istics of QMCPACK. A parameter scan of the maximal number of delays specific to every architecture and problem
size is required to achieve the best performance.

NiO performance tests

Follow the instructions in tests/performance/NiO/README to enable and run the NiO tests.

The NiO tests are for bulk supercells of varying size. The QMC runs consist of short blocks of (1) VMC without
drift (2) VMC with drift term included, and (3) DMC with constant population. The tests use spline wavefunc-
tions that must be downloaded as described in the README file because of their large size. You will need to set
-DQMC_DATA=<full path to your data folder> when running CMake as described in the README
file.

Two sets of wavefunction are tested: spline orbitals with one- and two-body Jastrow functions and a more complex
form with an additional three-body Jastrow function. The Jastrows are the same for each run and are not reoptimized,
as might be done for research purposes. Runs in the hundreds of electrons up to low thousands of electrons are
representative of research runs performed in 2017. The largest runs target future machines and require very large
memory.

All system sizes in the table below will be tested as long as the corresponding h5 files are avail-
able in the data folder. You may limit the maximal system size of tests by an atom count via
-DQMC_PERFORMANCE_NIO_MAX_ATOMS=<number of atoms>. Only tests with their atom counts below
and equal to <number of atoms> are added to the performance tests.

Table 4.1: System sizes and names for NiO performance tests. GPU
performance tests are named similarly but have different walker counts.

Performance test name Historical name | Atoms | Electrons | Electrons/spin
performance-NiO-cpu-a32-e384 S8 32 384 192
performance-NiO-cpu-a64-¢768 S16 64 768 384
performance-NiO-cpu-al28-e1536 S32 128 1536 768
performance-NiO-cpu-a256-e3072 S64 256 3072 1536
performance-NiO-cpu-a512-e6144 S128 512 6144 3072
performance-NiO-cpu-a1024-e12288 | S256 1024 12288 6144

4.9.4 Troubleshooting tests

CTest reports briefly pass or fail of tests in printout and also collects all the standard outputs to help investigating how
tests fail. If the CTest execution is completed, look at Testing/Temporary/LastTest.log. If you manually
stop the testing (ctrl+c), look at Testing/Temporary/LastTest.log.tmp. You can locate the failing tests by
searching for the key word “Fail.”

4.9. Testing and validation of QMCPACK 41

QMCPACK Manual

4.9.5 Slow testing with OpenMPI

OpenMPI has a default binding policy that makes all the threads run on a single core during testing when there are two
or fewer MPI ranks. This significantly increases testing time. If you are authorized to change the default setting, you
can just add “hwloc_base_binding_policy=none” in /etc/openmpi/openmpi-mca-params.conf.

4.10 Automated testing of QMICPACK

The QMCPACK developers run automatic tests of QMCPACK on several different computer systems, many on a con-
tinuous basis. See the reports at https://cdash.qmcpack.org/CDash/index.php?project=QMCPACK. The combinations
that are currently tested can be seen on CDash and are also listed in https://github.com/QMCPACK/qmcpack/blob/
develop/README.md. They include GCC, Clang, Intel, and PGI compilers in combinations with various library
versions and different MPI implementations. NVIDIA GPUs are also tested.

4.11 Building ppconvert, a pseudopotential format converter

QMCPACK includes a utility—ppconvert—to convert between different pseudopotential formats. Examples include
effective core potential formats (in Gaussians), the UPF format used by QE, and the XML format used by QMCPACK
itself. The utility also enables the atomic orbitals to be recomputed via a numerical density functional calculation if
they need to be reconstructed for use in an electronic structure calculation. Use of ppconvert is an expert feature and
discouraged for casual use: a poor choice of orbitals for the creation of projectors in UPF can introduce severe errors
and inaccuracies.

4.12 Installing Quantum ESPRESSO and pw2qgmcpack

For trial wavefunctions obtained in a plane-wave basis, we mainly support QE. Note that ABINIT and QBox were
supported historically and could be reactivated.

QE stores wavefunctions in a nonstandard internal “save” format. To convert these to a conventional HDF5 format file
we have developed a converter—pw2qmcpack—which is an add-on to the QE distribution.

4.12.1 Quantum ESPRESSO (<=6.8)

To simplify the process of patching QE we have developed a script that will automatically download and patch the
source code. The patches are specific to each version. For example, to download and patch QE v6.3:

cd external_codes/quantum_espresso
./download_and_patch_qge6.3.sh

After running the patch, you must configure QE with the HDF5 capability enabled in either way:

* If your system already has HDFS installed with Fortran, use the -{ }-with-hdf5 configuration option.

cd ge-6.3
./configure --with-hdf5=/opt/local # Specify HDF5 base directory

Check the end of the configure output if HDFS5 libraries are found properly. If not, either install a complete
library or use the other scheme. If using a parallel HDF5 library, be sure to use the same MPI with QE as
used to build the parallel HDFS library.

42 Chapter 4. Obtaining, installing, and validating QMCPACK

https://cdash.qmcpack.org/CDash/index.php?project=QMCPACK
https://github.com/QMCPACK/qmcpack/blob/develop/README.md
https://github.com/QMCPACK/qmcpack/blob/develop/README.md

QMCPACK Manual

Log Out

QMCPACK

s}

Dashboard

Calendar Previous Current

No file changed as of Thursday, January 28 2016 - 20:00 EST
2 hours ago: 17 warnings introduced on GCC-Complex-Release
2 hours ago: 1 test failed on GCC-Release
2 hours ago: 17 warnings introduced on GCC-Release
5 hours ago: 1 test failed on GCC-CUDA-Release
5 hours ago: 17 warnings introduced on GCC-Release

Site

titan.ccs.ornl.gov
titan.ccs.ornl.gov
titan.ccs.ornl.gov
80s.ccs.ornl.gov
80s.ccs.ornl.gov
oxygen.ornl.gov
oxygen.ornl.gov
oxygen.ornl.gov
oxygen.ornl.gov
oxygen.ornl.gov
oxygen.ornl.gov
oxygen.ornl.gov
oxygen.ornl.gov

A GCC-Complex-Release A3
O GCC-Release WA

A GCC-CUDA-Release “« /AT
A Intel-Complex-Release

A intel-Release 3

D Intel2015-CUDA-Release +
O GCC-CUDA-Release 1

A Intel2015-Complex-Release
A Intel2016-Complex-Release -
A GCC-Complex-Release @

D Intel2015-Release =

O Intel2016-Release =

A GCC-Release [

Settings

r Kitware ° CDash 2.2.2 @ Kitware | Report problems | 0.021s

See full feed

Build Time

3 hours ago
3 hours ago
5 hours ago
10 hours ago
10 hours ago
21 hours ago
22 hours ago
22 hours ago
22 hours ago
22 hours ago
22 hours ago
22 hours ago

22 hours ago

Fig. 4.1: Example test results for QMCPACK showing data for a workstation (Intel, GCC, both CPU and GPU builds)
and for two ORNL supercomputers. In this example, four errors were found. This dashboard is accessible at https:

/ledash.gmcpack.org

4.12. Installing Quantum ESPRESSO and pw2gmcpack

43

https://cdash.qmcpack.org
https://cdash.qmcpack.org

QMCPACK Manual

Currently, HDF5 support in QE itself is preliminary. To enable use of pw2qmcpack but use the old non-
HDFS5 1/0 within QE, replace —D___HDF'5 with {-D___ HDF5_C} in make.inc.

e If your system has HDF5 with C only, manually edit make.inc by adding -D__HDF5_C and
-DH5_USE_16_APT in DFLAGS and provide include and library path in IFLAGS and HDF5_LIB.

The complete process is described in external_codes/quantum_espresso/README.

4.12.2 Quantum ESPRESSO (6.7, 6.8 and 7.0)

After patching the QE source code like above, users may use CMake instead of configure to build QE with
pw2qgmcpack. Options needed to enable pw2qmcpack have been set ON by default. A HDFS5 library installation
with Fortran support is required.

mkdir build_mpi

cd build_mpi

cmake -DCMAKE_C_COMPILER=mpicc -DCMAKE_Fortran_ COMPILER=mpif90 ..
make —-3J 16

4.12.3 Quantum ESPRESSO (>7.0)

Due to incorporation of pw2qmcpack as a plugin, there is no longer any need to patch QE. Users may use upstream
QE and activate the plugin by specifying -DQE_ENABLE_PLUGINS=pw2gmcpack at the CMake configure step.
Full QE CMake documentation can be found at https://gitlab.com/QEF/q-e/-/wikis/Developers/CMake-build-system .

mkdir build_mpi

cd build_mpi

cmake -DCMAKE_C_COMPILER=mpicc -DCMAKE_Fortran_COMPILER=mpif90 -DQE_ENABLE_
—PLUGINS=pw2gmcpack ..

make -3 16

4.12.4 Testing QE after installation

Testing the QE to QMCPACK workflow after building QE and QMCPACK is highly recommended. See Integration
tests with Quantum ESPRESSO and the testing section for more details.

4.13 How to build the fastest executable version of QMICPACK

To build the fastest version of QMCPACK we recommend the following:

» Use the latest C++ compilers available for your system. Substantial gains have been made optimizing C++ in
recent years.

¢ Use a vendor-optimized BLAS library such as Intel MKL and AMD AOCL. Although QMC does not make
extensive use of linear algebra, it is used in the VMC wavefunction optimizer to apply the orbital coefficients in
local basis calculations and in the Slater determinant update.

» Use a vector math library such as Intel VML. For periodic calculations, the calculation of the structure factor
and Ewald potential benefit from vectorized evaluation of sin and cos. Currently we only autodetect Intel VML,
as provided with MKL, but support for MASSV and AMD LibM is included via #defines. See, for example,
src/Numerics/e2iphi.h. For large supercells, this optimization can gain 10% in performance.

44 Chapter 4. Obtaining, installing, and validating QMCPACK

https://gitlab.com/QEF/q-e/-/wikis/Developers/CMake-build-system

QMCPACK Manual

Note that greater speedups of QMC calculations can usually be obtained by carefully choosing the required statistics
for each investigation. That is, do not compute smaller error bars than necessary.

4.14 Troubleshooting the installation

Some tips to help troubleshoot installations of QMCPACK:

* First, build QMCPACK on a workstation you control or on any system with a simple and up-to-date set of
development tools. You can compare the results of CMake and QMCPACK on this system with any more
difficult systems you encounter.

* Use up-to-date development software, particularly a recent CMake.

* Verify that the compilers and libraries you expect are being configured. It is common to have multiple versions
installed. The configure system will stop at the first version it finds, which might not be the most recent. If this
occurs, directly specify the appropriate directories and files (Configuration Options). For example,

cmake -DCMAKE_C_COMPILER=/full/path/to/mpicc -DCMAKE_CXX_COMPILER=/full/path/to/
—mpicxx ..

* To monitor the compiler and linker settings, use a verbose build, make VERBOSE=1. If an individual source
file fails to compile you can experiment by hand using the output of the verbose build to reconstruct the full
compilation line.

If you still have problems please post to the QMCPACK Google group with full details, or contact a developer.

4.14. Troubleshooting the installation 45

QMCPACK Manual

46 Chapter 4. Obtaining, installing, and validating QMCPACK

CHAPTER
FIVE

RUNNING QMCPACK

QMCPACK requires at least one xml input file, and is invoked via:

gmcpack [command line options] <XML input file(s)>

5.1

Command line options

QMCPACK offers several command line options that affect how calculations are performed. If the flag is absent, then
the corresponding option is disabled:

5.2

—-—dryrun Validate the input file without performing the simulation. This is a good way to ensure that QMC-
PACK will do what you think it will.

——enable-timers=none|coarse|medium| fine Control the timer granularity when the build option
ENABLE_TIMERS is enabled.

help Print version information as well as a list of optional command-line arguments.

noprint Do not print extra information on Jastrow or pseudopotential. If this flag is not present, QMCPACK
will create several .dat files that contain information about pseudopotentials (one file per PP) and Jastrow
factors (one per Jastrow factor). These file might be useful for visual inspection of the Jastrow, for example.

—-—verbosity=1low|high|debug Control the output verbosity. The default low verbosity is concise and,
for example, does not include all electron or atomic positions for large systems to reduce output size. Use “high”
to see this information and more details of initialization, allocations, QMC method settings, etc.

version Print version information and optional arguments. Same as help.

Input files

The input is one or more XML file(s), documented in Input file overview.

47

QMCPACK Manual

5.3 Output files

QMCPACK generates multiple files documented in Output Overview.

5.4 Stopping a running simulation

As detailed in Input file overview, QMCPACK will cleanly stop execution at the end of the current block if it finds a
file named project_id.STOP, where project_id is the name of the project given in the input XML. You can
also set the max_ seconds parameter to establish an overall time limit.

5.5 Running in parallel with MPI

QMCPACK is fully parallelized with MPI. When performing an ensemble job, all the MPI ranks are first equally
divided into groups that perform individual QMC calculations. Within one calculation, all the walkers are fully dis-
tributed across all the MPI ranks in the group. Since MPI requires distributed memory, there must be at least one MPI
per node. To maximize the efficiency, more facts should be taken into account. When using MPI+threads on compute
nodes with more than one NUMA domain (e.g., AMD Interlagos CPU on Titan or a node with multiple CPU sockets),
it is recommended to place as many MPI ranks as the number of NUMA domains if the memory is sufficient (e.g., one
MPI task per socket). On clusters with more than one GPU per node (NVIDIA Tesla K80), it is necessary to use the
same number of MPI ranks as the number of GPUs per node to let each MPI rank take one GPU.

5.6 Using OpenMP threads

Modern processors integrate multiple identical cores even with hardware threads on a single die to increase the total
performance and maintain a reasonable power draw. QMCPACK takes advantage of this compute capability by using
threads and the OpenMP programming model as well as threaded linear algebra libraries. By default, QMCPACK
is always built with OpenMP enabled. When launching calculations, users should instruct QMCPACK to create the
right number of threads per MPI rank by specifying environment variable OMP_NUM_THREADS. Assuming one
MPI rank per socket, the number of threads should typically be the number of cores on that socket. Even in the GPU-
accelerated version, using threads significantly reduces the time spent on the calculations performed by the CPU.

5.6.1 Nested OpenMP threads

Nested threading is an advanced feature requiring experienced users to finely tune runtime parameters to reach the best
performance.

For small-to-medium problem sizes, using one thread per walker or for multiple walkers is most efficient. This is the
default in QMCPACK and achieves the shortest time to solution.

For large problems of at least 1,000 electrons, use of nested OpenMP threading can be enabled to reduce the time
to solution further, although at some loss of efficiency. In this scheme multiple threads are used in the computations
of each walker. This capability is implemented for some of the key computational kernels: the 3D spline orbital
evaluation, certain portions of the distance tables, and implicitly the BLAS calls in the determinant update. Use of the
batched nonlocal pseudopotential evaluation is also recommended.

Nested threading is enabled by setting OMP_NUM_THREADS=AA, BB, OMP_MAX_ACTIVE_LEVELS=2 and
OMP_NESTED=TRUE where the additional BB is the number of second-level threads. Choosing the thread affin-
ity is critical to the performance. QMCPACK provides a tool gmc-check-affinity (source file src/QMCTools/check-

48 Chapter 5. Running QMCPACK

QMCPACK Manual

affinity.cpp for details), which might help users investigate the affinity. Knowledge of how the operating system logical
CPU cores (/prco/cpuinfo) are bound to the hardware is also needed.

For example, on Blue Gene/Q with a Clang compiler, the best way to fully use the 16 cores each with 4 hardware
threads is

OMP_NESTED=TRUE
OMP_NUM_THREADS=16,4
MAX_ACTIVE_LEVELS=2
OMP_PLACES=threads
OMP_PROC_BIND=spread, close

On Intel Xeon Phi KNL with an Intel compiler, to use 64 cores without using hardware threads:

OMP_NESTED=TRUE
OMP_WAIT_POLICY=ACTIVE
OMP_NUM_THREADS=16, 4
MAX_ACTIVE_LEVELS=2
OMP_PLACES=cores
OMP_PROC_BIND=spread, close
KMP_HOT_TEAMS_MODE=1
KMP_HOT_TEAMS_MAX_LEVEL=2

Most multithreaded BLAS/LAPACK libraries do not spawn threads by default when being called from an OpenMP
parallel region. See the explanation in Serial or multithreaded library. This results in the use of only a single thread in
each second-level thread team for BLAS/LAPACK operations. Some vendor libraries like MKL support using multiple
threads when being called from an OpenMP parallel region. One way to enable this feature is using environment
variables to override the default behavior. However, this forces all the calls to the library to use the same number of
threads. As a result, small function calls are penalized with heavy overhead and heavy function calls are slow for not
being able to use more threads. Instead, QMCPACK uses the library APIs to turn on nested threading only at selected
performance critical calls. In the case of using a serial library, QMCPACK implements nested threading to distribute
the workload wherever necessary. Users do not need to control the threading behavior of the library.

5.6.2 Performance considerations

As walkers are the basic units of workload in QMC algorithms, they are loosely coupled and distributed across all
the threads. For this reason, the best strategy to run QMCPACK efficiently is to feed enough walkers to the available
threads.

In a VMC calculation, the code automatically raises the actual number of walkers per MPI rank to the number of
available threads if the user-specified number of walkers is smaller, see “walkers/mpi=XXX" in the VMC output.

In DMC, for typical small to mid-sized calculations choose the total number of walkers to be a significant multiple of
the total number of threads (MPI tasks * threads per task). This will ensure a good load balance. e.g., for a calculation
on a few nodes with a total 512 threads, using 5120 walkers may keep the load imbalance around 10%. For the very
largest calculations, the target number of walkers should be chosen to be slightly smaller than a multiple of the total
number of available threads across all the MPI ranks. This will reduce occurrences worse-case load imbalance e.g.
where one thread has two walkers while all the others have one.

To achieve better performance, a mixed-precision version (experimental) has been developed in the CPU code. The
mixed-precision CPU code uses a mixed of single precision (SP) and double precision (DP) operations, while the
default code use DP exclusively. This mixed precision version is more aggressive than the GPU CUDA version in
using single precision (SP) operations. The Current implementation uses SP on most calculations, except for matrix
inversions and reductions where double precision is required to retain high accuracy. All the constant spline data in
wavefunction, pseudopotentials, and Coulomb potentials are initialized in double precision and later stored in single
precision. The mixed-precision code is as accurate as the double-precision code up to a certain system size, and

5.6. Using OpenMP threads 49

QMCPACK Manual

may have double the throughput. Cross checking and verification of accuracy is always required but is particularly
important above approximately 1,500 electrons.

5.6.3 Memory considerations

When using threads, some memory objects are shared by all the threads. Usually these memory objects are read only
when the walkers are evolving, for instance the ionic distance table and wavefunction coefficients. If a wavefunction
is represented by B-splines, the whole table is shared by all the threads. It usually takes a large chunk of memory
when a large primitive cell was used in the simulation. Its actual size is reported as “MEMORY increase XXX MB
BsplineSetReader” in the output file. See details about how to reduce it in 3D B-splines orbitals.

The other memory objects that are distinct for each walker during random walks need to be associated with individual
walkers and cannot be shared. This part of memory grows linearly as the number of walkers per MPI rank. Those ob-
jects include wavefunction values (Slater determinants) at given electronic configurations and electron-related distance
tables (electron-electron distance table). Those matrices dominate the N scaling of the memory usage per walker.

5.7 Running on GPU machines

The GPU version is fully incorporated into the main source code.

QMCPACK supports running on multi-GPU node architectures via MPI. Each MPI rank gets assigned a primary
GPU based on the list of GPUs visible to it and its rank id in the smallest MPI communicator, usually the node local
communicator, enclosing that list of GPUs. When there are more GPUs than the MPI ranks, excessive GPUs will be
left idle. Please avoid this scenario in production runs. When there are more MPI ranks than GPUs, the primary GPU
will be assigned in the following way. Performance portable implementation assigns GPUs to equal amount of blocks
of MPI ranks. MPI ranks within a block are assigned the same GPU as their primary GPU. Legacy implementation
assigns GPUs to MPI ranks in a round-robin order. It is guaranteed that MPI ranks are distributed among GPUs as
evenly as possbile. Currently, for medium to large runs, 1 MPI task should be used per GPU per node. For very smaller
system sizes, use of multiple MPI tasks per GPU might yield improved performance.

5.7.1 Performance portable implementation

Works on any GPUs with OpenMP offload support including NVIDIA, AMD and Intel GPUs. Using batched drivers
is required.

5.7.2 Legacy implementation

Works on NVIDIA and AMD GPUs. Commonly used functionalities for solid-state and molecular systems using
B-spline single-particle orbitals are supported. Use of Gaussian basis sets, three-body Jastrow functions, and many
observables are not yet supported. A detailed description of the GPU implementation can be found in [[EKCS12]].

Vectorization is achieved over walkers, that is, all walkers are propagated in parallel. In each GPU kernel, loops over
electrons, atomic cores, or orbitals are further vectorized to exploit an additional level of parallelism and to allow
coalesced memory access.

50 Chapter 5. Running QMCPACK

QMCPACK Manual

5.7.3 Performance considerations

To run with high performance on GPUs it is crucial to perform some benchmarking runs: the optimum configuration is
system size, walker count, and GPU model dependent. The GPU implementation vectorizes operations over multiple
walkers, so generally the more walkers that are placed on a GPU, the higher the performance that will be obtained.
Performance also increases with electron count, up until the memory on the GPU is exhausted. A good strategy is
to perform a short series of VMC runs with walker count increasing in multiples of two. For systems with 100s of
electrons, typically 128-256 walkers per GPU use a sufficient number of GPU threads to operate the GPU efficiently
and to hide memory-access latency. For smaller systems, thousands of walkers might be required. For QMC algorithms
where the number of walkers is fixed such as VMC, choosing a walker count the is a multiple of the number of
streaming multiprocessors can be most efficient. For variable population DMC runs, this exact match is not possible.

To achieve better performance, the current GPU implementation uses single-precision operations for most of the
calculations. Double precision is used in matrix inversions and the Coulomb interaction to retain high accuracy. The
mixed-precision GPU code is as accurate as the double-precision CPU code up to a certain system size. Cross checking
and verification of accuracy are encouraged for systems with more than approximately 1,500 electrons. For typical
calculations on smaller electron counts, the statistical error bars are much larger then the error introduced by mixed
precision.

5.7.4 Memory considerations

In the GPU implementation, each walker has a buffer in the GPU’s global memory to store temporary data associated
with the wavefunctions. Therefore, the amount of memory available on a GPU limits the number of walkers and
eventually the system size that it can process. Additionally, for calculations using B-splines, this data is stored on the
GPU in a shared read-only buffer. Often the size of the B-spline data limits the calculations that can be run on the
GPU.

If the GPU memory is exhausted, first try reducing the number of walkers per GPU. Coarsening the grids of the
B-splines representation (by decreasing the value of the mesh factor in the input file) can also lower the memory
usage, at the expense (risk) of obtaining inaccurate results. Proceed with caution if this option has to be consid-
ered. It is also possible to distribute the B-spline coefficients table between the host and GPU memory, see option
Spline_Size_Limit_MB in 3D B-splines orbitals.

5.7. Running on GPU machines 51

QMCPACK Manual

52 Chapter 5. Running QMCPACK

CHAPTER
SIX

UNITS USED IN QMCPACK

Internally, QMCPACK uses atomic units throughout. Unless stated, all inputs and outputs are also in atomic units. For
convenience the analysis tools offer conversions to eV, Ry, Angstrom, Bohr, etc.

53

QMCPACK Manual

54 Chapter 6. Units used in QMCPACK

CHAPTER
SEVEN

INPUT FILE OVERVIEW

This chapter introduces XML as it is used in the QMCPACK input file. The focus is on the XML file format itself and
the general structure of the input file rather than an exhaustive discussion of all keywords and structure elements.

QMCPACK uses XML to represent structured data in its input file. Instead of text blocks like

begin project
id = vmc
series = 0

end project

begin vmc

move = pbyp

blocks = 200

steps = 10

timestep = 0.4
end vmc

QMCPACK input looks like

<project id="vmc" series="0">
</project>

<gmc method="vmc" move="pbyp">

<parameter name="blocks" > 200 </parameter>

<parameter name="steps" > 10 </parameter>

<parameter name="timestep"> 0.4 </parameter>
</qmec>

XML elements start with <element_name>, end with </element_name>}, and can be nested within each other
to denote substructure (the trial wavefunction is composed of a Slater determinant and a Jastrow factor, which are each
further composed of ...). 1d and series are attributes of the <project /> element. XML attributes are generally
used to represent simple values, like names, integers, or real values. Similar functionality is also commonly provided
by <parameter/> elements like those previously shown.

The overall structure of the input file reflects different aspects of the QMC simulation: the simulation cell, particles,
trial wavefunction, Hamiltonian, and QMC run parameters. A condensed version of the actual input file is shown as
follows:

<?xml version="1.0"?2>
<simulation>

<project id="vmc" series="0">

</project>

(continues on next page)

55

QMCPACK Manual

(continued from previous page)

<gmcsystem>
<simulationcell>
</éi$ulationcell>
<particleset name="e">
</é%£ticleset>
<particleset name="ion0">
</§é£ticleset>
<wavefunction name="psiO" ... >

<determinantset>
<slaterdeterminant>

</slaterdeterminant>
</determinantset>

<jastrow type="One-Body" ... >

</jastrow>
<jastrow type="Two-Body" ... >

</jastrow>

</wavefunction>

<hamiltonian name="hO0" ... >
<pairpot type="coulomb" name="ElecElec" ... />
<pairpot type="coulomb" name="IonIon" el />
<pairpot type="pseudo" name="PseudoPot" ... >
</pairpot>

</hamiltonian>

</gmcsystem>

<gmc method="vmc" move="pbyp">

<parameter name="warmupSteps"> 20 </parameter>
<parameter name="blocks" > 200 </parameter>
<parameter name="steps" > 10 </parameter>
<parameter name="timestep" > 0.4 </parameter>
</qgmc>
</simulation>

The omitted portions . . . are more fine-grained inputs such as the axes of the simulation cell, the number of up and
down electrons, positions of atomic species, external orbital files, starting Jastrow parameters, and external pseudopo-
tential files.

56 Chapter 7. Input file overview

QMCPACK Manual

7.1 Project

The <project> tag uses the id and series attributes. The value of id is the first part of the prefix for output file
names.

Output file names also contain the series number, starting at the value given by the series tag. After every <gmc>
section, the series value will increment, giving each section a unique prefix.

For the input file shown previously, the output files will start with vmc . s000, for example, vmc.s000.scalar.
dat. If there were another <gmc> section in the input file, the corresponding output files would use the prefix
vmc.s001.

The <project> tag accepts additional control parameters (using the <parameters/> tag) that can set time limits
and specify the driver version.

7.1.1 Time limits

Batched drivers check against max_seconds and make efforts to stop the execution cleanly at the end of a block
before reaching the maximum time. Classic drivers can also take the now-deprecated maxcpusecs parameter for the
same effect in the per driver XML section.

In addition, a file named id plus . STOP, in this case vmc . STOP, stops QMCPACK execution on the fly cleanly once
being found in the working directory.

7.1.2 Driver version

The driver_version parameter selects between the new performance-portable batched drivers and the previous
drivers (now referred to as the ‘legacy drivers’). The values for this parameter are legacy or batch (alternately,
batched).

7.2 Random number initialization

The random number generator state is initialized from the random element using the seed attribute:

’ <random seed="1000"/>

If the random element is not present, or the seed value is negative, the seed will be generated from the current time.

To initialize the many independent random number generators (one per thread and MPI process), the seed value is
used (modulo 1024) as a starting index into a list of prime numbers. Entries in this offset list of prime numbers are
then used as the seed for the random generator on each thread and process.

If checkpointing is enabled, the random number state is written to an HDF file at the end of each block (suffix: .
random. h5). This file will be read if the mcwalkerset tag is present to perform a restart. For more information,
see the checkpoint element in the QMC methods Quantum Monte Carlo Methods and Checkpoint and restart files
on checkpoint and restart files.

7.1. Project 57

QMCPACK Manual

58 Chapter 7. Input file overview

CHAPTER
EIGHT

SPECIFYING THE SYSTEM TO BE SIMULATED

8.1 Specifying the Simulation Cell

The simulationcell block specifies the geometry of the cell, how the boundary conditions should be handled,
and how ewald summation should be broken up.

simulationcell Element:

Parent elements: | gmcsystem
Child elements: | None

Attribute:

parameter datatype values | default description

name

lattice 9 floats | any Must be spec- | Specification of lattice vectors.
float ified

bconds string “p” or | “‘nnn* Boundary conditions for each axis.
“

vacuum float >1.0 1.0 Vacuum scale.

LR_handler | string string “opt_breakup” | Ewald breakup method.

LR_dim_cutofffloat float 15 Ewald breakup distance.

LR_tol float float 3e-4 Tolerance in Ha for Ewald ion-ion energy

per atom.

An example of a block is given below:

<simulationcell>

<parameter name="lattice">
3.8 0.0 0.0
0.0 3.8 0.0
0.0 0.0 3.8

</parameter>

<parameter name="bconds">
PPP

</parameter>

<parameter name="LR_dim_cutoff"> 20 </parameter>
</simulationcell>

Here, a cubic cell 3.8 bohr on a side will be used. This simulation will use periodic boundary conditions, and the
maximum k vector will be 20/7;gner—seit» 0f the cell.

59

QMCPACK Manual

8.1.1 Lattice

The cell is specified using 3 lattice vectors.

8.1.2 Boundary conditions

QMCPACK offers the capability to use a mixture of open and periodic boundary conditions. The parameter expects
a single string of three characters separated by spaces, e.g. “p p p” for purely periodic boundary conditions. These
characters control the behavior of the z, y, and z, axes, respectively. Non periodic directions must be placed after the
periodic ones. The only supported combinations are:

“p p p” Periodic boundary conditions. Corresponds to a 3D crystal.
“p p n” Slab geometry. Corresponds to a 2D crystal.
“p nn” Wire geometry. Corresponds to a 1D crystal.

“n n n” Open boundary conditions. Corresponds to an isolated molecule in a vacuum.

8.1.3 Vacuum

The vacuum option allows adding a vacuum region in slab or wire boundary conditions (bconds= p p n or
bconds= p n n, respectively). The main use is to save memory with spline or plane-wave basis trial wavefunc-
tions, because no basis functions are required inside the vacuum region. For example, a large vacuum region can be
added above and below a graphene sheet without having to generate the trial wavefunction in such a large box or to
have as many splines as would otherwise be required. Note that the trial wavefunction must still be generated in a
large enough box to sufficiently reduce periodic interactions in the underlying electronic structure calculation.

With the vacuum option, the box used for Ewald summation increases along the axis labeled by a factor of vacuum.
Note that all the particles remain in the original box without altering their positions. i.e. Bond lengths are not changed
by this option. The default value is 1, no change to the specified axes.

An example of a simulationcell block using is given below. The size of the box along the z-axis increases from
12 to 18 by the vacuum scale of 1.5.

<simulationcell>

<parameter name="lattice">
3.8 0.0 0.0
0.0 3.8 0.0
0.0 0.0 12.0

</parameter>

<parameter name="bconds">
ppn

</parameter>

<parameter name="vacuum"> 1.5 </parameter>

<parameter name="LR_dim_cutoff"> 20 </parameter>

<parameter name="LR_handler"> ewald </parameter>
</simulationcell>

60 Chapter 8. Specifying the system to be simulated

QMCPACK Manual

8.1.4 LR_handler

When using periodic boundary conditions direct calculation of the Coulomb energy is conditionally convergent. As a
result, QMCPACK uses an optimized short-range/long-range breakup technique to compute the Coulomb interaction
in a rapidly convergent lattice sum. [[NC95]]

In this summation, the energy is broken into short- and long-ranged terms. The short-ranged term is computed directly
in real space, while the long-ranged term is computed in reciprocal space.

v(r) = 1/r =" (r) +0'" (r)
LR_handler determines the functional form of v3" and v'". For example, the Ewald forms are
v*" (r) = erfc(ar)/r

o' (r) = erf(ar) /7

Implemented choices for 3D systems are: ewald, opt_breakup, and opt_breakup_original. The choice
for a 2D system is ewald_strict2d. The choice for a quasi-2D (e.g. slab) system is ewald_quasi2d.

8.1.5 LR_dim_cutoff

QMCPACK chooses the short-range part to terminate at the image radius of the simulation cell. This way only one

real-space cell needs to be considered using the minimum image convention. LR_dim_cutoff controls the number of

terms to include in the long-range sum. The real-space cutoff r. and reciprocal-space cutoff k. are related by
LR_dim_cutoff = r, x k.

where 7 is the Wigner-Seitz (simulation cell image) radius, and k. is the length of the maximum k-vector used in the

long-ranged term. Larger values of increase the accuracy of the evaluation. A value of 15 tends to be conservative for
the opt_breakup handler in 3D.

8.2 Specifying the particle set

The particleset blocks specify the particles in the QMC simulations: their types, attributes (mass, charge, va-
lence), and positions.

8.2.1 Input specification

particleset element:

Parent elements | simulation
Child elements | group, attrib

Attribute:

8.2. Specifying the particle set 61

QMCPACK Manual

Name Datatype| Values De- Description
fault
name/id Text Any e Name of particle set
size’ Integer Any 0 Number of particles in set
random® Text Yes/no No Randomize starting posi-
tions
randomsrc/randoms rd®Text particleset. None Particle set to randomize
name
spinor? Text Yes/no No particleset treated as
spinor

8.2.2 Detailed attribute description

Required particleset attributes

* name/id
Unique name for the particle set. Default is “¢” for electrons. “i” or “ion0” is typically used for ions. For
special cases where an empty particle set is needed, the special name “empty” can be used to bypass the
zero-size error check.

Optional particleset attributes

e size

Number of particles in set.

Group element:

Parent elements | particleset
Child elements parameter, attrib

Attribute:
Name | Datatype | Values | Default | Description
name | Text Any e Name of particle set
size® | Integer Any 0 Number of particles in set
mass® | Real Any 1 Mass of particles in set
unit? | Text au/amu | au Units for mass of particles
Parameters:
Name Datatype | Values | Default | Description
charge Real Any 0 Charge of particles in set
valence Real Any 0 Valence charge of particles in set
atomicnumber | Integer Any 0 Atomic number of particles in set

attrib element:

62 Chapter 8. Specifying the system to be simulated

QMCPACK Manual

Parent elements | particleset, group

Attribute:
Name Datatype | Values De- Description
fault
name String Any None Name of attrib
datatype | String IntArray, realArray, posArray, stringAr- | None Type of data in at-
ray trib

size® String Any None Size of data in attrib

* random

Randomize starting positions of particles. Each component of each particle’s position is randomized
independently in the range of the simulation cell in that component’s direction.

* randomsrc/random_source
Specify source particle set around which to randomize the initial positions of this particle set.

* spinor
Sets an internal flag that the particleset (usually for electrons) is a spinor object. This is used in the
wavefunction builders and QMC drivers to determiane if spin sampling will be used

Required name attributes

e name/id

[T 1]

Unique name for the particle set group. Typically, element symbols are used for ions and “u” or “d” for spin-up
and spin-down electron groups, respectively.

Optional group attributes

® mass

Mass of particles in set.

e unit
Units for mass of particles in set (au[m. = 1] or amu[l—zmmc =1]).

8.2.3 Example use cases

Particleset elements for ions and electrons randomizing electron start positions.

<particleset name="1i" size="2">

<group name="Li">
<parameter name="charge">3.000000</parameter>
<parameter name="valence">3.000000</parameter>
<parameter name="atomicnumber">3.000000</parameter>

</group>

<group name="H">
<parameter name="charge">1.000000</parameter>
<parameter name="valence">1.000000</parameter>
<parameter name="atomicnumber">1.000000</parameter>

</group>

<attrib name="position" datatype="posArray" condition="1">

(continues on next page)

8.2. Specifying the particle set 63

QMCPACK Manual

(continued from previous page)

0.0 0.0 0.0
0.5 0.5 0.5
</attrib>
<attrib name="ionid" datatype="stringArray">
Li H
</attrib>
</particleset>
<particleset name="e" random="yes" randomsrc="i">
<group name="u" size="2">
<parameter name="charge">-1</parameter>
</group>
<group name="d" size="2">
<parameter name="charge">-1</parameter>
</group>
</particleset>

Particleset elements for ions and electrons specifying electron start positions.

<particleset name="e">
<group name="u" size="4">
<parameter name="charge">-1</parameter>
<attrib name="position" datatype="posArray">
2.9151687332e-01 -6.5123272502e-01 -1.2188463918e-01
.8423636048e-01 4.2730406357e-01 -4.5964306231e-03
3.5228575807e-01 -3.5027014639%9e-01 5.2644808295e-01
-5.1686250912e-01 -1.6648002292e+00 6.5837023441e-01
</attrib>
</group>
<group name="d" size="4">
<parameter name="charge">-1</parameter>
<attrib name="position" datatype="posArray">
3.1443445436e-01 6.5068682609e-01 -4.0983449009e-02
-3.8686061749e-01 -9.3744432997e-02 -6.0456005388e-01
2.4978241724e-02 -3.2862514649e-02 -7.2266047173e-01
-4.0352404772e-01 1.1927734805e+00 5.5610824921e-01
</attrib>
</group>
</particleset>
<particleset name="ion0O" size="3">
<group name="0">
<parameter name="charge">6</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">8</parameter>
</group>
<group name="H">
<parameter name="charge">1</parameter>
<parameter name="valence">1</parameter>
<parameter name="atomicnumber">1</parameter>
</group>
<attrib name="position" datatype="posArray">
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
0.0000000000e+00 -1.4308249289%e+00 1.1078707576e+00
0.0000000000e+00 1.4308249289e+00 1.1078707576e+00
</attrib>
<attrib name="ionid" datatype="stringArray">
O H H
</attrib>

(€]

(continues on next page)

64 Chapter 8. Specifying the system to be simulated

QMCPACK Manual

(continued from previous page)

</particleset>

Particleset elements for ions specifying positions by ion type.

<particleset name="ion0">
<group name="0" size="1">
<parameter name="charge">6</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">8</parameter>
<attrib name="position" datatype="posArray">
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
</attrib>
</group>
<group name="H" size="2">
<parameter name="charge">1</parameter>
<parameter name="valence">1</parameter>
<parameter name="atomicnumber">1</parameter>
<attrib name="position" datatype="posArray">
0.0000000000e+00 -1.4308249289%9e+00 1.1078707576e+00
0.0000000000e+00 1.4308249289e+00 1.1078707576e+00
</attrib>
</group>
</particleset>

8.2. Specifying the particle set 65

QMCPACK Manual

66 Chapter 8. Specifying the system to be simulated

CHAPTER
NINE

TRIAL WAVEFUNCTION SPECIFICATION

9.1 Introduction

This section describes the input blocks associated with the specification of the trial wavefunction in a QMCPACK
calculation. These sections are contained within the <wavefunction> ... </wavefunction> xml blocks. Users
are expected to rely on converters to generate the input blocks described in this section. The converters and
the workflows are designed such that input blocks require minimum modifications from users. Unless the workflow
requires modification of wavefunction blocks (e.g., setting the cutoff in a multideterminant calculation), only expert
users should directly alter them.

The trial wavefunction in QMCPACK has a general product form:
(/) = [[O, ©.1)
k

where each O (7) is a function of the electron coordinates (and possibly ionic coordinates and variational parame-
ters). For problems involving electrons, the overall trial wavefunction must be antisymmetric with respect to electron
exchange, so at least one of the functions in the product must be antisymmetric. Notice that, although QMCPACK
allows for the construction of arbitrary trial wavefunctions based on the functions implemented in the code (e.g., slater
determinants, jastrow functions), the user must make sure that a correct wavefunction is used for the problem at hand.
From here on, we assume a standard trial wavefunction for an electronic structure problem

Psir(7) = A7) [[717, 9.2)
k

where A(7) is one of the antisymmetric functions: (1) slater determinant, (2) multislater determinant, or (3) pfaffian
and Jy, is any of the Jastrow functions (described in Jastrow Factors). The antisymmetric functions are built from a set
of single particle orbitals (SPO) (sposet). QMCPACK implements four different types of sposet, described in
the following section. Each sposet is designed for a different type of calculation, so their definition and generation
varies accordingly.

Listing 9.1: wavefunction XML element skeleton.

<wavefunction>
<sposet_collection ...>
<sposet ...>
</sposet>
</sposet_collection>

<determinantset>
<slaterdeterminant ...>

</slaterdeterminant>

(continues on next page)

67

QMCPACK Manual

(continued from previous page)

<backflow>

</backflow>
</determinantset>
<Jjastrow ...>
</Jjastrow>
</wavefunction>

9.2 Single-particle orbitals

A single particle orbital set (SPOSet) is a set of orbitals evaluated at a single electron real-space position. A typical
Slater determinant is calculated from a N-by-N matrix constructed from N orbitals at the positions of N electrons.
QMCPACK supports a range of SPOSet types:

* 3D B-splines orbitals
* Linear combination of atomic orbitals (LCAO) with Gaussian and/or Slater-type basis sets
* Hybrid orbital representation

e Plane-wave basis sets

9.2.1 sposet_collection input style

Listing 9.2: SPO XML element framework.

<!-- build a sposet collection of type bspline. /-->
<sposet_collection type="bspline" ...>
<sposet name="spo-up" ... /sposet>

</sposet_collection>

The sposet_collection element forms the container for sposet and a few other tags. The contents and at-
tributes in a sposet_collection node and sposet node depend on the t ype being used. The name of each
sposet must be unique. It is used for look-up by Single determinant wavefunctions and Multideterminant wavefunc-
tions.

sposet_collection element:

Parent elements | wavefunction
Child elements | sposet

attribute:

Name | Datatype | Values Default | Description
type | Text See below | Type of sposet

type Type of sposet. Accepted values are ‘spline’ (‘bspline’ or ‘einspline’), ‘MolecularOrbital’, ‘pw’, ‘heg’,
‘composite’.

this usage will soon be removed. SPO sets should be built outside., users need to update the input XML by moving

68 Chapter 9. Trial wavefunction specification

QMCPACK Manual

all the SPOSet construction related details out of determinantset. This revised specification keeps the basis set
details separate from information about the determinants.

Listing 9.3: Deprecated input style.

<determinantset type="einspline" href="pwscf.pwscf.h5" tilematrix="2 0 0 0 1 0 0 O 1",
—source="ion0" meshfactor="1.0" precision="double">
<slaterdeterminant>
<determinant id="updet" size="8">
<occupation mode="ground" spindataset="0"/>
</determinant>
<determinant id="downdet" size="8">
<occupation mode="ground" spindataset="0"/>
</determinant>
</slaterdeterminant>
</determinantset>

After updating the input style.

Listing 9.4: Updated input style.

<!-- all the attributes are moved from determinantset.-—>
<sposet_collection type="einspline" href="pwscf.pwscf.h5" tilematrix="2 0 0 0 1 0 0 O_
—1" source="ion0" meshfactor="1.0" precision="double">
<!-— all the attributes and contents are moved from determinant. Change 'id' tag,
—to 'name' tag.
Need only one sposet for unpolarized calculation.-—-—>
<sposet name="spo-ud" size="8">
<occupation mode="ground" spindataset="0"/>
</sposet>
</sposet_collection>
<determinantset>
<slaterdeterminant>
<!-- build two determinants from the same sposet named 'spo-ud'. One for each
—spin.—-—>
<determinant sposet="spo-ud"/>
<determinant sposet="spo-ud"/>
</slaterdeterminant>
</determinantset>

In the case of multi-determinants, all the attributes of determinantset need to be moved to
sposet_collection and existing sposet xml nodes need to be moved under sposet_collection. If
there is a basisset node, it needs to be moved under sposet_collection as well.

9.2.2 3D B-splines orbitals

In this section we describe the use of spline basis sets to expand the sposet. Spline basis sets are designed to work
seamlessly with plane wave DFT codes (e.g.,Quantum ESPRESSO as a trial wavefunction generator). Codes that
utilize regular real space grids as a basis can also be seamlessly interfaced.

In QMC algorithms, all the SPOs {#(7)} need to be updated every time a single electron moves. Evaluating SPOs
takes a very large portion of computation time. In principle, PW basis set can be used to express SPOs directly in
QMC, as in DFT. But it introduces an unfavorable scaling because the basis set size increases linearly as the system
size. For this reason, it is efficient to use a localized basis with compact support and a good transferability from the
plane wave basis.

In particular, 3D tricubic B-splines provide a basis in which only 64 elements are nonzero at any given point in

9.2. Single-particle orbitals 69

QMCPACK Manual

[[AlfeGO4]]. The 1D cubic B-spline is given by

i+2
fla)=3 b3 p, ©93)
1

i'=i—

where b?(x) is the piecewise cubic polynomial basis functions and i = floor(A~!z) is the index of the first grid point
< . Constructing a tensor product in each Cartesian direction, we can represent a 3D orbital as

i+2 Jj+2 k+2
bn(@,y,2) =Y 03 (@) > 03 (y) > bEP(2) pir g 9.4)
i'=i—1 jl=j—1 k' =k—1

This allows the rapid evaluation of each orbital in constant time unlike with a plane wave basis set where the cost
increases with system size. Furthermore, this basis is systematically improvable with a single spacing parameter so
that accuracy is not compromised compared with the plane wave basis.

The use of 3D tricubic B-splines greatly improves computational efficiency. The gain in computation time compared
to an equivalent plane wave basis set becomes increasingly large as the system size grows. On the downside, this
computational efficiency comes at the expense of increased memory use, which is easily overcome, however, by the
large aggregate memory available per node through OpenMP/MPI hybrid QMC.

The input xml block for the spline SPOs is given in Spline SPO XML element. A list of options is given in Table 9.2.2.

Listing 9.5: Spline SPO XML element

<sposet_collection type="bspline" source="i" href="pwscf.h5"
tilematrix="1 1 3 1 2 -1 -2 1 0" gpu="yes" meshfactor="0.8"
twist="0 0 0" precision="double">
<sposet name="spo-up" size="208">
<occupation mode="ground" spindataset="0"/>
</sposet>
<!—— spin polarized case needs two sposets /—-—>
<sposet name="spo-dn" size="208">
<occupation mode="ground" spindataset="1"/>
</sposet>
</sposet_collection>

sposet_collection element:

Parent elements | wavefunction
Child elements | sposet

attribute:

70 Chapter 9. Trial wavefunction specification

QMCPACK Manual

Name Datatype | Values Default | Description

type Text Bspline Type of sposet

href Text Path to hdf5 file from pw2gmcpack.x.
tilematrix 9 integers Tiling matrix used to expand supercell.
twistnum Integer Index of the super twist.

twist 3 floats Super twist.

meshfactor Float <1.0 Grid spacing ratio.

precision Text Single/double Precision of spline coefficients

gpu Text Yes/no GPU switch.

gpusharing Text Yes/no No Share B-spline table across GPUs.
Spline_Size_Limit_MB | Integer Limit B-spline table size on GPU.
check_orb_norm Text Yes/no Yes Check norms of orbitals from hS5 file.
save_coefs Text Yes/no No Save the spline coefficients to h5 file.
source Text Any Ton0 Particle set with atomic positions.
skip_checks Text Yes/no No skips checks for ion information in h5

Table 3 Options for the sposet_collection xml-block associated with B-spline single particle orbital sets.
Additional information:

e precision Only effective on CPU versions without mixed precision, “single” is always imposed with mixed
precision. Using single precision not only saves memory use but also speeds up the B-spline evaluation.
We recommend using single precision since we saw little chance of really compromising the accuracy of
calculation.

* meshfactor The ratio of actual grid spacing of B-splines used in QMC calculation with respect to the original
one calculated from h5. A smaller meshfactor saves memory use but reduces accuracy. The effects are
similar to reducing plane wave cutoff in DFT calculations. Use with caution!

e twistnum We recommend not using it in the input because the ordering of orbitals depends on how they are
being stored in the hS file. twistnum gets ignored if twist exists in the input. If positive, it is the index.
If negative, the super twist is referred by twist. This input parameter is kept only for keeping old input
files working.

 twist The twist angle. If neither twist nor twistnum is provided, Take Gamma point, (0, 0, 0).

 save_coefs If yes, dump the real-space B-spline coefficient table into an h5 file on the disk. When the orbital
transformation from k space to B-spline requires more than the available amount of scratch memory on the
compute nodes, users can perform this step on fat nodes and transfer back the h5 file for QMC calculations.

 gpusharing If enabled, spline data is shared across multiple GPUs on a given computational node. For example,
on a two-GPU-per-node system, each GPU would have half of the orbitals. This enables larger overall
spline tables than would normally fit in the memory of individual GPUs to be used, potentially up to the
total GPU memory on a node. To obtain high performance, large electron counts or a high-performing
CPU-GPU interconnect is required. To use this feature, the following needs to be done:

— The CUDA Multi-Process Service (MPS) needs to be used (e.g., on Summit use “-alloc_flags gpumps”
for bsub). If MPS is not detected, sharing will be disabled.

— CUDA_VISIBLE_DEVICES needs to be properly set to control each rank’s visible CUDA devices
(e.g., on OLCF Summit one needs to create a resource set containing all GPUs with the respective
number of ranks with “jsrun —task-per-rs Ngpus -g Ngpus”).

* Spline_Size_Limit_MB Allows distribution of the B-spline coefficient table between the host and GPU mem-
ory. The compute kernels access host memory via zero-copy. Although the performance penalty intro-
duced by it is significant, it allows large calculations to go through.

9.2. Single-particle orbitals 71

QMCPACK Manual

* skip_checks When converting the wave function from convertpw4qmc instead of pw2qmcpack, there is miss-
ing ionic information. This flag bypasses the requirement that the ionic information in the eshdf.h5 file
match the input xml.

9.2.3 Linear combination of atomic orbitals (LCAO) with Gaussian and/or Slater-
type basis sets

In this section we describe the use of localized basis sets to expand the sposet. The general form of a single particle
orbital in this case is given by:

¢i(7) = Cix i), 9.5)
k

where {n(7)} is a set of M atom-centered basis functions and C; j is a coefficient matrix. This should be used in
calculations of finite systems employing an atom-centered basis set and is typically generated by the convertdgmc
converter. Examples include calculations of molecules using Gaussian basis sets or Slater-type basis functions. Initial
support for periodic systems is described in Periodic LCAO for Solids. Even though this section is called “Gaussian
basis sets” (by far the most common atom-centered basis set), QMCPACK works with any atom-centered basis set
based on either spherical harmonic angular functions or Cartesian angular expansions. The radial functions in the
basis set can be expanded in either Gaussian functions, Slater-type functions, or numerical radial functions.

In this section we describe the input sections of sposet_collection for the atom-centered basis set. Here is an
example of single determinant with LCAO. The input sections for multideterminant trial wavefunctions are described
in Multideterminant wavefunctions.

Listing 9.6: slaterdeterminant with an LCAO
sposet_collection example

<sposet_collection type="MolecularOrbital" source="ion0" cuspCorrection="no">
<basisset name="LCAOBSet">
<atomicBasisSet name="Gaussian-G2" angular="cartesian" elementType="H" normalized=
—"no">
<grid type="log" ri="l.e-6" rf="1.e2" npts="1001"/>
<basisGroup rid="HOO" n="0" 1="0" type="Gaussian">
<radfunc exponent="5.134400000000e-02" contraction="1.399098787100e-02"/>
</basisGroup>
</atomicBasisSet>
</basisset>
<sposet name="spo" basisset="LCAOBSet" size="1">
<occupation mode="ground"/>
<coefficient size="1" id="updetC">
1.00000000000000e+00
</coefficient>
</sposet>
</sposet_collection>
<determinantset>
<slaterdeterminant>
<determinant sposet="spo" />
</slaterdeterminant>
</determinantset>

Here is the basic structure for LCAO sposet_collection input block. A list of options for
sposet_collection is given in Table 9.2.3.

72 Chapter 9. Trial wavefunction specification

QMCPACK Manual

Listing 9.7: Basic input block for sposet_collection for LCAO.

<sposet_collection type="MolecularOrbital" ...>
<basisset name="LCAOBSet" ...>
</basisset>

<sposet name="spo" basisset="LCAOBSet" size="1">
<occupation mode="ground"/>
<coefficient size="1" id="updetC">
1.00000000000000e+00
</coefficient>
</sposet>
</sposet_collection>

The definition of the set of atom-centered basis functions is given by the basisset block and the sposet defined
within sposet_collection. The basisset input block is composed from a collection of atomicBasisSet
input blocks, one for each atomic species in the simulation where basis functions are centered. The general structure
for basisset and atomicBasisSet are given in Listing 4, and the corresponding lists of options are given in
Table 9.2.3 and Table 9.2.3.

sposet_collection element:

Parent elements | wavefunction
Child elements basisset, sposet

Attribute:
Name Datatype | Values De- Description
fault
name/id Text Any e Name of determinant set
type Text See below ©ow Type of sposet
keyword Text NMO, GTO, STO | NMO Type of orbital set generated
transform Text Yes/no Yes Transform to numerical radial functions?
source Text Any Ion0 Particle set with the position of atom centers
cuspCorrection | Text Yes/no No Apply cusp correction scheme to sposet?

Table 4 Options for the sposet_collection xml-block associated with atom-centered single particle orbital sets.
* type Type of sposet. For atom-centered based sposet s, use type="MolecularOrbital” or type="MO”.

» keyword/key Type of basis set generated, which does not necessarily match the type of basis set on the input
block. The three possible options are: NMO (numerical molecular orbitals), GTO (Gaussian-type orbitals),
and STO (Slater-type orbitals). The default option is NMO. By default, QMCPACK will generate numer-
ical orbitals from both GTO and STO types and use cubic or quintic spline interpolation to evaluate the
radial functions. This is typically more efficient than evaluating the radial functions in the native basis
(Gaussians or exponents) and allows for arbitrarily large contractions without any additional cost. To force
use of the native expansion (not recommended), use GTO or STO for each type of input basis set.

 transform Request (or avoid) a transformation of the radial functions to NMO type. The default and recom-
mended behavior is to transform to numerical radial functions. If transform is set to yes, the option
keyword is ignored.

 cuspCorrection Enable (disable) use of the cusp correction algorithm (CASINO REFERENCE) for a
basisset built with GTO functions. The algorithm is implemented as described in (CASINO REF-
ERENCE) and works only with transform="yes” and an input GTO basis set. No further input is needed.

9.2. Single-particle orbitals 73

QMCPACK Manual

Listing 9.8: Basic input block for basisset.

<basisset name="LCAOBSet">
<atomicBasisSet name="Gaussian-G2" angular="cartesian" elementType="C" normalized=
—~"no">
<grid type="log" ri="l.e-6" rf="1.e2" npts="1001"/>
<basisGroup rid="CO00" n="0" 1="0" type="Gaussian">
<radfunc exponent="5.134400000000e-02" contraction="1.399098787100e-02"/>

</basisGroup>
</atomicBasisSet>
<atomicBasisSet name="Gaussian-G2" angular="cartesian" type="Gaussian" elementType=
—"C" normalized="no">

</atomicBasisSet>

</basisset>

basisset element:

Parent elements | sposet_collection
Child elements atomicBasisSet

Attribute:

Name Datatype | Values | Default | Description
name / id | Text Any o Name of atom-centered basis set

Table 5 Options for the basisset xml-block associated with atom-centered single particle orbital sets.

AtomicBasisSet element:

Parent elements | basisset
Child elements grid,basisGroup

Attribute:
Name Datatype | Values De- Description
fault
name / id Text Any 7 Name of atomic basis set
angular Text See below | Default | Type of angular functions
expandYlm Text See below | Yes Expand Ylm shells?
expM Text See below | Yes Add sign for (—1)™?
elementType/ Text Any e Atomic species where functions are centered
species
normalized Text Yes/no Yes Are single particle functions normalized?

Table 6 Options for the at omicBasisSet xml-block.
* name/id Name of the basis set. Names should be unique.

e angular Type of angular functions used in the expansion. In general, two angular basis functions are allowed:
“spherical” (for spherical Ylm functions) and “Cartesian” (for functions of the type 2"y 2}).

74 Chapter 9. Trial wavefunction specification

QMCPACK Manual

* expandYlm Determines whether each basis group is expanded across the corresponding shell of m values (for
spherical type) or consistent powers (for Cartesian functions). Options:

— “No”: Do not expand angular functions across corresponding angular shell.

— “Gaussian”: Expand according to Gaussian03 format. This function is compatible only with angu-
lar=""spherical.” For a given input (I,m), the resulting order of the angular functions becomes (1,-1,0)
for 1=1 and (0,1,-1,2,-2,...,1,-1) for general 1.

— “Natural”: Expand angular functions according to (-1,-1+1,. .. 1-1,1).

— “Gamess”: Expand according to Gamess’ format for Cartesian functions. Notice that this option is
compatible only with angular="Cartesian.” If angular="Cartesian” is used, this option is not necessary.

e expM Determines whether the sign of the spherical Ylm function associated with m (—1"") is included in the
coefficient matrix or not.

* elementType/species Name of the species where basis functions are centered. Only one atomicBasisSet
block is allowed per species. Additional blocks are ignored. The corresponding species must exist in the
particleset given as the source option to determinantset. Basis functions for all the atoms of
the corresponding species are included in the basis set, based on the order of atoms in the particleset.

basicGroup element:

Parent elements | AtomicBasisSet
Child elements radfunc

Attribute:
Name Datatype | Values | Default | Description
rid/id Text Any ©o© Name of the basisGroup
type Text Any 2o Type of basisGroup
n/l/m/s | Integer Any 0 Quantum numbers of basisGroup

Table 9.2.3 Options for the basisGroup xml-block.

* type Type of input basis radial function. Note that this refers to the type of radial function in the input
xml-block, which might not match the radial function generated internally and used in the calcula-
tion (if transform is set to “yes”). Also note that different basisGroup blocks within a given
atomicBasisSet can have different types.

e n/l/m/s Quantum numbers of the basis function. Note that if expandYlm is set to “yes” in
atomicBasisSet, a full shell of basis functions with the appropriate values of “m” will be defined
for the corresponding value of “I.” Otherwise a single basis function will be given for the specific combi-
nation of “(l,m).”

radfunc element: attributes for t ype = “Gaussian”:

TBDoc

9.2. Single-particle orbitals 75

QMCPACK Manual

9.2.4 Hybrid orbital representation

The hybrid representation of the single particle orbitals combines a localized atomic basis set around atomic cores and
B-splines in the interstitial regions to reduce memory use while retaining high evaluation speed and either retaining or
increasing overall accuracy. Full details are provided in [[LEKS18]], and users of this feature are kindly requested
to cite this paper. In practice, we have seen that using a meshfactor=0.5 is often possible and achieves huge memory
savings. Fig. 9.1 illustrates how the regions are assigned.

/5
/BA
(-

Fig. 9.1: Regular and hybrid orbital representation. Regular B-spline representation (left panel) contains only one
region and a sufficiently fine mesh to resolve orbitals near the nucleus. The hybrid orbital representation (right panel)
contains near nucleus regions (A) where spherical harmonics and radial functions are used, buffers or interpolation
regions (B), and an interstitial region (C) where a coarse B-spline mesh is used.

Orbitals within region A are computed as
O (r) = R 1. (r) Y1, (7)

Orbitals in region C are computed as the regular B-spline basis described in 3D B-splines orbitals above. The region
B interpolates between A and C as

¢p, (r) = S(r)dp (r) + (1 = S(r))¢y, (r) (9.6)
- 1 1 T _TA/B 1
(S(r) = 3 itanh [a (TB/C . — 2)} 9.7)

76 Chapter 9. Trial wavefunction specification

QMCPACK Manual

To enable hybrid orbital representation, the input XML needs to see the tag hybridrep="yes" shown in Listing 6.

Listing 9.9: Hybrid orbital representation input example.

<sposet_collection type="bspline" source="i" href="pwscf.hb"
tilematrix="1 1 3 1 2 -1 -2 1 0" gpu="yes" meshfactor="0.8"
twist="0 0 0" precision="single" hybridrep="yes">

</sposet_collection>

Second, the information describing the atomic regions is required in the particle set, shown in Listing 7.

Listing 9.10: particleset elements for ions with information needed by
hybrid orbital representation.

<group name="Ni'">

<parameter name="charge"> 18 </parameter>
<parameter name="valence"> 18 </parameter>
<parameter name="atomicnumber" > 28 </parameter>

<parameter name="cutoff radius" > 1.6 </parameter>

<parameter name="inner_cutoff" > 1.3 </parameter>

<parameter name="Ilmax" > 5 </parameter>

<parameter name="spline_radius" > 1.8 </parameter>

<parameter name="spline_ npoints"> 91 </parameter>
</group>

The parameters specific to hybrid representation are listed as

attrib element

Attribute:
Name Datatype | Values | Default | Description
cutoff_radius Real >=0.0 None Cutoff radius for B/C boundary
lmax Integer >=0 None Largest angular channel
inner_cutoff Real >=0.0 Dep. Cutoff radius for A/B boundary
spline_radius Real >0.0 Dep. Radial function radius used in spine
spline_npoints | Integer >0 Dep. Number of spline knots

e cutoff_radius is required for every species. If a species is intended to not be covered by atomic regions,
setting the value 0.0 will put default values for all the reset parameters. A good value is usually a bit larger
than the core radius listed in the pseudopotential file. After a parametric scan, pick the one from the flat energy
region with the smallest variance.

e Imax is required if cutoff_radius > 0.0. This value usually needs to be at least the highest angular
momentum plus 2.

* inner_cutoff isoptional and set as cutoff_radius —0.3 by default, which is fine in most cases.

* spline_radius and spline_npoints are optional. By default, they are calculated based on
cutoff_radius and a grid displacement 0.02 bohr. If users prefer inputing them, it is required that
cutoff_radius <=spline_radius —2 X spline_radius/(spline_npoints — 1).

In addition, the hybrid orbital representation allows extra optimization to speed up the nonlocal pseudopotential eval-
uation using the batched algorithm listed in Pseudopotentials.

9.2. Single-particle orbitals 77

QMCPACK Manual

9.2.5 Plane-wave basis sets
9.2.6 Homogeneous electron gas

The interacting Fermi liquid can be created using a determinant of free-particle orbitals. The lowest-energy plane-wave
states compatible with the boundary condition are occupied.

This following example can also be used for Helium simulations by specifying the proper pair interaction in the
Hamiltonian section and using a bosonic wavefunction.

Listing 9.11: 2D Fermi liquid example: particle specification

<simulationcell name="global">
<parameter name="rs" pol="0" condition="74">6.5</parameter>
<parameter name="bconds">p p p</parameter>
<parameter name="LR_dim_ cutoff">15</parameter>
</simulationcell>
<particleset name="e" random="yes">
<group name="u" size="37">
<parameter name="charge">-1</parameter>
<parameter name="mass">1</parameter>
</group>
<group name="d" size="37">
<parameter name="charge">-1</parameter>
<parameter name="mass">1</parameter>
</group>
</particleset>

Listing 9.12: 2D Fermi liquid example (Slater Jastrow wavefunction)

<wavefunction name="psi0" target="e">
<sposet_builder type="free">
<sposet name="spo-ud" size="37" twist="0 0 0"/>
</sposet_builder>
<determinantset>
<slaterdeterminant>
<determinant id="updet" sposet="spo-ud"/>
<determinant id="dndet" sposet="spo-ud"/>
</slaterdeterminant>
</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="no">
<correlation speciesA="u" speciesB="u" size="8" cusp="0">
<coefficients id="uu" type="Array" optimize="yes">
</correlation>
<correlation speciesA="u" speciesB="d" size="8" cusp="0">
<coefficients id="ud" type="Array" optimize="yes">
</correlation>
</jastrow>
</wavefunction>

78 Chapter 9. Trial wavefunction specification

QMCPACK Manual

9.3

Single determinant wavefunctions

Placing a single determinant for each spin is the most used ansatz for the antisymmetric part of a trial wavefunction.
The input xml block for slaterdeterminant is given in Listing /. A list of options is given in Table 9.3.

slaterdeterminant element:

Parent elements | determinantset
Child elements determinant

Attribute:
Name Datatype | Values | Default | Description
delay_rank Integer >=0 1 Number of delayed updates.
optimize Text yes/no yes Enable orbital optimization.
gpu Text yes/no yes Use the GPU acceleration implementation.
batch Text yes/no dep. Select the batched walker implementation.
matrix_inverter | Text gpu/host | gpu Slater matrix inversion scheme.
Table 2 Options for the slaterdeterminant xml-block.
Listing 9.13: Slaterdeterminant set XML element.
<sposet_collection ...>

<sposet name="spo" size="8">

</sposet>
</sposet_collection>
<determinantset>
<slaterdeterminant delay_rank="32">

<determinant sposet="spo"/>
<determinant sposet="spo"/>

</slaterdeterminant>
</determinantset>

Additional information:

delay_rank This option enables delayed updates of the Slater matrix inverse when particle-by-particle move
is used. By default or if delay_rank=0 given in the input file, QMCPACK sets 1 for Slater matrices
with a leading dimension < 192 and 32 otherwise. delay_rank=1 uses the Fahy’s variant [[FWL90]] of
the Sherman-Morrison rank-1 update, which is mostly using memory bandwidth-bound BLAS-2 calls. With
delay_rank>1, the delayed update algorithm [[LLK18], [MDAzevedoL+17]] turns most of the computation
to compute bound BLAS-3 calls. Tuning this parameter is highly recommended to gain the best performance
on medium-to-large problem sizes (> 200 electrons). We have seen up to an order of magnitude speedup on
large problem sizes. When studying the performance of QMCPACK, a scan of this parameter is required and
we recommend starting from 32. The best delay_rank giving the maximal speedup depends on the problem
size. Usually the larger delay_rank corresponds to a larger problem size. On CPUs, delay_rank must be
chosen as a multiple of SIMD vector length for good performance of BLAS libraries. The best delay_rank
depends on the processor microarchitecture. GPU support is under development.

gpu This option is only effective when GPU features are built. Use the implementation with GPU acceleration
if yes.
batch The default value is yes if gpu=yes and no otherwise.

matrix_inverter If the value is gpu, the inversion happens on the GPU and additional GPU memory is
needed. If the value is host, the inversion happens on the CPU and doesn’t need GPU memory.

9.3. Single determinant wavefunctions 79

QMCPACK Manual

9.4 Multideterminant wavefunctions

multideterminant element:

Parent elements | determinantset
Child elements detlist

Attribute:
Name Datatype | Values | Default Description
optimize Text yes/no | yes Enable optimization.
spo_up Text The name of SPO for spin up electrons
spo_down Text The name of SPO for spin down electrons
algorithm | Text precomputed_table_method | Slater matrix inversion scheme.

Table 3 Options for the multideterminant xml-block.
Additional information:

* algorithm algorithms used in multi-Slater determinant implementation. table_method table method of
Clark et al. [[CMM+I11]] . precomputed_table_method adds partial sum precomputation on top of
table_method.

Listing 9.14: multideterminant set XML element.

<sposet_collection ...>

<sposet name="spo" size="85">

</sposet>
</sposet_collection>
<determinantset>

<multideterminant optimize="yes" spo_up="spo" spo_dn="spo">

<detlist size="1487" type="DETS" nca="0" ncb="0" nea="2" neb="2" nstates="85"_

—cutoff="1e-20" href="LiH.orbs.h5">

</multideterminant>
</determinantset>

Multiple schemes to generate a multideterminant wavefunction are possible, from CASSF to full CI or selected CI. The
QMCPACK converter can convert MCSCF multideterminant wavefunctions from GAMESS [[SBB+93]] and CIPSI
[[EG13]] wavefunctions from Quantum Package [[Scel7]] (QP). Full details of how to run a CIPSI calculation and
convert the wavefunction for QMCPACK are given in CIPSI wavefunction interface.

The scriptutils/determinants_tools.py canbe used to generate useful information about the multidetermi-
nant wavefunction. This script takes, as a required argument, the path of an h5 file corresponding to the wavefunction.
Used without optional arguments, it prints the number of determinants, the number of CSFs, and a histogram of the
excitation degree.

> determinants_tools.py ./tests/molecules/C2_pp/C2.h5
Summary:

excitation degree
excitation degree

0 count: 1

1
excitation degree 2 count: 148

3

4

count: 6

excitation degree count: 27
excitation degree count: 20

(continues on next page)

80 Chapter 9. Trial wavefunction specification

QMCPACK Manual

(continued from previous page)

n_det 202
n_csf 104

If the ——verbose argument is used, the script will print each determinant, the associated CSF, and the excitation
degree relative to the first determinant.

head

> determinants_tools.py -v ./tests/molecules/C2_pp/C2.h5
1

alpha 111100
beta 111100
scf 222200
excitation degree O

2

alpha 10111000
beta 10111000
scf 20222000
excitation degree 2

9.5 Backflow Wavefunctions

One can perturb the nodal surface of a single-Slater/multi-Slater wavefunction through use of a backflow transforma-
tion. Specifically, if we have an antisymmetric function D (Xo¢, - -+ , Xnt, Xoy, - - , XNy), and if 4, is the i-th particle
of species type «, then the backflow transformation works by making the coordinate transformation x;, — x; and
evaluating D at these new “quasiparticle” coordinates. QMCPACK currently supports quasiparticle transformations
given by

X{L‘a = Xia + Z Z 77045(|Xia — Xjﬁ|)(xia — Xjﬂ) . (98)

aspBiaF#jp

Here, n°#(|x;, — x;,|) is a radially symmetric backflow transformation between species o and 3. In QMCPACK,
particle ., is known as the “target” particle and jg is known as the “source.” The main types of transformations are so-
called one-body terms, which are between an electron and an ion 7 (|x;, —x, |) and two-body terms. Two-body terms
are distinguished as those between like and opposite spin electrons: n°MeM (|x;) —x;_(1)|) and n°MeW (|x; 4y —
x;.(1)|)- Henceforth, we will assume that n¢(Me(1) = pee(®),

In the following, we explain how to describe general terms such as (9.8) in a QMCPACK XML file. For specificity,
we will consider a particle set consisting of H and He (in that order). This ordering will be important when we build
the XML file, so you can find this out either through your specific declaration of <particleset>, by looking at the hdf5
file in the case of plane waves, or by looking at the QMCPACK output file in the section labeled “Summary of QMC
systems.”

9.5.1 Input specifications

All backflow declarations occur within a single <backflow> ... </backflow> block. Backflow transforma-
tions occur in <t ransformation> blocks and have the following input parameters:

Transformation element:

9.5. Backflow Wavefunctions 81

QMCPACK Manual

Name | Datatype | Values | Default Description
name Text (Re- Unique name for this Jastrow function.
quired)
type Text “e-1” (Re- Define a one-body backflow transformation.
quired)
Text “e-e” Define a two-body backflow transformation.
func- Text B- (Re- B-spline type transformation (no other types sup-
tion spline quired) ported).
source Text “e” if two body, ion particle set if one body.

Just like one- and two-body jastrows, parameterization of the backflow transformations are specified within the
<transformation> blocks by <correlation> blocks. Please refer to Spline form for more information.

9.5.2 Example Use Case

Having specified the general form, we present a general example of one-body and two-body backflow transformations
in a hydrogen-helium mixture. The hydrogen and helium ions have independent backflow transformations, as do the
like and unlike-spin two-body terms. One caveat is in order: ionic backflow transformations must be listed in the order
they appear in the particle set. If in our example, helium is listed first and hydrogen is listed second, the following
example would be correct. However, switching backflow declaration to hydrogen first then helium, will result in an
error. Outside of this, declaration of one-body blocks and two-body blocks are not sensitive to ordering.

<backflow>
<!--The One-Body term with independent e-He and e-H terms. IN THAT ORDER ——>
<transformation name="eIonB" type="e-I" function="Bspline" source="ion0O">
<correlation cusp="0.0" size="8" type="shortrange" init="no" elementType="He"
—rcut="3.0">
<coefficients id="eHeC" type="Array" optimize="yes">
000O0O0OO0OO
</coefficients>
</correlation>
<correlation cusp="0.0" size="8" type="shortrange" init="no" elementType="H" rcut=
~"3.0">
<coefficients id="eHC" type="Array" optimize="yes">
000O0O0O0OO
</coefficients>
</correlation>
</transformation>

<!--The Two-Body Term with Like and Unlike Spins ——>
<transformation name="eeB" type="e-e" function="Bspline" >
<correlation cusp="0.0" size="7" type="shortrange" init="no" speciesA="u"
—speciesB="u" rcut="1.2">
<coefficients id="uuBl" type="Array" optimize="yes">
000O0O0O0DO
</coefficients>
</correlation>
<correlation cusp="0.0" size="7" type="shortrange" init="no" speciesA="d"
—speciesB="u" rcut="1.2">
<coefficients id="udBl" type="Array" optimize="yes">
000O0O0O0CO
</coefficients>
</correlation>

(continues on next page)

82 Chapter 9. Trial wavefunction specification

QMCPACK Manual

(continued from previous page)

</transformation>
</backflow>

Currently, backflow works only with single-Slater determinant wavefunctions. ~When a backflow transfor-
mation has been declared, it should be placed within the <determinantset> block, but outside of the
<slaterdeterminant> blocks, like so:

<determinantset ... >
<!--basis set declarations go here, if there are any -->
<backflow>
<transformation ...>

<!--Here is where one and two-body terms are defined —-->
</transformation>
</backflow>

<slaterdeterminant>
<!--Usual determinant definitions -->
</slaterdeterminant>
</determinantset>

9.5.3 Optimization Tips

Backflow is notoriously difficult to optimize—it is extremely nonlinear in the variational parameters and moves the
nodal surface around. As such, it is likely that a full Jastrow+Backflow optimization with all parameters initialized
to zero might not converge in a reasonable time. If you are experiencing this problem, the following pointers are
suggested (in no particular order).

Get a good starting guess for U:

1. Try optimizing the Jastrow first without backflow.

2. Freeze the Jastrow parameters, introduce only the e-e terms in the backflow transformation, and optimize these
parameters.

3. Freeze the e-e backflow parameters, and then optimize the e-I terms.
« If difficulty is encountered here, try optimizing each species independently.

4. Unfreeze all Jastrow, e-e backflow, and e-I backflow parameters, and reoptimize.

Optimizing Backflow Terms

It is possible that the previous prescription might grind to a halt in steps 2 or 3 with the inability to optimize the e-e or
e-1 backflow transformation independently, especially if it is initialized to zero. One way to get around this is to build
a good starting guess for the e-e or e-I backflow terms iteratively as follows:

1. Start off with a small number of knots initialized to zero. Set ., to be small (much smaller than an interatomic
distance).

2. Optimize the backflow function.
3. If this works, slowly increase r.,; and/or the number of knots.

4. Repeat steps 2 and 3 until there is no noticeable change in energy or variance of Ur.

9.5. Backflow Wavefunctions 83

QMCPACK Manual

Tweaking the Optimization Run

The following modifications are worth a try in the optimization block:

 Try setting “useDrift” to “no.” This eliminates the use of wavefunction gradients and force biasing in the VMC
algorithm. This could be an issue for poorly optimized wavefunctions with pathological gradients.

* Try increasing “exp0” in the optimization block. Larger values of exp0O cause the search directions to more
closely follow those predicted by steepest-descent than those by the linear method.

Note that the new adaptive shift optimizer has not yet been tried with backflow wavefunctions. It should perform better
than the older optimizers, but a considered optimization process is still recommended.

9.6 Jastrow Factors

Jastrow factors are among the simplest and most effective ways of including dynamical correlation in the trial many
body wavefunction. The resulting many body wavefunction is expressed as the product of an antisymmetric (in the
case of Fermions) or symmetric (for Bosons) part and a correlating Jastrow factor like so:

U(R) = A(R) exp [J(ﬁ)} 9.9)

In this section we will detail the types and forms of Jastrow factor used in QMCPACK. Note that each type of Jastrow
factor needs to be specified using its own individual jast row XML element. For this reason, we have repeated the
specification of the jastrow tag in each section, with specialization for the options available for that given type of
Jastrow.

9.6.1 One-body Jastrow functions

The one-body Jastrow factor is a form that allows for the direct inclusion of correlations between particles that are
included in the wavefunction with particles that are not explicitly part of it. The most common example of this are
correlations between electrons and ions.

The Jastrow function is specified within a wave function element and must contain one or more correlation
elements specifying additional parameters as well as the actual coefficients. Example use cases gives examples of the
typical nesting of jastrow, correlation, and coefficient elements.

Input Specification

Jastrow element:

name datatype | values defaults description
name text (required) | Unique name for this Jastrow function
type text One-body | (required) | Define a one-body function
function | text Bspline (required) | BSpline Jastrow

text pade2 Pade form

text e .
source text name (required) | Name of attribute of classical particle set
print text yes / no yes Jastrow factor printed in external file?

84 Chapter 9. Trial wavefunction specification

QMCPACK Manual

elements

Correlation

Contents

(None)

To be more concrete, the one-body Jastrow factors used to describe correlations between electrons and ions take the
form below:

ion0 e

J1=>"> "ua(ri — Ril) (9.10)
I i

where I runs over all of the ions in the calculation, i runs over the electrons and u,; describes the functional form of
the correlation between them. Many different forms of w,;, are implemented in QMCPACK. We will detail two of the
most common ones below.

Spline form

The one-body spline Jastrow function is the most commonly used one-body Jastrow for solids. This form was first
described and used in [[EKCS12]]. Here u,; is an interpolating 1D B-spline (tricublc spline on a linear grid) between
zero distance and 7.,¢. In 3D periodic systems the default cutoff distance is the Wigner Seitz cell radius. For other
periodicities, including isolated molecules, the r.,; must be specified. The cusp can be set. r; and R; are most
commonly the electron and ion positions, but any particlesets that can provide the needed centers can be used.

Correlation element:

Name Datatype | Values Defaults Description
ElementType | Text Name See below | Classical particle target
SpeciesA Text Name See below | Classical particle target
SpeciesB Text Name See below | Quantum species target
Size Integer >0 (Required) | Number of coefficients
Rcut Real >0 See below | Distance at which the correlation goes to 0
Cusp Real >0 0 Value for use in Kato cusp condition
Spin Text Yes orno | No Spin dependent Jastrow factor
Elements
Coefficients
Contents
(None)

Additional information:

* elementType, speciesA, speciesB, spin For a spin-independent Jastrow factor (spin = “no”),
elementType should be the name of the group of ions in the classical particleset to which the quantum
particles should be correlated. For a spin-dependent Jastrow factor (spin = “yes”), set speciesA to the
group name in the classical particleset and speciesB to the group name in the quantum particleset.

* rcut The cutoff distance for the function in atomic units (bohr). For 3D fully periodic systems, this parameter
is optional, and a default of the Wigner Seitz cell radius is used. Otherwise this parameter is required.

* cusp The one-body Jastrow factor can be used to make the wavefunction satisfy the electron-ion cusp condition
:cite:kato. In this case, the derivative of the Jastrow factor as the electron approaches the nucleus will be
given by

9.6. Jastrow Factors 85

QMCPACK Manual

oJ
(%)mzo __z ©.11)

Note that if the antisymmetric part of the wavefunction satisfies the electron-ion cusp condition (for instance by using
single-particle orbitals that respect the cusp condition) or if a nondivergent pseudopotential is used, the Jastrow should
be cuspless at the nucleus and this value should be kept at its default of 0.

Coefficients element:

Name Datatype | Values Defaults Description

Id Text (Required) | Unique identifier

Type Text Array (Required)

Optimize Text Yes orno | Yes if no, values are fixed in optimizations
Elements

(None)

Contents

(No name) | Real array Zeros Jastrow coefficients

Example use cases

Specify a spin-independent function with four parameters. Because rcut is not specified, the default cutoff of the
Wigner Seitz cell radius is used; this Jastrow must be used with a 3D periodic system such as a bulk solid. The name

(3L

of the particleset holding the ionic positions is “i.

<jastrow name="Jl" type="One-Body" function="Bspline" print="yes" source="i">
<correlation elementType="C" cusp="0.0" size="4">
<coefficients id="C" type="Array"> 0 0 0 0 </coefficients>
</correlation>
</jastrow>

Specify a spin-dependent function with seven up-spin and seven down-spin parameters. The cutoff distance is set to 6
atomic units. Note here that the particleset holding the ions is labeled as ion0 rather than “i,” as in the other example.

Also in this case, the ion is lithium with a coulomb potential, so the cusp condition is satisfied by setting cusp="d.”

<jastrow name="J1" type="One-Body" function="Bspline" source="ion0" spin="yes">
<correlation speciesA="Li" speciesB="u" size="7" rcut="6">
<coefficients id="eLiu" cusp="3.0" type="Array">
0.0 0.0 0.0 0.0 0.0 0.0 0.0
</coefficients>
</correlation>
<correlation speciesA="C" speciesB="d" size="7" rcut="6">
<coefficients id="eLid" cusp="3.0" type="Array">
0.0 0.0 0.0 0.0 0.0 0.0 0.0
</coefficients>
</correlation>
</jastrow>

86 Chapter 9. Trial wavefunction specification

QMCPACK Manual

Pade form

Although the spline Jastrow factor is the most flexible and most commonly used form implemented in QMCPACK,
there are times where its flexibility can make it difficult to optimize. As an example, a spline Jastrow with a very
large cutoff can be difficult to optimize for isolated systems such as molecules because of the small number of samples
present in the tail of the function. In such cases, a simpler functional form might be advantageous. The second-order
Pade Jastrow factor, given in (9.12), is a good choice in such cases.

a*r+c*r2
uah(r) =~ Ther (9.12)

Unlike the spline Jastrow factor, which includes a cutoff, this form has an infinite range and will be applied to every
particle pair (subject to the minimum image convention). It also is a cuspless Jastrow factor, so it should be used either
in combination with a single particle basis set that contains the proper cusp or with a smooth pseudopotential.

Correlation element:

Name Datatype Values | Defaults | Description
ElementType | Text Name | See below | Classical particle target
Elements
Coefficients
Contents
(None)
Parameter element:
Name Datatype | Values Defaults Description
1d String Name (Required) | Name for variable
Name String AorBorC | (Required) | See (9.12)
Optimize | Text Yes or no Yes If no, values are fixed in optimizations
Elements
(None)
Contents
(No name) | Real | Parameter value | (Required) | Jastrow coefficients

Example use case

Specify a spin-independent function with independent Jastrow factors for two different species (Li and H). The name

(3L

of the particleset holding the ionic positions is “i.

<jastrow name="Jl1" function="pade2" type="One-Body" print="yes" source="i">
<correlation elementType="Li">
<var id="LiA" name="A"> 0.34 </var>
<var id="LiB" name="B"> 12.78 </var>
<var id="LiC" name="C"> 1.62 </var>
</correlation>
<correlation elementType="H"">
<var 1d="HA" name="A"> 0.14 </var>
<var id="HBR" name="B"> 6.88 </var>
<var id="HC" name="C"> 0.237 </var>
</correlation>
</jastrow>

9.6. Jastrow Factors 87

QMCPACK Manual

Short Range Cusp Form

The idea behind this functor is to encode nuclear cusps and other details at very short range around a nucleus in the
region that the Gaussian orbitals of quantum chemistry are not capable of describing correctly. The functor is kept
short ranged, because outside this small region, quantum chemistry orbital expansions are already capable of taking
on the correct shapes. Unlike a pre-computed cusp correction, this optimizable functor can respond to changes in the
wave function during VMC optimization. The functor’s form is

(T/Ro)k+2

T+ (/R o

N—1
u(r) = —exp (—r/Ro) | ARy + Z By,
k=0

in which Ry acts as a soft cutoff radius (u(r) decays to zero quickly beyond roughly this distance) and A determines
the cusp condition.

lim —=A (9.14)

The simple exponential decay is modified by the N coefficients By, that define an expansion in sigmoidal functions,
thus adding detailed structure in a short-ranged region around a nucleus while maintaining the correct cusp condition
at the nucleus. Note that sigmoidal functions are used instead of, say, a bare polynomial expansion, as they trend to
unity past the soft cutoff radius and so interfere less with the exponential decay that keeps the functor short ranged.
Although A, Ry, and the By, coefficients can all be optimized as variational parameters, A will typically be fixed as
the desired cusp condition is known.

To specify this one-body Jastrow factor, use an input section like the following.

<jastrow name="JlCusps" type="One-Body" function="shortrangecusp" source="ion0" print=
—"yes">
<correlation rcut="6" cusp="3" elementType="Li">
<var id="LiCuspRO" name="R0" optimize="yes"> 0.06 </var>
<coefficients i1id="LiCuspB" type="Array" optimize="yes">
0000O0OO0OO0O0DO
</coefficients>
</correlation>
<correlation rcut="6" cusp="1" elementType="H">
<var id="HCuspRO" name="R0O" optimize="yes"> 0.2 </var>
<coefficients id="HCuspB" type="Array" optimize="yes">
0000O0OO0OO0O0DO
</coefficients>
</correlation>
</jastrow>

Here “rcut” is specified as the range beyond which the functor is assumed to be zero. The value of A can either be
specified via the “cusp” option as shown above, in which case its optimization is disabled, or through its own “var”
line as for Ry, in which case it can be specified as either optimizable (“yes”) or not (“no”). The coefficients By, are
specified via the “coefficients” section, with the length N of the expansion determined automatically based on the
length of the array.

Note that this one-body Jastrow form can (and probably should) be used in conjunction with a longer ranged one-body
Jastrow, such as a spline form. Be sure to set the longer-ranged Jastrow to be cusp-free!

88 Chapter 9. Trial wavefunction specification

QMCPACK Manual

9.6.2 Two-body Jastrow functions

The two-body Jastrow factor is a form that allows for the explicit inclusion of dynamic correlation between two
particles included in the wavefunction. It is almost always given in a spin dependent form so as to satisfy the Kato
cusp condition between electrons of different spins [[Kat51]].

The two body Jastrow function is specified within a wavefunction element and must contain one or more correla-
tion elements specifying additional parameters as well as the actual coefficients. Example use cases gives examples of
the typical nesting of jastrow, correlation and coefficient elements.

Input Specification

Jastrow element:

name datatype values defaults description
name text (required) | Unique name for this Jastrow function
type text Two-body | (required) | Define a one-body function
function | text Bspline (required) | BSpline Jastrow
print text yes / no yes Jastrow factor printed in external file?
elements
Correlation
Contents
(None)

The two-body Jastrow factors used to describe correlations between electrons take the form

J2=3 "% wan(|ri —) 9.15)

i j>i

The most commonly used form of two body Jastrow factor supported by the code is a splined Jastrow factor, with
many similarities to the one body spline Jastrow.

Spline form

The two-body spline Jastrow function is the most commonly used two-body Jastrow for solids. This form was first
described and used in [[EKCS12]]. Here u,y is an interpolating 1D B-spline (tricublc spline on a linear grid) between
zero distance and r.,;. In 3D periodic systems, the default cutoff distance is the Wigner Seitz cell radius. For other
periodicities, including isolated molecules, the r.,; must be specified. ; and r; are typically electron positions. The
cusp condition as 7; approaches 7; is set by the relative spin of the electrons.

Correlation element:

9.6. Jastrow Factors 89

QMCPACK Manual

Name Datatype Values Defaults Description
SpeciesA | Text Uord (Required) | Quantum species target
SpeciesB | Text Uord (Required) | Quantum species target
Size Integer >0 (Required) | Number of coefficients
Rcut Real >0 See below | Distance at which the correlation goes to 0
Spin Text Yes orno | No Spin-dependent Jastrow factor
Elements
Coefficients
Contents
(None)

Additional information:

* speciesA, speciesB The scale function u(r) is defined for species pairs uu and ud. There is no need to
define ud or dd since uu=dd and ud=du. The cusp condition is computed internally based on the charge of the
quantum particles.

Coefficients element:

Name Datatype | Values Defaults Description

Id Text (Required) | Unique identifier

Type Text Array (Required)

Optimize Text Yesorno | Yes If no, values are fixed in optimizations
Elements

(None)

Contents

(No name) | Real array Zeros Jastrow coefficients

Example use cases

Specify a spin-dependent function with four parameters for each channel. In this case, the cusp is set at a radius of 4.0
bohr (rather than to the default of the Wigner Seitz cell radius). Also, in this example, the coefficients are set to not be
optimized during an optimization step.

_n

<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="8" rcut="4.0">
<coefficients id="uu" type="Array" optimize="no"> 0.2309049836 0.1312646071 O.
05464141356 0.01306231516</coefficients>
</correlation>
<correlation speciesA="u" speciesB="d" size="8" rcut="4.0">
<coefficients id="ud" type="Array" optimize="no"> 0.4351561096 0.2377951747 0.
1129144262 0.0356789236</coefficients>
</correlation>
</jastrow>

90 Chapter 9. Trial wavefunction specification

QMCPACK Manual

9.6.3 User defined functional form

To aid in implementing different forms for u,;(r), there is a script that uses a symbolic expression to generate the
appropriate code (with spatial and parameter derivatives). The script is located in src/QMCWaveFunctions/
Jastrow/codegen/user_jastrow.py. The script requires Sympy (Www.sympy.org) for symbolic mathemat-
ics and code generation.

To use the script, modify it to specify the functional form and a list of variational parameters. Optionally, there may
be fixed parameters - ones that are specified in the input file, but are not part of the variational optimization. Also one
symbol may be specified that accepts a cusp value in order to satisfy the cusp condition. There are several example
forms in the script. The default form is the simple Padé.

Once the functional form and parameters are specified in the script, run the script from the codegen directory
and recompile QMCPACK. The main output of the script is the file src/QMCWaveFunctions/Jastrow/
UserFunctor.h. The script also prints information to the screen, and one section is a sample XML input block
containing all the parameters.

There is a unit testin src/QMCWaveFunctions/test/test_user_jastrow. cpp to perform some minimal
testing of the Jastrow factor. The unit test will need updating to properly test new functional forms. Most of the changes
relate to the number and name of variational parameters.

Jastrow element:

name datatype | values defaults description
name text (required) | Unique name for this Jastrow function
type text One-body | (required) | Define a one-body function
Two-body | (required) | Define a two-body function
function | text user (required) | User-defined functor

See other parameters as appropriate for one or two-body functions

elements

Correlation

Contents

(None)

9.6.4 Long-ranged Jastrow factors

While short-ranged Jastrow factors capture the majority of the benefit for minimizing the total energy and the energy
variance, long-ranged Jastrow factors are important to accurately reproduce the short-ranged (long wavelength) behav-
ior of quantities such as the static structure factor, and are therefore essential for modern accurate finite size corrections
in periodic systems.

Below two types of long-ranged Jastrow factors are described. The first (the k-space Jastrow) is simply an expansion
of the one and/or two body correlation functions in plane waves, with the coefficients comprising the optimizable
parameters. The second type have few variational parameters and use the optimized breakup method of Natoli and
Ceperley [[NC95]] (the Yukawa and Gaskell RPA Jastrows).

9.6. Jastrow Factors 91

QMCPACK Manual

Long-ranged Jastrow: k-space Jastrow
The k-space Jastrow introduces explicit long-ranged dependence commensurate with the periodic supercell. This
Jastrow is to be used in periodic boundary conditions only.

The input for the k-space Jastrow fuses both one and two-body forms into a single element and so they are discussed
together here. The one- and two-body terms in the k-Space Jastrow have the form:

i =) bapGr-c (9.16)
G£0

Jy = Z aGpPGP-G 9.17)
G#0

Here p is the Fourier transform of the instantaneous electron density:
_ iG Ty
pa= >, e (9.18)
n€electrons

and pL has the same form, but for the fixed ions. In both cases the coefficients are restricted to be real, though in
general the coefficients for the one-body term need not be. See Feature: Reciprocal-space Jastrow factors for more
detail.

Input for the k-space Jastrow follows the familar nesting of jastrow-correlation-coefficients elements,
with attributes unique to the k-space Jastrow at the correlation input level.

jastrow type=kSpace element:

parent elements: | wavefunction

child elements: correlation
attributes:
Name Datatype | Values Default | Description
type” text kSpace must be kSpace
name” text anything 0 Unique name for Jastrow
source” | text particleset.name Ion particleset name

correlation element:

parent elements: | jastrow type=kSpace

child elements: coefficients
attributes:
Name Datatype | Values De- Description
fault
type” text One-body, Two- Must be One-body/Two-
Body body
kc” real kc >0 0.0 k-space cutoff in a.u.
symmetry® text crystal,isotropic,none | crystal symmetry of coefficients
spinDependent® | boolean yes,no no No current function

coefficients element:

92 Chapter 9. Trial wavefunction specification

QMCPACK Manual

parent elements: | correlation
child elements: None

attributes:

Name | Datatype | Values | Default | Description
id” text anything | cG1/cG2 | Label for coeffs
type” | text Array 0 Must be Array

body text: The body text is a list of real values for the parameters.
Additional information:

e It is normal to provide no coefficients as an initial guess. The number of coefficients will be automatically
calculated according to the k-space cutoff + symmetry and set to zero.

* Providing an incorrect number of parameters also results in all parameters being set to zero.

e There is currently no way to turn optimization on/off for the k-space Jastrow. The coefficients are always
optimized.

* Spin dependence is currently not implemented for this Jastrow.

* kc: Parameters with G vectors magnitudes less than kc are included in the Jastrow. If kc is zero, it is the same
as excluding the k-space term.

e symmetry=crystal: Impose crystal symmetry on coefficients according to the structure factor.
e symmetry=isotropic: Impose spherical symmetry on coefficients according to G-vector magnitude.

* symmetry=none: Impose no symmetry on the coefficients.

Listing 9.15: k-space Jastrow with one- and two-body terms.

<jastrow type="kSpace" name="Jk" source="ion0">
<correlation kc="4.0" type="One-Body" symmetry="cystal">
<coefficients id="cGl" type="Array">
</coefficients>
</correlation>
<correlation kc="4.0" type="Two-Body" symmetry="crystal">
<coefficients id="cG2" type="Array">
</coefficients>
</correlation>
</jastrow>

Listing 9.16: k-space Jastrow with one-body term only.

<jastrow type="kSpace" name="Jk" source="ion0">
<correlation kc="4.0" type="One-Body" symmetry="crystal">
<coefficients id="cGl" type="Array">
</coefficients>
</correlation>
</jastrow>

Listing 9.17: k-space Jastrow with two-body term only.

<jastrow type="kSpace" name="Jk" source="ion0">
<correlation kc="4.0" type="Two-Body" symmetry="crystal">

(continues on next page)

9.6. Jastrow Factors 93

QMCPACK Manual

(continued from previous page)

<coefficients id="cG2" type="Array">
</coefficients>
</correlation>
</jastrow>

Long-ranged Jastrows: Gaskell RPA and Yukawa forms

NOTE: The Yukawa and RPA Jastrows do not work at present and are currently being revived. Please contact
the developers if you are interested in using them.

The exact Jastrow correlation functions contain terms which have a form similar to the Coulomb pair potential. In
periodic systems the Coulomb potential is replaced by an Ewald summation of the bare potential over all periodic
image cells. This sum is often handled by the optimized breakup method [[NC95]] and this same approach is applied
to the long-ranged Jastrow factors in QMCPACK.

There are two main long-ranged Jastrow factors of this type implemented in QMCPACK: the Gaskell RPA [[Gas61],
[Gas62]] form and the [[Cep78]] form. Both of these forms were used by Ceperley in early studies of the electron gas
[[Cep78]], but they are also appropriate starting points for general solids.

The Yukawa form is defined in real space. It’s long-range form is formally defined as

ugPer) =30 uy(|ri =+ L)) 9.19)
L#0 i<j
with uy (r) given by
a
uy (r) = = (1 - e—r/b) (9.20)

In QMCPACK a slightly more restricted form is used:

uy(r) = 2= (1= eV 9.21)
T

here “r,” is understood to be a variational parameter.

The Gaskell RPA form—which contains correct short/long range limits and minimizes the total energy of the electron

gas within the RPA—is defined directly in k-space:

1 1 1 dmgop\ V2
_ 1 e 9.22
uppa(k) 250 (k) +3 (So(k)2 + oo > (9.22)

where v_k is the Fourier transform of the Coulomb potential and Sy (k) is the static structure factor of the non-
interacting electron gas:

1 k> 2kp
3

3k _ 1 (_k

akp _5(2kF) k < Z2kp

When written in atomic units, RPA Jastrow implemented in QMCPACK has the form

1 1 1 12\ /2
urealh) = 5y, <So(k‘)+<50(k)2+7"§k4>) 02

Here “r,” is again a variational parameter and kr = (377;)1/ 3,
s

So(k) =

For both the Yukawa and Gaskell RPA Jastrows, the default value for r is 7, = (47553,)3,

jastrow type=Two-Body function=rpa/yukawa element:

94 Chapter 9. Trial wavefunction specification

QMCPACK Manual

parent elements: | wavefunction
child elements: correlation
attributes:
Name Datatype | Values Default | Description
type” text Two-body Must be two-body
function” text rpa/yukawa Must be rpa or yukawa
name” text anything RPA_Jee | Unique name for Jastrow
longrange® boolean yes/no yes Use long-range part
shortrange® | boolean yes/no yes Use short-range part
parameters:
Name | Datatype | Values | Default Description
rs® IS rs >0 47?;% Avg. elec-elec distance
173
kc® ke ke>0 | 2(2F) / A70e | k-space cutoff
Listing 9.18: Two body RPA Jastrow with long- and short-ranged parts.
<jastrow name=''Jee'' type=''Two-Body'' function=''rpa''>

</jastrow>

9.6.5 Three-body Jastrow functions

Explicit three-body correlations can be included in the wavefunction via the three-body Jastrow factor. The three-body
electron-electron-ion correlation function (u,.7) currently used in is identical to the one proposed in [[DTN04]]:

Mer Mer Mee

§ E E L .m ..n
UUU’I(TUI; To'I, TO'O'/) = YemnTorTo/ 1T oo
=0 m=0n=0

e\ Te
< (ror=5) 0 (rer =)

e\ S Te
< (ror=7%) 0 (ror=73)

Here M.; and M., are the maximum polynomial orders of the electron-ion and electron-electron distances, respec-
tively, {Yemn } are the optimizable parameters (modulo constraints), 7. is a cutoff radius, and r,;, are the distances
between electrons or ions a and b. i.e. The correlation function is only a function of the interparticle distances and
not a more complex function of the particle positions, r. As indicated by the © functions, correlations are set to zero
beyond a distance of 7./2 in either of the electron-ion distances and the largest meaningful electron-electron distance
is r.. This is the highest-order Jastrow correlation function currently implemented.

Today, solid state applications of QMCPACK usually utilize one and two-body B-spline Jastrow functions, with cal-
culations on heavier elements often also using the three-body term described above.

9.6. Jastrow Factors 95

QMCPACK Manual

Example use case

Here is an example of H20 molecule. After optimizing one and two body Jastrow factors, add the following block in
the wavefunction. The coefficients will be filled zero automatically if not given.

<jastrow name="J3" type="eel" function="polynomial" source="ion0" print="yes">
<correlation ispecies="0" especies="u" isize="3" esize="3" rcut="10">
<coefficients id="uuO" type="Array" optimize="yes"> </coefficients>
</correlation>
<correlation ispecies="0" especiesl="u" especies2="d" isize="3" esize="3" rcut="10">
<coefficients id="udO" type="Array" optimize="yes"> </coefficients>
</correlation>
<correlation ispecies="H" especies="u" isize="3" esize="3" rcut="10">
<coefficients id="uuH" type="Array" optimize="yes"> </coefficients>
</correlation>
<correlation ispecies="H" especiesl="u" especies2="d" isize="3" esize="3" rcut="10">
<coefficients id="udH" type="Array" optimize="yes"> </coefficients>
</correlation>
</jastrow>

9.7 Gaussian Product Wavefunction

The Gaussian Product wavefunction implements (9.24)

N

U(R) = Hexp —

=1

5 B2
(B — R7)° QRl) (9.24)

20

where R; is the position of the i quantum particle and RE’ is its center. o; is the width of the Gaussian orbital around
center <.

This variational wavefunction enhances single-particle density at chosen spatial locations with adjustable strengths. It
is useful whenever such localization is physically relevant yet not captured by other parts of the trial wavefunction.
For example, in an electron-ion simulation of a solid, the ions are localized around their crystal lattice sites. This
single-particle localization is not captured by the ion-ion Jastrow. Therefore, the addition of this localization term will
improve the wavefunction. The simplest use case of this wavefunction is perhaps the quantum harmonic oscillator
(please see the “tests/models/sho” folder for examples).

Input specification

Gaussian Product Wavefunction (ionwf):

Name | Datatype | Values | Default Description

Name | Text ionwf (Required) | Unique name for this wavefunction
Width | Floats 1.0-1 (Required) | Widths of Gaussian orbitals
Source | Text ion0 (Required) | Name of classical particle set

Additional information:

* width There must be one width provided for each quantum particle. If a negative width is given, then its
corresponding Gaussian orbital is removed. Negative width is useful if one wants to use Gaussian wavefunction
for a subset of the quantum particles.

* source The Gaussian centers must be specified in the form of a classical particle set. This classical particle
set is likely the ion positions “ion0,” hence the name “ionwf.” However, arbitrary centers can be defined using a
different particle set. Please refer to the examples in “tests/models/sho.”

96 Chapter 9. Trial wavefunction specification

QMCPACK Manual

9.7.1 Example Use Case

<gmcsystem>
<simulationcell>
<parameter name="bconds">
nnn
</parameter>
</simulationcell>
<particleset name="e">
<group name="u" size="1">
<parameter name="mass">5.0</parameter>
<attrib name="position" datatype="posArray" condition="0">
0.0001 -0.0001 0.0002
</attrib>
</group>
</particleset>
<particleset name="ion0" size="1">
<group name="H">
<attrib name="position" datatype="posArray" condition="0">
000
</attrib>
</group>
</particleset>
<wavefunction target="e" id="psi0">
<ionwf name="iwf" source="ion0" width="0.8165"/>
</wavefunction>
<hamiltonian name="h0" type="generic" target="e">
<extpot type="HarmonicExt" mass="5.0" energy="0.3"/>
<estimator type="latticedeviation" name="latdev"

target="e" tgroup="u"
source="1ion0" sgroup="H"/>
</hamiltonian>
</gmcsystem>

9.7. Gaussian Product Wavefunction

97

QMCPACK Manual

98 Chapter 9. Trial wavefunction specification

CHAPTER
TEN

HAMILTONIAN AND OBSERVABLES

QMCPACK is capable of the simultaneous measurement of the Hamiltonian and many other quantum operators. The
Hamiltonian attains a special status among the available operators (also referred to as observables) because it ultimately
generates all available information regarding the quantum system. This is evident from an algorithmic standpoint as
well since the Hamiltonian (embodied in the projector) generates the imaginary time dynamics of the walkers in DMC
and reptation Monte Carlo (RMC).

This section covers how the Hamiltonian can be specified, component by component, by the user in the XML format
native to qmcpack. It also covers the input structure of statistical estimators corresponding to quantum observables
such as the density, static structure factor, and forces.

10.1 The Hamiltonian

The many-body Hamiltonian in Hartree units is given by

H==3 gimiv% + D0 () + v i) + ;”chm Y0 (re) - (10.1)

1<j L<m

Here, the sums indexed by i/j are over quantum particles, while ¢/m are reserved for classical particles. Often
the quantum particles are electrons, and the classical particles are ions, though is not limited in this way. The
mass of each quantum particle is denoted m;, v?9/v9¢/v°¢ are pair potentials between quantum-quantum/quantum-
classical/classical-classical particles, and v°** denotes a purely external potential.

QMCPACK is designed modularly so that any potential can be supported with minimal additions to the code base.
Potentials currently supported include Coulomb interactions in open and periodic boundary conditions, the MPC po-
tential, nonlocal pseudopotentials, helium pair potentials, and various model potentials such as hard sphere, Gaussian,
and modified Poschl-Teller.

Reference information and examples for the <hamiltonian/> XML element are provided subsequently. Detailed
descriptions of the input for individual potentials is given in the sections that follow.

hamiltonian element:

parent elements: | simulation, gmcsystem
child elements: pairpot extpot estimator constant (deprecated)

attributes:

99

QMCPACK Manual

Name Datatype | Values De- Description
fault
name/ text anything hO Unique id for this Hamiltonian in-
id° stance
type’ text generic | No current function
role® text primary/extra extra Designate as Hamiltonian or not
source’ | text particleset. i Identify classical particleset
name
target? | text particleset. e Identify quantum particleset
name
default? | boolean yes/no yes Include kinetic energy term implicitly

Additional information:

e target: Must be set to the name of the quantum particleset. The default value is typically sufficient. In
normal usage, no other attributes are provided.

Listing 10.1: All electron Hamiltonian XML element.

<hamiltonian target="e">
<pairpot name="ElecElec" type="coulomb" source="e" target="e"/>

<pairpot name="ElecIon" type="coulomb" source="i" target="e"/>
<pairpot name="IonIon" type="coulomb" source="i" target="i"/>
</hamiltonian>

Listing 10.2: Pseudopotential Hamiltonian XML element.

<hamiltonian target="e">
<pairpot name="ElecElec" type="coulomb" source="e" target="e"/>
<pairpot name="PseudoPot" type="pseudo" source="i" wavefunction="psi0" format="xml
>
<pseudo elementType="Li" href="Li.xml"/>
<pseudo elementType="H" href="H.xml"/>
</pairpot>
<pairpot name="IonIon" type="coulomb" source="i" target="i"/>
</hamiltonian>

10.2 Pair potentials

Many pair potentials are supported. Though only the most commonly used pair potentials are covered in detail in this
section, all currently available potentials are listed subsequently. If a potential you desire is not listed, or is not present
at all, feel free to contact the developers.

pairpot factory element:

parent elements: | hamiltonian
child elements: type attribute

100 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

type options | coulomb | Coulomb/Ewald potential
pseudo Semilocal pseudopotential
mpc Model periodic Coulomb interaction/correction
cpp Core polarization potential
skpot Unknown
shared attributes:
Name Datatype| Values Default Description
type” text See above 0 Select pairpot type
name” text Anything any Unique name for this
pairpot
source”| text particleset. hamiltonian. Identify interacting parti-
name target cles
target”| text particleset. hamiltonian. Identify interacting parti-
name target cles
units® | text hartree No current function

Additional information:
* type: Used to select the desired pair potential. Must be selected from the list of type options.

* name: A unique name used to identify this pair potential. Block averaged output data will appear under this
name in scalar.dat and/or stat .hb5 files.

» source/target: These specify the particles involved in a pair interaction. If an interaction is between classi-
cal (e.g., ions) and quantum (e.g., electrons), source/target should be the name of the classical/quantum
particleset.

* Only Coulomb, pseudo,and mpc are described in detail in the following subsections. The older or less-used
types (cpp, skpot) are not covered.

* Available only if QMC_CUDA is not defined: skpot.
¢ Available only if OHMMS_DIM==3: mpc, vhxc, pseudo.

* Available only if OHMMS_DIM==3 and QMC__CUDA is not defined: cpp.

10.2.1 Coulomb potentials

The bare Coulomb potential is used in open boundary conditions:

yopen — 4i4;)
‘ i =75l

(10.2)

i<y
When periodic boundary conditions are selected, Ewald summation is used automatically:
b 4iq; qiq;
Ve = Z|T_r| ZZ‘T — (10.3)
i<j v J L;éO %7 B J

The sum indexed by L is over all nonzero simulation cell lattice vectors. In practice, the Ewald sum is broken into
short- and long-range parts in a manner optimized for efficiency (see [[NC95]]) for details.

For information on how to set the boundary conditions, consult Specifying the system to be simulated.

pairpot type=coulomb element:

10.2. Pair potentials 101

QMCPACK Manual

parent elements: | hamiltonian
child elements: None
attributes:
Name Datatype Values Default Description
type” text coulomb Must be coulomb
name/ text anything ElecElec Unique name for interac-
id" tion
source” | text particleset. hamiltonian. Identify interacting parti-
name target cles
target” | text particleset. hamiltonian. Identify interacting parti-
name target cles
pbc? boolean | yes/no yes Use Ewald summation
physicalf boolean | yes/no yes Hamilto-
nian(yes)/Observable(no)
gpu boolean | yes/no depend Offload computation to
GPU
forces boolean | yes/no no Deprecated

Additional information:

type/source/target: See description for the previous generic pairpot factory element.

name: Traditional user-specified names for electron-electron, electron-ion, and ion-ion terms are ElecElec,
ElecIon, and ITonIon, respectively. Although any choice can be used, the data analysis tools expect to find
columns in * . scalar.dat with these names.

pbc: Ewald summation will not be performed if simulationcell.bconds== n n n, regardless
of the value of pbc. Similarly, the pbc attribute can only be used to turn off Ewald summation if
simulationcell.bconds!= n n n. The default value is recommended.

physical: If physical==yes, this pair potential is included in the Hamiltonian and will factor into the
LocalEnergy reported by QMCPACK and also in the DMC branching weight. If physical==no, then
the pair potential is treated as a passive observable but not as part of the Hamiltonian itself. As such it does not
contribute to the outputted LocalEnergy. Regardless of the value of physical output data will appear in
scalar.dat in a column headed by name.

gpu: When not specified, use the gpu attribute of particleset.

Listing 10.3: QMCPXML element for Coulomb interaction between
electrons.

’<pairpot name="ElecElec" type="coulomb" source="e" target="e"/>

Listing 10.4: QMCPXML element for Coulomb interaction between
electrons and ions (all-electron only).

’<pairpot name="ElecIon" type="coulomb" source="1i" target="e"/>

102

Chapter 10. Hamiltonian and Observables

QMCPACK Manual

Listing 10.5: QMCPXML element for Coulomb interaction between
ions.

<pairpot name="IonIon" type="coulomb" source="i" target="i"/>

10.2.2 Pseudopotentials

QMCPACK supports pseudopotentials in semilocal form, which is local in the radial coordinate and nonlocal in
angular coordinates. When all angular momentum channels above a certain threshold (¢,,,..) are well approximated
by the same potential (V; = V},.), the pseudopotential separates into a fully local channel and an angularly nonlocal
component:

lmag

£
VEP =3 (Villr =il + 30 30 Wem) [Vellri = 751) = Villri = 751)] (Yol) (10.4)

ij 0£0 m=—L
Here the electron/ion index is 4/, and only one type of ion is shown for simplicity.

Evaluation of the localized pseudopotential energy qz;lvP P r requires additional angular integrals. These integrals
are evaluated on a randomly shifted angular grid. The size of this grid is determined by £,,,4,. See [[MSC91]] for
further detail.

uses the FSAtom pseudopotential file format associated with the “Free Software Project for Atomic-scale Simulations”
initiated in 2002. See http://www.tddft.org/fsatom/manifest.php for more information. The FSAtom format uses XML
for structured data. Files in this format do not use a specific identifying file extension; instead they are simply suffixed
with “. xm1.” The tabular data format of CASINO is also supported.

In addition to the semilocal pseudopotential above, spin-orbit interactions can also be included through the use of
spin-orbit pseudopotentials. The spin-orbit contribution can be written as

Lmaz—1 L
max 2 5 5
VRO D0 o gV U=l D Wem) (Vo[£ 51Yom) (Yo | (10.5)
ij =1 m,m/=—{

Here, §'is the spin operator. For each atom with a spin-orbit contribution, the radial functions Vgso can be included in
the pseudopotential ““. xm1” file.

pairpot type=pseudo element:

parent elements: | hamiltonian
child elements: pseudo

attributes:

10.2. Pair potentials 103

http://www.tddft.org/fsatom/manifest.php

QMCPACK Manual

Name DatatypeValues Default Description
type” text pseudo Must be pseudo
name/id" text anything PseudoPot No current function
source” text particleset. | i Ion particleset name
name
target” text particleset. | hamiltonian. | Electron particleset name
name target
pbc? boolean | yes/no yes* Use Ewald summation
forces boolean | yes/no no Deprecated
wavefunct ijotekt wavefunction. invalid Identify wavefunction
name
format” text xml/table table Select file format
algorithm?| text batched/non- batched Choose NLPP algorithm
batched
DLA° text yes/no no Use determinant localization ap-
proximation
physicalSQ°’boolean | yes/no yes Include the SO contribution in
the local energy

Additional information:

type/source/target See description for the generic pairpot factory element.

name: Ignored. Instead, default names will be present in xscalar.dat output files when pseudopotentials
are used. The field LocalECP refers to the local part of the pseudopotential. If nonlocal channels are present,
a NonLocalECP field will be added that contains the nonlocal energy summed over all angular momentum
channels.

pbc: Ewald summation will not be performed if simulationcell.bconds== n n n, regardless
of the value of pbc. Similarly, the pbc attribute can only be used to turn off Ewald summation if

simulationcell.bconds!= n n n.

format: If format==table, QMCPACK looks for ».psf files containing pseudopotential data in a tabular
format. The files must be named after the ionic species provided in particleset (e.g., Li.psf and H.
psf). If format==xml, additional pseudo child XML elements must be provided (see the following). These
elements specify individual file names and formats (both the FSAtom XML and CASINO tabular data formats
are supported).

algorithm The non-batched algorithm evaluates the ratios of wavefunction components together for each
quadrature point and then one point after another. The batched algorithm evaluates the ratios of quadrature
points together for each wavefunction component and then one component after another. Internally, it uses
VirtualParticleSet for quadrature points. Hybrid orbital representation has an extra optimization en-
abled when using the batched algorithm. When OpenMP offload build is enabled, the default value is bat ched.
Otherwise, non—-batched is the default.

DLA Determinant localization approximation (DLA) [[ZBMAIfe19]] uses only the fermionic part of the wave-
function when calculating NLPP.

physicalSO If the spin-orbit components are included in the . xm1 file, this flag allows control over whether the

SO contribution is included in the local energy.

Listing 10.6: QMCPXML element for pseudopotential electron-ion in-
teraction (psf files).

<pairpot name="PseudoPot" type="pseudo"

source="1" wavefunction="psi0" format="psf

(‘}u/>

104

Chapter 10. Hamiltonian and Observables

QMCPACK Manual

Listing 10.7: QMCPXML element for pseudopotential electron-ion in-
teraction (xml files). If SOC terms present in xml, they are added to local
energy

<pairpot name="PseudoPot" type="pseudo" source="1" wavefunction="psi0" format="xml

(_)ll>
<pseudo elementType="Li" href="Li.xml"/>
<pseudo elementType="H" href="H.xml"/>

</pairpot>

Listing 10.8: QMCPXML element for pseudopotential to accumulate the
spin-orbit energy, but do not include in local energy

<pairpot name="PseudoPot" type="pseudo" source="i
—physicalSO="no">
<pseudo elementType="Pb" href="Pb.xml"/>
</pairpot>

wavefunction="psi0" format="xml"

Details of <pseudo/> input elements are shown in the following. It is possible to include (or construct) a full
pseudopotential directly in the input file without providing an external file via href. The full XML format for

pseudopotentials is not yet covered.

pseudo element:

parent elements: | pairpot type=pseudo

child elements: header local grid
attributes:
Name Datatype | Values De- Description
fault
elementType/ text groupe. none Identify ionic species
symbol” name
href” text filepath none Pseudopotential file path
format” text xml/casino xml Specify file format
cutoff® real Nonlocal cutoff radius
Imax® integer Largest angular momen-
tum
nrule’ integer Integration grid order
l1-local® integer Override local channel

10.2. Pair potentials

105

QMCPACK Manual

Listing 10.9: QMCPXML element for pseudopotential of single ionic
species.

<pseudo elementType="Li" href="Li.xml"/>

10.2.3 MPC Interaction/correction

The MPC interaction is an alternative to direct Ewald summation. The MPC corrects the exchange correlation hole
to more closely match its thermodynamic limit. Because of this, the MPC exhibits smaller finite-size errors than the
bare Ewald interaction, though a few alternative and competitive finite-size correction schemes now exist. The MPC
is itself often used just as a finite-size correction in post-processing (set physical=false in the input).

pairpot type=mpc element:

parent elements: | hamiltonian
child elements: None
attributes:
Name Datatype Values Default Description
type” text mpc Must be MPC
name/ text anything MPC Unique name for interac-
id" tion
source” | text particleset. hamiltonian. Identify interacting parti-
name target cles
target” | text particleset. hamiltonian. Identify interacting parti-
name target cles
physical? boolean | yes/no no Hamilto-
nian(yes)/observable(no)
cutoff real >0 30.0 Kinetic energy cutoff

Remarks:

* physical: Typically set to no, meaning the standard Ewald interaction will be used during sampling and MPC
will be measured as an observable for finite-size post-correction. If physical is yes, the MPC interaction
will be used during sampling. In this case an electron-electron Coulomb pairpot element should not be
supplied.

* Developer note: Currently the name attribute for the MPC interaction is ignored. The name is always reset to
MPC.

106 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

Listing 10.10: MPC for finite-size postcorrection.

’ <pairpot type="MPC" name="MPC" source="e" target="e" ecut="60.0" physical="no"/>

10.3 General estimators

A broad range of estimators for physical observables are available in QMCPACK. The following sections contain
input details for the total number density (density), number density resolved by particle spin (spindensity),
spherically averaged pair correlation function (gofr), static structure factor (sk), static structure factor (skall),
energy density (energydensity), one body reduced density matrix (dm1b), S(k) based kinetic energy correction
(chiesa), forward walking (ForwardWalking), and force (Force) estimators. Other estimators are not yet

covered.

When an <estimator/> element appears in <hamiltonian/>, it is evaluated for all applicable chained QMC
runs (e.g., VMC—DMC—DMC). Estimators are generally not accumulated during wavefunction optimization sec-
tions. If an <estimator/> element is instead provided in a particular <gmc/> element, that estimator is only
evaluated for that specific section (e.g., during VMC only).

estimator factory element:

parent elements:

hamiltonian, gmc

type selector:

type attribute

type op- | density Density on a grid
tions
spindensity Spin density on a grid
gofr Pair correlation function (quantum species)
sk Static structure factor
SkAll Static structure factor needed for finite size correction
structurefactor | Species resolved structure factor
species kinetic | Species resolved kinetic energy
latticedevia- Spatial deviation between two particlesets
tion
momentum Momentum distribution
energydensity | Energy density on uniform or Voronoi grid
dmlb One body density matrix in arbitrary basis
chiesa Chiesa-Ceperley-Martin-Holzmann kinetic energy correction
Force Family of “force” estimators (see Chiesa-Ceperley-Zhang Force Es-
timators)
ForwardWalk- | Forward walking values for existing estimators
ing
orbitalimages Create image files for orbitals, then exit
flux Checks sampling of kinetic energy
localmoment Atomic spin polarization within cutoff radius
Pressure No current function

shared attributes:

10.3. General estimators

107

QMCPACK Manual

Name | Datatype | Values Default | Description
type” | text See above | 0 Select estimator type
name” | text anything | any Unique name for this estimator

10.3.1 Chiesa-Ceperley-Martin-Holzmann kinetic energy correction

This estimator calculates a finite-size correction to the kinetic energy following the formalism laid out in [[CCMHO06]].
The total energy can be corrected for finite-size effects by using this estimator in conjunction with the MPC correction.

estimator type=chiesa element:

parent elements: | hamiltonian, gmc
child elements: | None
attributes:
Name Datatype | Values Default | Description
type” text chiesa Must be chiesa
name® text anything KEcorr | Always reset to KEcorr
source® | text particleset.name e Identify quantum particles
psi® text wavefunction.name | psi0 Identify wavefunction

Listing 10.11: “Chiesa” kinetic energy finite-size postcorrection.

<estimator name="KEcorr" type="chiesa" source="e" psi="psi0"/>

10.3.2 Density estimator

The particle number density operator is given by

ﬁrzz:é(r—ri).

The density estimator accumulates the number density on a uniform histogram grid over the simulation cell. The
value obtained for a grid cell ¢ with volume (2. is then the average number of particles in that cell:

nc:/dR|\I/|2/ eré(r—ri).
Q. -

estimator type=density element:

attributes:

parent elements:

hamiltonian,

qmc

child elements: None

(10.6)

(10.7)

108

Chapter 10. Hamiltonian and Observables

QMCPACK Manual

Name Datatype | Values Default Description

type” text density Must be density

name” text anything any Unique name for estimator

delta® real ar- | 0 < v; < 1010.10.1 Grid cell spacing, unit coords

ray(3) 1

x_min® real >0 0 Grid starting point in x (Bohr)

X_max’ real >0 | lattice[0] | Grid ending point in x (Bohr)
|

y_min® real >0 0 Grid starting point in y (Bohr)

y_max’ real >0 | lattice[1] | Grid ending point in y (Bohr)
|

z_min® real >0 0 Grid starting point in z (Bohr)

z_max°® real >0 | lattice[2] | Grid ending point in z (Bohr)
|

potential?| boolean yes/no no Accumulate local potential, depre-

cated
debug’ boolean yes/no no No current function

Additional information:

e name: The name provided will be used as a label in the stat .h5 file for the blocked output data. Postpro-
cessing tools expect name="Density."

* delta: This sets the histogram grid size used to accumulate the density: delta="0.1 0.1 0.05"—
10 x 10 x 20 grid, delta="0.01 0.01 0.01"— 100 x 100 x 100 grid. The density grid is written to a
stat.hb file at the end of each MC block. If you request many blocks in a <gmc/> element, or select a large
grid, the resulting stat . h5 file could be many gigabytes in size.

x_min/*_max: Can be used to select a subset of the simulation cell for the density histogram grid. For ex-
ample if a (cubic) simulation cell is 20 Bohr on a side, setting *_min=5.0 and x_max=15.0 will resultin a
density histogram grid spanning a 10 x 10 x 10 Bohr cube about the center of the box. Use of x_min, x_max,
y_min, y_max, z_min, z_max isonly appropriate for orthorhombic simulation cells with open bound-
ary conditions.

When open boundary conditions are used, a <simulationcell/> element must be explicitly provided as
the first subelement of <gmcsystem/> for the density estimator to work. In this case the molecule should be
centered around the middle of the simulation cell (L/2) and not the origin (0 since the space within the cell, and
hence the density grid, is defined from O to L).

Listing 10.12: QMCPXML,caption=Density estimator (uniform grid).

<estimator name="Density" type="density" delta="0.05 0.05 0.05"/>

10.3.3 Spin density estimator

The spin density is similar to the total density described previously. In this case, the sum over particles is performed
independently for each spin component.

estimator type=spindensity element:

parent elements:

hamiltonian,

gmc

child elements:

None

10.3. General estimators

109

QMCPACK Manual

attributes:
Name Datatype | Values Default | Description
type” text spindensity Must be spindensity
name” text anything any Unique name for estimator
report® | boolean yes/no no Write setup details to stdout
parameters:
Name Datatype Values De- Description
fault
grid® integer ar- | v; > Grid cell count
ray(3)
dr® real array(3) v; > Grid cell spacing (Bohr)
cell® real ar- | anything Volume grid exists in
ray(3,3)
corner® real array(3) anything Volume corner location
center® real array (3) | anything Volume center/origin location
voronoi® text particleset. Under development
name
test_moves?| integer >=0 0 Test estimator with random
moves

Additional information:

e name: The name provided will be used as a label in the stat . h5 file for the blocked output data. Postpro-
cessing tools expect name="SpinDensity."

e grid: The grid sets the dimension of the histogram grid. Input like <parameter name="grid"> 40 40
40 </parameter> requests a 40 x 40 x 40 grid. The shape of individual grid cells is commensurate with
the supercell shape.

e dr: The dr sets the real-space dimensions of grid cell edges (Bohr units). Input like <parameter
name="dr"> 0.5 0.5 0.5 </parameter> in a supercell with axes of length 10 Bohr each (but of
arbitrary shape) will produce a 20 x 20 x 20 grid. The inputted dr values are rounded to produce an integer
number of grid cells along each supercell axis. Either grid or dr must be provided, but not both.

e cell: When cell is provided, a user-defined grid volume is used instead of the global supercell. This must
be provided if open boundary conditions are used. Additionally, if cell is provided, the user must specify
where the volume is located in space in addition to its size/shape (ce11) using either the corner or center
parameters.

e corner: The grid volume is defined as corner + 23:1 ugcelly with 0 < ug < 1 (“cell” refers to either the
supercell or user-provided cell).

e center: The grid volume is defined as center + 23:1 ugeelly with —1/2 < ug < 1/2 (“cell” refers to
either the supercell or user-provided cell). corner/center can be used to shift the grid even if cel1l is not
specified. Simultaneous use of corner and center will cause QMCPACK to abort.

Listing 10.13: Spin density estimator (uniform grid).

<estimator type="spindensity" name="SpinDensity" report="yes">
<parameter name="grid"> 40 40 40 </parameter>
</estimator>

110 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

Listing 10.14: Spin density estimator (uniform grid centered about ori-
gin).

<estimator type="spindensity" name="SpinDensity" report="yes">
<parameter name="grid">
20 20 20
</parameter>
<parameter name="center">
0.0 0.0 0.0
</parameter>
<parameter name="cell">
10.0 0.0 0.0
0.0 10.0 0.0
0.0 0.0 10.0
</parameter>
</estimator>

10.3.4 Pair correlation function, g(r)

The functional form of the species-resolved radial pair correlation function operator is

N N ’

Gas' () = WQN N 2 > 6 I, —). (10.8)

i1s=1]5/—1

where N is the number of particles of species s and V' is the supercell volume. If s = &', then the sum is restricted so
that i5 # js.

In QMCPACK, an estimate of g, () is obtained as a radial histogram with a set of N, uniform bins of width dr. This
can be expressed analytically as

v N, Ny r+6r/2
~ss’ d (5 — |Tsi s'jl) 10.9
G (1) = 472N, Ny ; /r or/2 o0 = lrsi —ryjl) ()

where the radial coordinate r is restricted to reside at the bin centers, 6r/2, 36r/2,56r/2,

estimator type=gofr element:

parent elements: | hamiltonian, gmc
child elements: None

attributes:

10.3. General estimators 111

QMCPACK Manual

Name Datatype Values Default Description
type” text gofr Must be gofr
name® text anything any No current function
num_bin” integer >1 20 # of histogram bins
rmax’ real >0 10 Histogram extent
(Bohr)
dr?® real 0 0.5 No current function
debug’ boolean | yes/no no No current function
target?® text particleset. hamiltonian. Quantum particles
name target
source/ text particleset. hamiltonian. Classical particles
sources® array name target

Additional information:
e num_bin: This is the number of bins in each species pair radial histogram.

e rmax: This is the maximum pair distance included in the histogram. The uniform bin width is §r =
rmax/num_bin. If periodic boundary conditions are used for any dimension of the simulation cell, then
the default value of rmax is the simulation cell radius instead of 10 Bohr. For open boundary conditions, the
volume (V) used is 1.0 Bohr?.

e source/sources: If unspecified, only pair correlations between each species of quantum particle will be
measured. For each classical particleset specified by source/sources, additional pair correlations between
each quantum and classical species will be measured. Typically there is only one classical particleset (e.g.,
source="1ion0"), but there can be several in principle (e.g., sources="ion0 ionl ion2").

* target: The default value is the preferred usage (i.e., target does not need to be provided).

e Data is output to the stat.h5 for each QMC subrun. Individual histograms are named according to the
quantum particleset and index of the pair. For example, if the quantum particleset is named “e” and there are
two species (up and down electrons, say), then there will be three sets of histogram data in each stat .h5 file
named gofr_e_0_0, gofr_e_0_1, and gofr_e_1_1 for up-up, up-down, and down-down correlations,

respectively.

Listing 10.15: Pair correlation function estimator element.

<estimator type="gofr" name="gofr" num _bin="200" rmax="3.0" />

Listing 10.16: Pair correlation function estimator element with additional
electron-ion correlations.

<estimator type="gofr" name="gofr" num _bin="200" rmax="3.0" source="ion0O" />

10.3.5 Static structure factor, S(k)

Let pf = > j ¢’ i be the Fourier space electron density, with r{ being the coordinate of the j-th electron. k is
a wavevector commensurate with the simulation cell. QMCPACK allows the user to accumulate the static electron
structure factor S(k) at all commensurate k such that |k| < (LR_DIM_CUTOFF)r.. N¢ is the number of elec-
trons, LR_DIM CUTOFF is the optimized breakup parameter, and 7. is the Wigner-Seitz radius. It is defined as
follows:

S06) = 2 k) (10.10)

estimator type=sk element:

112 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

parent elements: | hamiltonian, gmc
child elements: None

attributes:

Name | Datatype | Values | Default | Description

type” | text sk Must sk

name” | text anything | any Unique name for estimator

hdf5° | boolean yes/no no Output to stat .h5 (yes) or scalar.dat (no)

Additional information:

name: This is the unique name for estimator instance. A data structure of the same name will appear in
stat .h5 output files.

hdf5: If hdf5==yes, output data for S(k) is directed to the stat.h5 file (recommended usage). If
hdf5==no, the data is instead routed to the scalar.dat file, resulting in many columns of data with head-
ings prefixed by name and postfixed by the k-point index (e.g., sk_0 sk_1 ...sk_1037 ...).

This estimator only works in periodic boundary conditions. Its presence in the input file is ignored otherwise.

This is not a species-resolved structure factor. Additionally, for k vectors commensurate with the unit cell, S (k)
will include contributions from the static electronic density, thus meaning it will not accurately measure the
electron-electron density response.

Listing 10.17: Static structure factor estimator element.

<estimator type="sk" name="sk" hdf5="yes"/>

10.3.6 Static structure factor, skall

In order to compute the finite size correction to the potential energy, records of p(k) is required. What sets SkA11l
apart from sk is that SkA11 records p(k) in addition to s(k).

estimator type=SkAll element:

parent elements: | hamiltonian, gmc
child elements: None

attributes:

10.3. General estimators 113

QMCPACK Manual

Name Datatype Values De- Description
fault
type” text sk Must be sk
name” text anything any Unique name for estimator
source” text Ion ParticleSet | None | -
name
target” text Electron Particle- | None | -
Set name
hdf5° boolean | yes/no no Output to stat.h5 (yes) or scalar.
dat (no)
writeioniognBoolean | yes/no no Writes file rhok_lonlon.dat containing
s(k) for the ions

Additional information:

* name: This is the unique name for estimator instance. A data structure of the same name will appear in
stat.h5 output files.

e hdf5: If hdf5==yes, output data is directed to the stat .h5 file (recommended usage). If hdf5==no, the
data is instead routed to the scalar.dat file, resulting in many columns of data with headings prefixed by
rhok and postfixed by the k-point index.

* This estimator only works in periodic boundary conditions. Its presence in the input file is ignored otherwise.

 This is not a species-resolved structure factor. Additionally, for k vectors commensurate with the unit cell,
S (k) will include contributions from the static electronic density, thus meaning it wil not accurately measure
the electron-electron density response.

Listing 10.18: SkAll estimator element.

’ <estimator type="skall" name="SkAll" source="ion0" target="e" hdf5

="yes"/>

10.3.7 Species kinetic energy

Record species-resolved kinetic energy instead of the total kinetic energy in the Kinetic column of scalar.dat.
SpeciesKineticEnergy is arguably the simplest estimator in QMCPACK. The implementation of this estimator
is detailed in manual/estimator/estimator_implementation.pdf.

estimator type=specieskinetic element:

parent elements: | hamiltonian, gmc
child elements: None
attributes:
Name | Datatype | Values Default | Description
type” | text specieskinetic Must be specieskinetic
name” | text anything any Unique name for estimator
hd£f5¢ | boolean yes/no no Output to stat .hb5 (yes)
114 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

Listing 10.19: Species kinetic energy estimator element.

<estimator type="specieskinetic"

name="skinetic"

hdf5="no"/>

10.3.8 Lattice deviation estimator

Record deviation of a group of particles in one particle set (target) from a group of particles in another particle set

(source).

estimator type=latticedeviation element:

parent elements: | hamiltonian, gmc
child elements: None
attributes:

Name Datatype | Values Default | Description
type” text latticedeviation Must be latticedeviation
name” text anything any Unique name for estimator
hdf5° boolean yes/no no Output to stat .hb5 (yes)
per_xyz? | boolean yes/no no Directionally resolved (yes)
source” text efion0/. .. no source particleset
sgroup” text u/d/. .. no source particle group
target” text e/ion0/. .. no target particleset
tgroup” text u/d/. .. no target particle group

Additional information:

* source: The “reference” particleset to measure distances from; actual reference points are determined together

with sgroup.

* sgroup: The “reference” particle group to measure distances from.

* source: The “target” particleset to measure distances to.

e sgroup: The “target” particle group to measure distances to. For example, in Listing 32 the distance from the

up electron (“u”) to the origin of the coordinate system is recorded.

* per_xyz: Used to record direction-resolved distance. In Listing 32, the x,y,z coordinates of the up electron
will be recorded separately if per_xyz=yes.

* hdf5: Used to record particle-resolved distances in the hS file if gdf5=yes.

Listing 10.20: Lattice deviation estimator element.

<particleset name="e"
<group name="u"

random="yes">

size="1" mass="1.0">

<parameter name="charge"

<parameter name="mass"
</group>
<group name="d" size="1"

mass="1.0">

<parameter name="charge"

<parameter name="
</group>

mass"

\%

\%

</parameter>
</parameter>

</parameter>
</parameter>

(continues on next page)

10.3. General estimators

115

QMCPACK Manual

(continued from previous page)

</particleset>

<particleset name="wf_center">
<group name="origin" size="1">
<attrib name="position" datatype="posArray" condition="0">
0.00000000 0.00000000 0.00000000
</attrib>
</group>
</particleset>

<estimator type="latticedeviation" name="latdev" hdf5="yes" per_xyz="yes"

—_n

source="wf_center" sgroup="origin" target="e" tgroup="u"/>

10.3.9 Energy density estimator

An energy density operator, &,., satisfies
/drs} =H, (10.11)

where the integral is over all space and H is the Hamiltonian. In QMCPACK, the energy density is split into kinetic
and potential components

E =T +Vr, (10.12)

with each component given by

T
|
DN | =
(o)
=
3
|
<
-
v
=
=N

f}r _ Z (5(7" — T’i) + (5(7" _ Tj)ﬁee(,,,i7,,,j) + Z (5(7‘ — ri) —"2_ 5(T _ ,FZ)’{}EI(T'Z',?;[)
il

— 2
1<J

ToyTm) -

o — 7 g B ~m ~
n Z (r W)Z (r—r)UII(
<m

Here, r; and 7, represent electron and ion positions, respectively; p; is a single electron momentum operator; and
0°¢(ry,), 9% (r;,7¢), and d11 (74, 7,,) are the electron-electron, electron-ion, and ion-ion pair potential operators
(including nonlocal pseudopotentials, if present). This form of the energy density is size consistent; that is, the
partially integrated energy density operators of well-separated atoms gives the isolated Hamiltonians of the respective
atoms. For periodic systems with twist-averaged boundary conditions, the energy density is formally correct only
for either a set of supercell k-points that correspond to real-valued wavefunctions or a k-point set that has inversion
symmetry around a k-point having a real-valued wavefunction. For more information about the energy density, see
[[KYKCI13]].

In QMCPACK, the energy density can be accumulated on piecewise uniform 3D grids in generalized Cartesian, cylin-
drical, or spherical coordinates. The energy density integrated within Voronoi volumes centered on ion positions is
also available. The total particle number density is also accumulated on the same grids by the energy density estimator
for convenience so that related quantities, such as the regional energy per particle, can be computed easily.

estimator type=EnergyDensity element:

parent elements: | hamiltonian, gmc
child elements: reference_points, spacegrid

116 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

attributes:
Name Datatype| Values De- Description
fault

type” text EnergyDensity Must be EnergyDensity
name” text anything Unique name for estimator
dynamic” text particleset. Identify electrons

name
static® text particleset. Identify ions

name
ion_points{ text yes/no no Separate ion energy density onto point

field

Additional information:

* name: Must be unique. A dataset with blocked statistical data for the energy density will appear in the stat.
h5 files labeled as name.

» Important: in order for the estimator to work, a traces XML input element (<traces array=""yes” write="no"/>)

must appear following the <gmcsystem/> element and prior to any <gmc/> element.

Listing 10.21: Energy density estimator accumulated on a 20 x 10 x 10
grid over the simulation cell.

<estimator type="EnergyDensity" name="EDcell" dynamic="e" static="ion0">
<spacegrid coord="cartesian">
<origin pl="zero"/>
<axis pl="al" scale=".5" label="x" grid="-1 (.05) 1"/>
<axis pl="a2" scale=".5" label="y" grid="-1 (.1) 1"/>
<axis pl="a3" scale=".5" label="z" grid="-1 (.1) 1"/>
</spacegrid>
</estimator>

Listing 10.22: Energy density estimator accumulated within spheres of
radius 6.9 Bohr centered on the first and second atoms in the ion0 parti-
cleset.

<estimator type="EnergyDensity" name="EDatom" dynamic="e" static="ion0">
<reference_points coord="cartesian">
rl 1 00
r2 01 0
r3 0 0 1
</reference_points>
<spacegrid coord="spherical">
<origin pl="ion01"/>
<axis pl="rl" scale="6.9" label="r" grid="0 1"/>
<axis pl="r2" scale="6.9" label="phi" grid="0 1"/>
<axis pl="r3" scale="6.9" label="theta" grid="0 1"/>
</spacegrid>
<spacegrid coord="spherical">
<origin pl="ion02"/>
<axis pl="rl" scale="6.9" label="r" grid="0 1"/>
<axis pl="r2" scale="6.9" label="phi" grid="0 1"/>
<axis pl="r3" scale="6.9" label="theta" grid="0 1"/>
</spacegrid>

(continues on next page)

10.3. General estimators 117

QMCPACK Manual

(continued from previous page)

</estimator>

Listing 10.23: Energy density estimator accumulated within Voronoi
polyhedra centered on the ions.

<estimator type="EnergyDensity" name="EDvoronoi" dynamic="e" static="ion0">

<spacegrid coord="voronoi"/>

</estimator>

The <reference_points/> element provides a set of points for later use in specifying the origin and coordinate
axes needed to construct a spatial histogramming grid. Several reference points on the surface of the simulation cell
(see Table 10.3.9), as well as the positions of the ions (see the energydensity.static attribute), are made
available by default. The reference points can be used, for example, to construct a cylindrical grid along a bond with
the origin on the bond center.

reference_points element:

parent elements:

estimator type=EnergyDensity

child elements: None
attributes:
Name Datatype | Values Default | Description
coord” | text Cartesian/cell Specify coordinate system

body text: The body text is a line formatted list of points with labels

Additional information:

e coord: If coord=cartesian, labeled points are in Cartesian (X,y,z) format in units of Bohr. If
coord=cell, then labeled points are in units of the simulation cell axes.

* body text: The list of points provided in the body text are line formatted, with four entries per line (la-
bel coorl coor2 coor3). A set of points referenced to the simulation cell is available by default (see Table
10.3.9). If energydensity.static is provided, the location of each individual ion is also available (e.g.,
if energydensity.static=1ion0, then the location of the first atom is available with label ion01, the sec-
ond with ion02, etc.). All points can be used by label when constructing spatial histogramming grids (see the
following spacegrid element) used to collect energy densities.

118

Chapter 10. Hamiltonian and Observables

QMCPACK Manual

label | point description
zZero 000 Cell center

al a1 Cell axis 1

a2 as Cell axis 2

a3 as Cell axis 3

flp a1/2 Cell face 1+
flm -a1/2 Cell face 1-

f2p as/2 Cell face 2+
f2m -as/2 Cell face 2-

f3p asl2 Cell face 3+
f3m -az/2 Cell face 3-
cppp (a1 +az +as)/2 Cell corner +,+,+
cppm (a1 +ag —az)/2 Cell corner +,+,-
cpmp | (a1 —ag +a3z)/2 Cell corner +,-,+
cmpp | (—a1 + a2 +asz)/2 | Cell corner -,+,+
cpmm | (a1 — a2 —as)/2 Cell corner +,-,-
cmpm | (—aj +az —as)/2 | Cell corner -,+,-
cmp | (—a; —as +as3)/2 | Cell corner -,-,+
cmmm (—ay — ag —asz)/2 | Cell corner -,-,-

Table 8 Reference points available by default. Vectors a1, ao, and ag refer to the simulation cell axes. The
representation of the cell is centered around zero.

The <spacegrid/> element is used to specify a spatial histogramming grid for the energy density. Grids are con-
structed based on a set of, potentially nonorthogonal, user-provided coordinate axes. The axes are based on information
available from reference_points. Voronoi grids are based only on nearest neighbor distances between electrons
and ions. Any number of space grids can be provided to a single energy density estimator.

spacegrid element:

parent elements:
child elements:

estimator type=EnergyDensity

origin, axis

attributes:
Name Datatype | Values Default | Description
coord” | text Cartesian Specify coordinate system
cylindrical
spherical
Voronoi

The <origin/> element gives the location of the origin for a non-Voronoi grid.
Additional information:

e pl/p2/fraction: The location of the origin is set to pl+fractionx (p2-pl). If only pl is provided,
the origin is at p1.

origin element:

parent elements: | spacegrid
child elements: None

attributes:

10.3. General estimators 119

QMCPACK Manual

Name Datatype | Values Default | Description

pl” text reference_point.label Select end point

p2° text reference_point.label Select end point
fraction® | real 0 Interpolation fraction

The <axis/> element represents a coordinate axis used to construct the, possibly curved, coordinate system for the
histogramming grid. Three <axis/> elements must be provided to a non-Voronoi <spacegrid/> element.

axis element:

parent elements: | spacegrid

child elements: None
attributes:

Name Datatype | Values Default | Description
label” | text See below Axis/dimension label
grid” text “01” Grid ranges/intervals
pl” text reference_point.label Select end point

p2° text reference_point.label Select end point
scale? | real Interpolation fraction

Additional information:

* label: The allowed set of axis labels depends on the coordinate system (i.e., spacegrid.coord).
Labels are x/y/z for coord=cartesian, r/phi/z for coord=cylindrical, r/phi/theta for
coord=spherical.

* pl/p2/scale: The axis vector is set to pl+scalex (p2-pl). If only pl is provided, the axis vector is
pl.

* grid: The grid specifies the histogram grid along the direction specified by 1abel. The allowed grid points
fall in the range [-1,1] for label=x/y/z or [0,1] for r/phi/theta. A grid of 10 evenly spaced points
between 0 and 1 can be requested equivalently by grid="0 (0.1) 1" orgrid="0 (10) 1." Piecewise
uniform grids covering portions of the range are supported, e.g., grid="-0.7 (10) 0.0 (20) 0.5."

Note that grid specifies the histogram grid along the (curved) coordinate given by 1abel. The axis specified
by pl/p2/scale does not correspond one-to-one with 1abel unless label=x/y/z, but the full set of axes
provided defines the (sheared) space on top of which the curved (e.g., spherical) coordinate system is built.

10.3.10 One body density matrix

The N-body density matrix in DMC is py = |¥7) (¥ gy | (for VMC, substitute ¥ for ¥z). The one body reduced
density matrix (IRDM) is obtained by tracing out all particle coordinates but one:

ﬁl = E T’I‘Rn
n

In this formula, the sum is over all electron indices and Trp,(x) = [dR,(R,|+*|R,) with R, =
[F1y s T—1,Tn+1, .-, 7). When the sum is restricted over spin-up or spin-down electrons, one obtains a density
matrix for each spin species. The IRDM computed by is partitioned in this way.

Ur)(Vrn| (10.13)

In real space, the matrix elements of the IRDM are

ni(r,r’) = (r|in|r') = Z/an\PT(n R) Wi (r', Ry) (10.14)

120 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

A more efficient and compact representation of the IRDM is obtained by expanding in the SPOs obtained from a
Hartree-Fock or DFT calculation, {¢; }:
(i, j) = (¢i] ¢5)
Wp)

= / ARV y (R)Ur(R) Y / dr;Mm(r;)*@(m)-

The integration over r’ in (10.15) is inefficient when one is also interested in obtaining matrices involving energetic
quantities, such as the energy density matrix of [[KKR14]] or the related (and more well known) generalized Fock
matrix. For this reason, an approximation is introduced as follows:

77, Bn)*

mid) = [arve()ee() Y [g) 600, (10.15)

For VMC, FN-DMC, FP-DMC, and RN-DMC this formula represents an exact sampling of the 1RDM corresponding
to [)}fv (see appendix A of [[KKR14]] for more detail).

estimtor type=dmlb element:

parent elements: | hamiltonian, gmc
child elements: None

attributes:

Name | Datatype | Values | Default | Description

type” | text dmlb Must be dm1b

name” | text anything Unique name for estimator
parameters:

10.3. General estimators 121

QMCPACK Manual

Name Datatype | Values Default Description
basis” text array | sposet.name(s) Orbital basis
integrator®? text uniform_grid uniform | uni- Integration method
density form_grid
evaluator® text loop/matrix loop Evaluation method
scale’ real 0 < scale < 1 1.0 Scale integration cell
center® real any point Center of cell
array(3)
points® integer >0 10 Grid points in each
dim
samples® integer >0 10 MC samples
warmup’ integer >0 30 MC warmup
timestep?® real >0 0.5 MC time step
use_drift? boolean yes/no no Use drift in VMC
check_overlap® boolean yes/no no Print overlap matrix
check_derivativegsBoolean yes/no no Check density
derivatives
acceptance_ratig®boolean yes/no no Print accept ratio
rstats® boolean yes/no no Print spatial stats
normalized® boolean yes/no yes basis comes
norm’ed
volume_normed® boolean yes/no yes basis norm is vol-
ume
energy_matrix® boolean yes/no no Energy density ma-
trix

Additional information:
* name: Density matrix results appear in stat . h5 files labeled according to name.

* basis: List sposet.name’s. The total set of orbitals contained in all sposet’s comprises the basis (sub-
space) onto which the one body density matrix is projected. This set of orbitals generally includes many virtual
orbitals that are not occupied in a single reference Slater determinant.

* integrator: Select the method used to perform the additional single particle integration. Options are
uniform_grid (uniform grid of points over the cell), uniform (uniform random sampling over the cell),
and density (Metropolis sampling of approximate density, > ;. ... %5 %, is not well tested, please check
results carefully!). Depending on the integrator selected, different subsets of the other input parameters are
active.

* evaluator: Select for-loop or matrix multiply implementations. Matrix is preferred for speed. Both imple-
mentations should give the same results, but please check as this has not been exhaustively tested.

e scale: Resize the simulation cell by scale for use as an integration volume (active for
integrator=uniform/uniform_grid).

e center: Translate the integration volume to center at this point (active for integrator=uniform/
uniform_grid). If center is not provided, the scaled simulation cell is used as is.

e points: Number of grid points in each dimension for integrator=uniform_grid. For example,
points=10 results in a uniform 10 x 10 x 10 grid over the cell.

e samples: Sets the number of MC samples collected for each step (active for integrator=uniform/
density).

e warmup: Number of warmup Metropolis steps at the start of the run before data collection (active for
integrator=density).

122 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

timestep: Drift-diffusion time step used in Metropolis sampling (active for integrator=density).
use_drift: Enable drift in Metropolis sampling (active for integrator=density).

check_overlap: Print the overlap matrix (computed via simple Riemann sums) to the log, then abort. Note
that subsequent analysis based on the 1RDM is simplest if the input orbitals are orthogonal.

check_derivatives: Print analytic and numerical derivatives of the approximate (sampled) density for
several sample points, then abort.

acceptance_ratio: Print the acceptance ratio of the density sampling to the log for each step.
rstats: Print statistical information about the spatial motion of the sampled points to the log for each step.

normalized: Declare whether the inputted orbitals are normalized or not. If normalized=no, direct
Riemann integration over a 200 x 200 x 200 grid will be used to compute the normalizations before use.

volume_normed: Declare whether the inputted orbitals are normalized to the cell volume (default) or not (a
norm of 1.0 is assumed in this case). Currently, B-spline orbitals coming from QE and HEG planewave orbitals
native to QMCPACK are known to be volume normalized.

energy_matrix: Accumulate the one body reduced energy density matrix, and write it to stat .h5. This
matrix is not covered in any detail here; the interested reader is referred to [[KKR14]].

Listing 10.24: One body density matrix with uniform grid integration.

<estimator type="dmlb"

name="DensityMatrices">

<parameter name="basis" > spo_u spo_uv </parameter>
<parameter name="evaluator" > matrix </parameter>
<parameter name="integrator" > uniform_grid </parameter>
<parameter name="points" > 4 </parameter>
<parameter name="scale" > 1.0 </parameter>
<parameter name="center" > 000 </parameter>

</estimator>

Listing 10.25: One body density matrix with uniform sampling.

<estimator type="dmlb"

name="DensityMatrices">

<parameter name="basis" > spo_u spo_uv </parameter>

<parameter name="evaluator" > matrix </parameter>

<parameter name="integrator" > uniform </parameter>

<parameter name="samples" > 64 </parameter>

<parameter name="scale" > 1.0 </parameter>

<parameter name="center" > 000 </parameter>
</estimator>

Listing 10.26: One body density matrix with density sampling.

<estimator type="dmlb" name="DensityMatrices">

<parameter name="basis" > spo_u spo_uv </parameter>

<parameter name="evaluator" > matrix </parameter>

<parameter name="integrator" > density </parameter>

<parameter name="samples" > 64 </parameter>

<parameter name="timestep" > 0.5 </parameter>

<parameter name="use_drift" > no </parameter>
</estimator>

10.3. General estimators

123

QMCPACK Manual

Listing 10.27: Example sposet initialization for density matrix use.
Occupied and virtual orbital sets are created separately, then joined
(basis="spo_u spo_uv").

<sposet_builder type="bspline" href="../dft/pwscf_output/pwscf.pwscf.h5" tilematrix=
"1 0 0 01 00 0 1" meshfactor="1.0" gpu="no" precision="single">
<sposet type="bspline" name="spo_u" group="0" size="4"/>

<sposet type="bspline" name="spo_d" group="0" size="2"/>
<sposet type="bspline" name="spo_uv" group="0" index_min="4" index_max="10"/>
</sposet_builder>

Listing 10.28: Example sposet initialization for density
matrix use. Density matrix orbital basis created separately
(basis="dm_basis").

<sposet_builder type="bspline" href="../dft/pwscf_output/pwscf.pwscf.h5" tilematrix=
"1 0 001 00 0 1" meshfactor="1.0" gpu="no" precision="single">
<sposet type="bspline" name="spo_u" group="0" size="4"/>

<sposet type="bspline" name="spo_d" group="0" size="2"/>
<sposet type="bspline" name="dm_basis" size="50" spindataset="0"/>
</sposet_builder>

10.4 Forward-Walking Estimators

Forward walking is a method for sampling the pure fixed-node distribution (®(|®Pg). Specifically, one multiplies each

walker’s DMC mixed estimate for the observable O, %(ﬁ)m), by the weighting factor g;((%)). As it turns out,
this weighting factor for any walker R is proportional to the total number of descendants the walker will have after a

sufficiently long projection time f3.

To forward walk on an observable, declare a generic forward-walking estimator within a <hamiltonian> block,
and then specify the observables to forward walk on and the forward-walking parameters. Here is a summary.

estimator type=ForwardWalking element:

parent elements: | hamiltonian, gmc

child elements: Observable
attributes:
Name | Datatype | Values Default | Description
type” | text ForwardWalking Must be “ForwardWalking”
name’” | text anything any Unique name for estimator

Observable element:

parent elements: | estimator, hamiltonian, gmc
child elements: None

124 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

Name Datatypg Val- De- Description
ues fault
name” text any- any Registered name of existing estimator on which
thing to forward walk
max” integer | >0 Maximum projection time in steps (max=
B/7)
frequency'text >1 Dump data only for every frequency-th to
scalar.dat file

Additional information:

* Cost: Because histories of observables up to max time steps have to be stored, the memory cost of storing the
nonforward-walked observables variables should be multiplied by max. Although this is not an issue for items
such as potential energy, it could be prohibitive for observables such as density, forces, etc.

* Naming Convention: Forward-walked observables are automatically named FWE_name_ i, where i is the
forward-walked expectation value at time step i, and name is whatever name appears in the <Observable>
block. This is also how it will appear in the scalar.dat file.

In the following example case, QMCPACK forward walks on the potential energy for 300 time steps and dumps the
forward-walked value at every time step.

Listing 10.29: Forward-walking estimator element.

<estimator name="fw" type="ForwardWalking">
<Observable name="LocalPotential" max="300" frequency="1"/>
<!-—— Additional Observable blocks go here —->
</estimator>

10.5 Chiesa-Ceperley-Zhang Force Estimators

All force estimators implemented in QMCPACK are invoked with type="Force". The mode determines the
specific estimator to be used. Currently, QMCPACK supports Chiesa-Ceperley-Zhang (CCZ) all-electron and Assaraf-
Caffarel Zero-Variance Zero-Bias (AC) force estimators. We’ll discuss the CCZ estimator in this section, and the AC
estimator in the following section.

Without loss of generality, the CCZ estimator for the z-component of the force on an ion centered at the origin is given
by the following expression:

Ne M
F, = —ZZ%[G(W —R)+OR 1) eurd]. (10.16)
i=1 =1

Z is the ionic charge, M is the degree of the smoothing polynomial, R is a real-space cutoff of the sphere within which
the bare-force estimator is smoothed, and ¢, are predetermined coefficients. These coefficients are chosen to minimize
the weighted mean square error between the bare force estimate and the s-wave filtered estimator. Specifically,

R ~
X2 :/ drr™ [f.(r) — f.(r)]. (10.17)
0

Here, m is the weighting exponent, f,(r) is the unfiltered radial force density for the z force component, and fz (r)is
the smoothed polynomial function for the same force density.

Currently, open and periodic boundary conditions are supported but for all-electron calculations only.

10.5. Chiesa-Ceperley-Zhang Force Estimators 125

QMCPACK Manual

The reader is invited to refer to the original paper for a more thorough explanation of the methodology, but with the
notation in hand, QMCPACK takes the following parameters.

estimator type=Force element:

parent elements: | hamiltonian, gmc

child elements: parameter
attributes:
Name DatatypeValues De- Description
fault
mode® text See above | bare Select estimator type
lrmethodp text ewald or | ewald Select long-range potential breakup
srcoul method
type” text Force Must be “Force”
name® text Anything Force- | Unique name for this estimator
Base
pbc? boolean | yes/no yes Using periodic BCs or not
addionionboolean | yes/no no Add the ion-ion force contribution to out-
put force estimate
parameters:
Name Datatype | Values | Default | Description
rcut® real >0 1.0 Real-space cutoff R in bohr
nbasis® integer >0 2 Degree of smoothing polynomial M
weightexp® | integer >0 2 x? weighting exponent :math*m"

Additional information:

¢ Naming Convention: The unique identifier name is appended with name_X_Y in the scalar.dat file,
where X is the ion ID number and Y is the component ID (an integer with x=0, y=1, z=2). All force components
for all ions are computed and dumped to the scalar.dat file.

* Long-range breakup: With periodic boundary conditions, it is important to converge the lattice sum when
calculating Coulomb contribution to the forces. As a quick test, increase the LR_dim_cutoff parameter
until ion-ion forces are converged. The Ewald method converges more slowly than optimized method, but the
optimized method can break down in edge cases, eg. too large LR_dim_cutoff.

* Miscellaneous: Usually, the default choice of weightexp is sufficient. Different combinations of rcut and
nbasis should be tested though to minimize variance and bias. There is, of course, a tradeoff, with larger
nbasis and smaller rcut leading to smaller biases and larger variances.

The following is an example use case.

<simulationcell>

<parameter name="LR_handler"> opt_breakup_original </parameter>
<parameter name="LR_dim_cutoff"> 20 </parameter>
</simulationcell>
<hamiltonian>
<estimator name="F" type="Force" mode="cep" addionion="yes">
<parameter name="rcut">0.1</parameter>

(continues on next page)

126 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

(continued from previous page)

<parameter name="nbasis">4</parameter>
<parameter name="weightexp">2</parameter>
</estimator>
</hamiltonian>

10.6 Assaraf-Caffarel Force Estimators

*WARNING: The following estimator formally has infinite variance. You MUST do something to mitigate this
in postprocessing or during the run before publishing.*

QMCPACK has an implementation of force estimation using the Assaraf-Caffarel Zero-Variance Zero-Bias method
[[TCK21]]. This has the desirable property that as the trial wave function and trial wave function derivative become
exact, the estimator itself becomes an exact estimate of the force and the variance of the estimator goes to ero—much
like the local energy. In practice, the estimator is usually significantly more accurate and has much lower variance
than the bare Hellman-Feynman estimator.

Currently, this is the only recommended way to estimate forces for systems with non-local pseudopotentials.

The zero-variance, zero-bias force estimator is given by the following expression:
F#VZB — pZV L FZ8 = VB (R) —2(EL(R) — (EL)) Vi In Uy . (10.18)
The first term is the zero-variance force estimator, given by the following.
— (Vi) wr (- EL) 0y
U B U '

The first term is the bare “Hellman-Feynman” term (denoted “hf” in output), and the second is a fluctuation cancelling
zero-variance term (called “pulay” in output). This splitting allows the user to investigate the individual contributions
to the force estimator, but we recommend always adding “hf” and “pulay” terms unless there is a compelling reason
to do otherwise.

The second term is the “zero-bias” term:
F78 = 2(EL(R) — (EL))ViIn Uy . (10.20)

Because knowledge of (E7) is needed to compute the zero-bias term, QMCPACK returns Fr(R)In Ur (called
“Ewfngrad” in output), and In U1 (called “wfngrad” in output), which in conjunction with the local energy, allows
one to construct the zero-bias term in post-processing.

There is an initial implementation of space-warp variance reduction that is accessible to the end-user, subject to the
caveat that evaluation of these terms is currently slow (derivatives of local energy are computed with finite differences,
rather than analytically). If the space-warp option is enabled, the following term is added to the zero-variance force
estimator:

N,
F7V=SW = =N " wr(r)ViEL . (10.21)

i=1

The variance reduction with this term is observed to be rather large. A faster, more efficient implementation of this
term will be available in a future QMCPACK release.

The following term is added to the wave function gradient:

N,
E 1
Vil Urlsw = > wi(r)Viln¥g + 5 Viwr(ri) (10.22)
i=1

10.6. Assaraf-Caffarel Force Estimators 127

QMCPACK Manual

Currently, there is only one choice for damping function wy(r). This is given by:

F(lr = Ri])

= —_— 10.23
S, F(r—Ry]) e

wr(r)

We use F'(r) = r—* for the real space damping.

Finally, the estimator provides two methods to evaluate the necessary derivatives of the wave function and Hamiltonian.
The first is a straightforward analytic differentiation of all required terms. While mathematically transparent, this
algorithm has poor scaling with system size. The second utilizes the fast-derivative algorithm of Assaraf, Moroni,
and Filippi [[FAM16]], which has a smaller computational prefactor and at least an O(N) speed-up over the legacy
implementation. Both of these methods are accessible with appropraite flags.

estimator type=Force element:

parent elements: | hamiltonian, gmc

child elements: none
attributes:
Name Datatype Val- Default | Description
ues
mode® text ac- Required to use ACForce estima-
force tor
type” text Force Must be “Force”
name® text Any- Force- Unique name for this estimator
thing Base
spacewarp® text yes/no | no Add space-warp variance reduc-
tion terms
fast_derivativegext yes/no | no Use Filippi fast derivative algo-
rithm

Additional information:

* Naming Convention: The unique identifier name is appended with a term label (hf, pulay, Ewfngrad, or
wfgrad) name_term_X_Y inthe scalar.dat file, where X is the ion ID number and Y is the component
ID (an integer with x=0, y=1, z=2). All force components for all ions are computed and dumped to the scalar.
dat file.

* Note: The fast force algorithm returns the total derivative of the local energy, and does not make the split
between “Hellman-Feynman” and zero-variance terms like the legacy force implementation does. As such,
expect name_pulay_X_Y to be zero if fast_derivatives="yes". However, this will be identical to
the sum of Hellman-Feynman and zero-variance terms in the legacy implementation.

The following is an example use case.

<hamiltonian>

<estimator name="F" type="Force" mode="acforce" fast_derivatives="yes" spacewarp="no
/>
</hamiltonian>

128 Chapter 10. Hamiltonian and Observables

QMCPACK Manual

10.7 Stress estimators

QMCPACK takes the following parameters.

parent elements: | hamiltonian

attributes:
Name Datatype| Values | Default | Description
mode” text stress bare Must be “stress”
type” text Force Must be “Force”
source” text ion0 Name of ion particleset
name® text Any- Force- Unique name for this estimator
thing Base
addionion9 boolean yes/no no Add the ion-ion stress contribution to
output

Additional information:

¢ Naming Convention: The unique identifier name is appended with name_X_Y in the scalar.dat file,
where X and Y are the component IDs (an integer with x=0, y=1, z=2).

* Long-range breakup: With periodic boundary conditions, it is important to converge the lattice sum when
calculating Coulomb contribution to the forces. As a quick test, increase the LR_dim_cutof f parameter until
ion-ion stresses are converged. Check using QE “Ewald contribution”, for example. The stress estimator is
implemented only with the Ewald method.

The following is an example use case.

<simulationcell>

<parameter name="LR_handler"> ewald </parameter>

<parameter name="LR dim_ cutoff"> 45 </parameter>
</simulationcell>
<hamiltonian>

<estimator name="S" type="Force" mode="stress" source="ion0"/>
</hamiltonian>

10.7. Stress estimators 129

QMCPACK Manual

130 Chapter 10. Hamiltonian and Observables

CHAPTER
ELEVEN

agmc factory element:

type options:

QUANTUM MONTE CARLO METHODS

Parent elements

simulation,

loop

type selector

method attribute

vmc Variational Monte Carlo

linear | Wavefunction optimization with linear method

dmc Diffusion Monte Carlo

rme Reptation Monte Carlo
shared attributes:
Name Datatype | Values Default | Description
method text listed above | invalid QMC driver
move text pbyp, alle pbyp Method used to move electrons
gpu text yes/no dep. Use the GPU
trace text no 77
profiling text yes/no no Activate resume/pause control
checkpoint | integer -1,0,n -1 Checkpoint frequency
record integer n 0 Save configuration ever n steps
target text 77?
completed text 777
append text yes/no no 777

Additional information:

* move: There are two ways to move electrons. The more used method is the particle-by-particle move. In this
method, only one electron is moved for acceptance or rejection. The other method is the all-electron move;
namely, all the electrons are moved once for testing acceptance or rejection.

* gpu: When the executable is compiled with CUDA, the target computing device can be chosen by this switch.

With a regular CPU-only compilation, this option is not effective.

e profiling: Performance profiling tools by default profile complete application executions. This is largely
unnecessary if the focus is a QMC section instead of any initialization and additional QMC sections for equi-
librating walkers. Setting this flag to yes for the QMC sections of interest and starting the tool with data
collection paused from the beginning help reducing the profiling workflow and amount of collected data. Addi-
tional restriction may be imposed by profiling tools. For example, NVIDIA profilers can only be turned on and

131

QMCPACK Manual

off once and thus only the first QMC section with profiling="yes" will be profiled. VTune instead allows
pause and resume for unlimited times and thus multiple selected QMC sections can be profiled in a single run.

* checkpoint: This enables and disables checkpointing and specifying the frequency of output. Possible values
are:

— [-1] No checkpoint (default setting).

— [0] Write the checkpoint files after the completion of the QMC section.

— [n] Write the checkpoint files after every n blocks, and also at the end of the QMC section.
The particle configurations are written to a . config.hb5 file.

Listing 11.1: The following is an example of running a simulation that
can be restarted.

<gmc method="dmc" move="pbyp" checkpoint="0">

<parameter name="timestep"> 0.004 </parameter>

<parameter name="blocks"> 100 </parameter>

<parameter name="steps"> 400 </parameter>
</qmc>

The checkpoint flag instructs QMCPACK to output walker configurations. This also works in VMC. This outputs
an h5 file with the name projectid.run—-number.config.h5. Check that this file exists before attempting a
restart.

To continue a run, specify the mcwalkerset element before your VMC/DMC block:

Listing 11.2: Restart (read walkers from previous run).

<mcwalkerset fileroot="BH.s002" version="0 6" collected="yes"/>
<gmc method="dmc" move="pbyp" checkpoint="0">

<parameter name="timestep"> 0.004 </parameter>

<parameter name="blocks"> 100 </parameter>

<parameter name="steps"> 400 </parameter>
</qmc>

BH is the project id, and s002 is the calculation number to read in the walkers from the previous run.

In the project id section, make sure that the series number is different from any existing ones to avoid overwriting
them.

11.1 Batched drivers

The batched drivers introduce a new concept, “crowd”, as a sub-organization of walker population. A crowd is a subset
of the walkers that are operated on as as single batch. Walkers within a crowd operate their computation in lock-step,
which helps the GPU efficiency. Walkers in different crowds remain fully asynchronous unless operations involving
the full population are needed. With this flexible batching capability the new drivers are capable of delivering maximal
performance on given hardware. In the new driver design, all the batched API calls may fallback to an existing single
walker implementation. Consequently, batched drivers allow mixing and matching CPU-only and GPU-accelerated
features in a way that is not feasible with the legacy GPU implementation.

132 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

11.1.1 Transition from classic drivers
Available drivers in batched versions are vmec, dmc and 1inear. There are notable changes in the driver input section
when moving from classic drivers to batched drivers:

e walkers is not supported in any batched driver inputs. Instead, walkers_per_rank and
total_walkers specify the population at the start of a driver run.

* crowds can added in batched drivers to specify the number of crowds.

« If a classic driver input section contains walkers equals 1, the same effect can be achieved by omitting the
specification of walkers_per_rank, total_walkers or crowds in batched drivers.

e The walkers_per_rank, total_walkers or crowds parameters are optional. See driver-specific pa-
rameter additional information below about default values.

* When running on GPUs, tuning walkers_per_rank or total_walkers is likely needed to maximize
GPU throughput, just like tuning walkers in the classic drivers.

* Only particle-by-particle move is supported. No all-particle move support.

* During development the new drivers had separate names (vmc_batch, dmc_batch, and 1inear_batch).
The use of separate names has been replaced by the driver_version parameter in the project section.

11.2 Variational Monte Carlo

11.2.1 vmc driver

parameters:
Name DatatypeValues De- Description
fault
walkers integer | >0 dep. Number of walkers per MPI task
blocks integer | >0 1 Number of blocks
steps integer | >0 1 Number of steps per block
warmupsteps integer | >0 0 Number of steps for warming up
substeps integer | >0 1 Number of substeps per step
usedrift text yes,no yes Use the algorithm with drift
timestep real >0 0.1 Time step for each electron move
samples integer | >0 0 Number of walker samples for
DMC/optimization
stepsbetweensamples integer | > 0 1 Period of sample accumulation
samplesperthread integer | >0 0 Number of samples per thread
storeconfigs integer | all values 0 Write configurations to files
blocks_between_reconpteger | > 0 dep. Wavefunction recompute frequency
spinMass real >0 1.0 Effective mass for spin sampling
debug_checks text see addi- | dep. Turn on/off additional recompute
tional info and checks

Additional information:

* walkers The number of walkers per MPI task. The initial default number of ixml{walkers} is one per OpenMP
thread or per MPI task if threading is disabled. The number is rounded down to a multiple of the number of
threads with a minimum of one per thread to ensure perfect load balancing. One walker per thread is created in
the event fewer walkers than threads are requested.

11.2. Variational Monte Carlo 133

QMCPACK Manual

* blocks This parameter is universal for all the QMC methods. The MC processes are divided into a number of
blocks, each containing a number of steps. At the end of each block, the statistics accumulated in the block
are dumped into files, e.g., scalar.dat. Typically, each block should have a sufficient number of steps that
the I/O at the end of each block is negligible compared with the computational cost. Each block should not take
so long that monitoring its progress is difficult. There should be a sufficient number of blocks to perform
statistical analysis.

* warmupsteps - warmupsteps are used only for equilibration. Property measurements are not performed
during warm-up steps.

* steps - steps are the number of energy and other property measurements to perform per block.

* substeps For each substep, an attempt is made to move each of the electrons once only by either particle-
by-particle or an all-electron move. Because the local energy is evaluated only at each full step and not each
substep, substeps are computationally cheaper and can be used to reduce the correlation between property
measurements at a lower cost.

e usedrift The VMC is implemented in two algorithms with or without drift. In the no-drift algorithm, the
move of each electron is proposed with a Gaussian distribution. The standard deviation is chosen as the time
step input. In the drift algorithm, electrons are moved by Langevin dynamics.

* timestep The meaning of time step depends on whether or not the drift is used. In general, larger time steps
reduce the time correlation but might also reduce the acceptance ratio, reducing overall statistical efficiency. For
VMC, typically the acceptance ratio should be close to 50% for an efficient simulation.

* samples Separate from conventional energy and other property measurements, samples refers to storing whole
electron configurations in memory (“walker samples”) as would be needed by subsequent wavefunction opti-
mization or DMC steps. A standard VMC run to measure the energy does not need samples to be set.

blocks - steps-walkers

samples = -number of MPI tasks
stepsbetweensamples

* samplesperthread This is an alternative way to set the target amount of samples and can be useful when
preparing a stored population for a subsequent DMC calculation.

blocks - steps

samplesperthread =
P P stepsbetweensamples

* stepsbetweensamples Because samples generated by consecutive steps are correlated, having
stepsbetweensamples larger than 1 can be used to reduces that correlation. In practice, using larger
substeps is cheaper than using stepsbetweensamples to decorrelate samples.

* storeconfigs If storeconfigs is set to a nonzero value, then electron configurations during the VMC
run are saved to files.

* blocks_between_recompute Recompute the accuracy critical determinant part of the wavefunction from
scratch: =1 by default when using mixed precision. =10 by default when not using mixed precision. 0 can be
set for no recomputation and higher performance, but numerical errors will accumulate over time. Recomputing
introduces a performance penalty dependent on system size, but protects against the accumulation of numerical
error, particularly in the inverses of the Slater determinants. These have a cubic-scaling cost to recompute.

* spinMass Optional parameter to allow the user to change the rate of spin sampling. If spin sampling is on using
spinor == yes in the electron ParticleSet input, the spin mass determines the rate of spin sampling, resulting

in an effective spin timestep 75, = Hl The algorithm is described in detail in [[MZG+16]] and [[MBM16]].

e debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_moves’. If the build type is debug, the default
value is ‘all’. Otherwise, the default value is ‘no’.

An example VMC section for a simple VMC run:

134 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

<gmc method="vmc" move="pbyp">
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="walkers"> 256 </parameter>
<parameter name="warmupSteps"> 100 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="blocks"> 20 </parameter>
<parameter name="steps"> 100 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> yes </parameter>

</gmec>

Here we set 256 walkers per MPI, have a brief initial equilibration of 100 steps, and then have 20 blocks of
100 steps with 5 substeps each.

The following is an example of VMC section storing configurations (walker samples) for optimization.

<gmc method="vmc" move="pbyp" gpu="yes">
<estimator name="LocalEnergy" hdf5="no"/>

<parameter name="walkers'"> 256 </parameter>
<parameter name="samples"> 2867200 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>

<parameter name="substeps"> 5 </parameter>

<parameter name="warmupSteps"> 5 </parameter>

<parameter name="blocks"> 70 </parameter>

<parameter name="timestep"> 1.0 </parameter>

<parameter name="usedrift"> no </parameter>
</gme>

11.2.2 Batched vmc driver (experimental)

parameters:

11.2. Variational Monte Carlo 135

QMCPACK Manual

Name Datatyple Values De- Description
fault

total_walkers integer | >0 1 Total number of walkers over all
MPI ranks

walkers_per_rank integer >0 1 Number of walkers per MPI rank

crowds integer | >0 dep. Number of desynchronized dwalker
crowds

blocks integer | >0 1 Number of blocks

steps integer | >0 1 Number of steps per block

warmupsteps integer | >0 0 Number of steps for warming up

substeps integer | >0 1 Number of substeps per step

usedrift text yes,no yes Use the algorithm with drift

timestep real >0 0.1 Time step for each electron move

samples (not ready) integer | >0 0 Number of walker samples for in
this VMC run

storeconfigs (not | integer | all values 0 Write configurations to files

ready)

blocks_between_reconipteger | > 0 dep. Wavefunction recompute frequency

crowd_serialize_walkateger | yes, no no Force use of single walker APIs (for
testing)

debug_checks text see addi- | dep. Turn on/off additional recompute

tional info and checks

spin_mass real >0 1.0 Effective mass for spin sampling

measure_imbalance text yes,no no Measure load imbalance at the end
of each block

Additional information:

e crowds The number of crowds that the walkers are subdivided into on each MPI rank. If not provided, it is set

equal to the number of OpenMP threads.

walkers_per_rank The number of walkers per MPI rank. The exact number of walkers will be generated
before performing random walking. It is not required to be a multiple of the number of OpenMP threads.
However, to avoid any idle resources, it is recommended to be at least the number of OpenMP threads for pure
CPU runs. For GPU runs, a scan of this parameter is necessary to reach reasonable single rank efficiency and
also get a balanced time to solution. If neither total_walkers nor walkers_per_rank is provided,
walkers_per_rank is set equal to crowds.

total_walkers Total number of walkers over all MPI ranks. if not provided, it is com-
puted as walkers_per_rank times the number of MPI ranks. If both total_walkers and
walkers_per_rank are provided, total_walkers must be equal to walkers_per_rank times the
number MPI ranks.

blocks This parameter is universal for all the QMC methods. The MC processes are divided into a number of
blocks, each containing a number of steps. At the end of each block, the statistics accumulated in the block
are dumped into files, e.g., scalar.dat. Typically, each block should have a sufficient number of steps that
the I/0 at the end of each block is negligible compared with the computational cost. Each block should not take
so long that monitoring its progress is difficult. There should be a sufficient number of blocks to perform
statistical analysis.

warmupsteps - warmupsteps are used only for equilibration. Property measurements are not performed
during warm-up steps.

steps - steps are the number of energy and other property measurements to perform per block.

136

Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

* substeps For each substep, an attempt is made to move each of the electrons once only by either particle-
by-particle or an all-electron move. Because the local energy is evaluated only at each full step and not each
substep, substeps are computationally cheaper and can be used to de-correlation at a low computational cost.

e usedrift The VMC is implemented in two algorithms with or without drift. In the no-drift algorithm, the
move of each electron is proposed with a Gaussian distribution. The standard deviation is chosen as the time
step input. In the drift algorithm, electrons are moved by Langevin dynamics.

* timestep The meaning of time step depends on whether or not the drift is used. In general, larger time steps
reduce the time correlation but might also reduce the acceptance ratio, reducing overall statistical efficiency. For
VMG, typically the acceptance ratio should be close to 50% for an efficient simulation.

* samples (not ready)

* storeconfigs If storeconfigs is set to a nonzero value, then electron configurations during the VMC
run are saved to files.

* blocks_between_recompute Recompute the accuracy critical determinant part of the wavefunction from
scratch: =1 by default when using mixed precision. =10 by default when not using mixed precision. 0 can be
set for no recomputation and higher performance, but numerical errors will accumulate over time. Recomputing
introduces a performance penalty dependent on system size, but protects against the accumulation of numerical
error, particularly in the inverses of the Slater determinants. These have a cubic-scaling cost to recompute.

¢ debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_load’, ‘checkGL_after_moves’,
‘checkGL_after_tmove’. If the build type is debug, the default value is ‘all’. Otherwise, the default
value is ‘no’.

* spin_mass Optional parameter to allow the user to change the rate of spin sampling. If spin sampling is on
using spinor == yes in the electron ParticleSet input, the spin mass determines the rate of spin sampling,
resulting in an effective spin timestep 75 = #l The algorithm is described in detail in [[MZG+16]] and

[[MBM]16]].

An example VMC section for a simple batched vme run:

<gmc method="vmc" move="pbyp">
<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="walkers_per_ rank"> 256 </parameter>
<parameter name="warmupSteps"> 100 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="blocks"> 20 </parameter>
<parameter name="steps"> 100 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> yes </parameter>

</agmec>

Here we set 256 walkers per MPI rank, have a brief initial equilibration of 100 steps, and then have 20 blocks of
100 steps with 5 substeps each.

11.3 Wavefunction optimization

Optimizing wavefunction is critical in all kinds of real-space QMC calculations because it significantly improves both
the accuracy and efficiency of computation. However, it is very difficult to directly adopt deterministic minimization
approaches because of the stochastic nature of evaluating quantities with MC. Thanks to the algorithmic breakthrough
during the first decade of this century and the tremendous computer power available, it is now feasible to optimize
tens of thousands of parameters in a wavefunction for a solid or molecule. QMCPACK has multiple optimizers
implemented based on the state-of-the-art linear method. We are continually improving our optimizers for robustness
and friendliness and are trying to provide a single solution. Because of the large variation of wavefunction types

11.3. Wavefunction optimization 137

QMCPACK Manual

carrying distinct characteristics, using several optimizers might be needed in some cases. We strongly suggested
reading recommendations from the experts who maintain these optimizers.

A typical optimization block looks like the following. It starts with method="linear” and contains three blocks of
parameters.

<loop max="10">
<gmc method="linear" move="pbyp" gpu="yes">
<!-— Specify the VMC options -->

<parameter name="walkers"> 256 </parameter>
<parameter name="samples"> 2867200 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 5 </parameter>
<parameter name="blocks"> 70 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<!-— Specify the correlated sampling options and define the cost function -->
<parameter name="minwalkers"> 0.3 </parameter>
<cost name="energy"> 0.95 </cost>
<cost name="unreweightedvariance"> 0.00 </cost>
<cost name="reweightedvariance"> 0.05 </cost>
<!-- Specify the optimizer options -->
<parameter name="MinMethod"> OneShiftOnly </parameter>
</qmc>
</loop>

— Loop is helpful to repeatedly execute identical optimization blocks.
— The first part is highly identical to a regular VMC block.

— The second part is to specify the correlated sampling options and
define the cost function.

- The last part is used to specify the options of different optimizers,
which can be very distinct from one to another.

11.3.1 VMC run for the optimization

The VMC calculation for the wavefunction optimization has a strict requirement that samples or
samplesperthread must be specified because of the optimizer needs for the stored samples. The input pa-
rameters of this part are identical to the VMC method.

Recommendations:

* Run the inclusive VMC calculation correctly and efficiently because this takes a significant amount of time
during optimization. For example, make sure the derived steps per block is 1 and use larger substeps to
control the correlation between samples.

* A reasonable starting wavefunction is necessary. A lot of optimization fails because of a bad wavefunction
starting point. The sign of a bad initial wavefunction includes but is not limited to a very long equilibration
time, low acceptance ratio, and huge variance. The first thing to do after a failed optimization is to check the
information provided by the VMC calculation via x . scalar.dat files.

138 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

11.3.2 Correlated sampling and cost function

After generating the samples with VMC, the derivatives of the wavefunction with respect to the parameters are com-
puted for proposing a new set of parameters by optimizers. And later, a correlated sampling calculation is performed
to quickly evaluate values of the cost function on the old set of parameters and the new set for further decisions. The
input parameters are listed in the following table.

linear method:

parameters:
Name Datatype| Val- De- Description
ues fault
nonlocalpp text No more effective. Will be removed.
use_nonlocalpp_deriy text No more effective. Will be removed.
minwalkers real 0-1 0.3 Lower bound of the effective weight
maxWeight real >1 le6 Maximum weight allowed in
reweighting

Additional information:
* maxWeight The default should be good.

* nonlocalpp and use_nonlocalpp_deriv are obsolete and will be treated as invalid options (trigger
application abort) in future releases. From this point forward, the code behaves as prior versions of qmcpack
did when both were set to yes.

* minwalkers Thisisa critical parameter. When the ratio of effective samples to actual number of samples
in a reweighting step goes lower than minwalkers, the proposed set of parameters is invalid.

The cost function consists of three components: energy, unreweighted variance, and reweighted variance.

<cost name="energy"> 0.95 </cost>
<cost name="unreweightedvariance"> 0.00 </cost>
<cost name="reweightedvariance"> 0.05 </cost>

11.3.3 Variational parameter selection

The predominant way of selecting variational parameters is via <wavefunction> input. <coefficients>
entries support opt imize="yes"/"no" to enable/disable variational parameters in the wavefunction optimization.
The secondary way of selecting variational parameters is via variational_subset parameter in the <gmc>
driver input. It allows controlling optimization granularity at each optimization step. If variational_subset is
not provided or empty, all the variational parameters are selected. If variational parameters are set as not optimizable
in the predominant way, the secondary way won’t be able to set them optimizable even they are selected.

The following example shows optimizing subsets of parameters in stages in a single QMCPACK run.

<gmc method="linear">

<parameter name="variational_subset"> uu ud </parameter>
</gmc>
<gmc method="linear">

<parameter name="variational_ subset"> uu ud eH </parameter>
</gmec>
<gmc method="linear">

(continues on next page)

11.3. Wavefunction optimization 139

QMCPACK Manual

(continued from previous page)

<parameter name="variational_subset"> uu ud eH CI </parameter>
</gmc>

11.3.4 Variational parameter storage

After each optimization step the new wavefunction is stored in a file with an . opt . xm1 suffix. This new wavefunction
includes the updated variational parameters.

Writing a new XML wavefunction becomes more complicated if parameters are stored elsewhere (e.g. multidetermi-
nant coefficients in an HDF file) and has problems scaling with the number of parameters. To address these issues the
variational parameters are now written to an HDF file. The new “VP file” has the suffix .vp.h5 and is written in
conjunction with the . opt . xml1 file.

The wavefunction file connects to the VP file with atag (override_variational_parameters)inthe .opt.
xml file that points to the . vp.h5 file. Should it be necessary to recover the previous behavior without the VP file,
this tag can be be turned off with an output_vp_override parameter in the optimizer input block: <parameter
name="output_vp_override">no</parameter>

Both schemes for storing variational parameters coexist. Two important points about the VP file:
* The values of the variational parameters in the VP file take precedence over the values in the XML wavefunction.
* When copying an optimized wavefunction, the . vp.h5 file needs to be copied as well.

For users that want to inspect or modify the VP file, the He_param test (in tests/molecules/He_param) con-
tains a python script (convert_vp_format .py) to read and write the VP file. The script converts to and from a
simple text representation of the parameters.

11.3.5 Optimizers

QMCPACK implements a number of different optimizers each with different priorities for accuracy, convergence,
memory usage, and stability. The optimizers can be switched among “OneShiftOnly” (default), “adaptive,” “descent,”
“hybrid,” and “quartic” (old) using the following line in the optimization block:

<parameter name="MinMethod"> THE METHOD YOU LIKE </parameter>

11.3.6 OneShiftOnly Optimizer

The OneShiftOnly optimizer targets a fast optimization by moving parameters more aggressively. It works with
OpenMP and GPU and can be considered for large systems. This method relies on the effective weight of correlated
sampling rather than the cost function value to justify a new set of parameters. If the effective weight is larger than
minwalkers, the new set is taken whether or not the cost function value decreases. If a proposed set is rejected,
the standard output prints the measured ratio of effective samples to the total number of samples and adjustment on
minwalkers can be made if needed.

linear method:

parameters:
Name Datatype | Values | Default | Description
shift_i | real >0 0.01 Direct stabilizer added to the Hamiltonian matrix
shift_s | real >0 1.00 Initial stabilizer based on the overlap matrix

140 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

Additional information:

e shift_i This is the direct term added to the diagonal of the Hamiltonian matrix. It provides more stable but
slower optimization with a large value.

e shift_s This is the initial value of the stabilizer based on the overlap matrix added to the Hamiltonian matrix.
It provides more stable but slower optimization with a large value. The used value is auto-adjusted by the
optimizer.

Recommendations:
e Default shift_i, shift_s should be fine.

e For hard cases, increasing shift_i (by a factor of 5 or 10) can significantly stabilize the optimization by
reducing the pace towards the optimal parameter set.

 If the VMC energy of the last optimization iterations grows significantly, increase minwalkers closer to 1
and make the optimization stable.

« If the first iterations of optimization are rejected on a reasonable initial wavefunction, lower the minwalkers
value based on the measured value printed in the standard output to accept the move.

We recommended using this optimizer in two sections with a very small minwalkers in the first and a large value
in the second, such as the following. In the very beginning, parameters are far away from optimal values and large
changes are proposed by the optimizer. Having a small minwalkers makes it much easier to accept these changes.
When the energy gradually converges, we can have a large minwalkers to avoid risky parameter sets.

<loop max="6">
<gmc method="linear" move="pbyp" gpu="yes">

<!—— Specify the VMC options ——>
<parameter name="walkers"> 1 </parameter>
<parameter name="samples"> 10000 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 5 </parameter>
<parameter name="blocks"> 25 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<!-— Specify the optimizer options -->
<parameter name="MinMethod"> OneShiftOnly </parameter>
<parameter name="minwalkers"> le-4 </parameter>
</gmec>
</loop>

<loop max="12">
<gmc method="linear" move="pbyp" gpu="yes">

<!-- Specify the VMC options -->

<parameter name="walkers"> 1 </parameter>
<parameter name="samples"> 20000 </parameter>
<parameter name="stepsbetweensamples"> 1 </parameter>
<parameter name="substeps"> 5 </parameter>
<parameter name="warmupSteps"> 2 </parameter>
<parameter name="blocks"> 50 </parameter>
<parameter name="timestep"> 1.0 </parameter>
<parameter name="usedrift"> no </parameter>
<estimator name="LocalEnergy" hdf5="no"/>

<!-— Specify the optimizer options -->

<parameter name="MinMethod"> OneShiftOnly </parameter>
<parameter name="minwalkers"> 0.5 </parameter>

(continues on next page)

11.3. Wavefunction optimization 141

QMCPACK Manual

(continued from previous page)

</gme>
</loop>

For each optimization step, you will see

’The new set of parameters is valid. Updating the trial wave function!

or

’The new set of parameters is not valid. Revert to the old set!

Occasional rejection is fine. Frequent rejection indicates potential problems, and users should inspect the VMC cal-
culation or change optimization strategy. To track the progress of optimization, use the command qmca -g ev
x.scalar.dat to look at the VMC energy and variance for each optimization step.

11.3.7 Adaptive Optimizer

The default setting of the adaptive optimizer is to construct the linear method Hamiltonian and overlap matrices
explicitly and add different shifts to the Hamiltonian matrix as “stabilizers.” The generalized eigenvalue problem is
solved for each shift to obtain updates to the wavefunction parameters. Then a correlated sampling is performed for
each shift’s updated wavefunction and the initial trial wavefunction using the middle shift’s updated wavefunction as
the guiding function. The cost function for these wavefunctions is compared, and the update corresponding to the best
cost function is selected. In the next iteration, the median magnitude of the stabilizers is set to the magnitude that
generated the best update in the current iteration, thus adapting the magnitude of the stabilizers automatically.

When the trial wavefunction contains more than 10,000 parameters, constructing and storing the linear method ma-
trices could become a memory bottleneck. To avoid explicit construction of these matrices, the adaptive optimizer
implements the block linear method (BLM) approach. [[ZN17]] The BLM tries to find an approximate solution Cy¢ to
the standard LM generalized eigenvalue problem by dividing the variable space into a number of blocks and making
intelligent estimates for which directions within those blocks will be most important for constructing ¢y, which is
then obtained by solving a smaller, more memory-efficient eigenproblem in the basis of these supposedly important
block-wise directions.

linear method:

parameters:

142 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

Name Datatyp&/al- | De- | Description
ues | fault
max_relative_ |ahangg >0 10.0 | Allowed change in cost function
max_param_charrga >0 | 03 Allowed change in wavefunction parameter
shift_i real >0 0.01 Initial diagonal stabilizer added to the Hamiltonian ma-
trix
shift_s real >0 1.00 | Initial overlap-based stabilizer added to the Hamiltonian
matrix
target_shift |ireal any -1.0 | Diagonal stabilizer value aimed for during adaptive
method (disabled if < 0)
cost_increase reall >0 0.0 Tolerance for cost function increases
chase_lowest | text yes, | yes Chase the lowest eigenvector in iterative solver
no
chase_closest text yes, | no Chase the eigenvector closest to initial guess
no
block_1m text yes, no Use BLM
no
blocks inte- >0 Number of blocks in BLM
ger
nolds inte- >0 Number of old update vectors used in BLM
ger
nkept inte- >0 Number of eigenvectors to keep per block in BLM
ger
store_samplegs text yes, | no Whether to store derivative ratios from each sample in
no the LM engine (required for filtering)
filter param| text yes, | no Whether to turn off optimization of parameters with
no noisy gradients
deriv_threshaolrdal >0 | 0.0 Threshold on the ratio of the parameter gradient mean
and standard deviation
filter_info | text yes, | no Whether to print out details on which parameters are
no turned on or off

Additional information:

shift_i This is the initial coefficient used to scale the diagonal stabilizer. More stable but slower optimization
is expected with a large value. The adaptive method will automatically adjust this value after each linear method
iteration.

shift_s This is the initial coefficient used to scale the overlap-based stabilizer. More stable but slower op-
timization is expected with a large value. The adaptive method will automatically adjust this value after each
linear method iteration.

target_shift_i If set greater than zero, the adaptive method will choose the update whose shift_i value is
closest to this target value so long as the associated cost is within cost_increase_tol of the lowest cost. Disable
this behavior by setting target_shift_i to a negative number.

cost_increase_tol Tolerance for cost function increases when selecting the best shift.

nblocks This is the number of blocks used in BLM. The amount of memory required to store LM matrices
decreases as the number of blocks increases. But the error introduced by BLM would increase as the number of
blocks increases.

nolds In BLM, the interblock correlation is accounted for by including a small number of wavefunction update
vectors outside the block. Larger would include more interblock correlation and more accurate results but also
higher memory requirements.

11.3.

Wavefunction optimization 143

QMCPACK Manual

* nkept This is the number of update directions retained from each block in the BLM. If all directions are
retained in each block, then the BLM becomes equivalent to the standard LM. Retaining five or fewer directions

per block is often sufficient.

e deriv_threshold This is a threshold on the ratio of the (absolute) mean value of a parameter derivative to
the standard deviation of that derivative. Parameters with a ratio less than the chosen threshold will be turned

off when using parameter filtration.
Recommendations:

e Default shift_1i, shift_s should be fine.

* When there are fewer than about 5,000 variables being optimized, the traditional LM is preferred because it has
a lower overhead than the BLM when the number of variables is small.

* Initial experience with the BLM suggests that a few hundred blocks and a handful of and often provide a good
balance between memory use and accuracy. In general, using fewer blocks should be more accurate but would

require more memory.

* When using parameter filtration, setting deriv_threshold to 1.0 is an effective choice that generally
leads to roughly a third of the parameters being turned off on any given LM iteration. The precise number
and identity of those parameters will vary from iteration to iteration. Using the hybrid method (see be-
low) is recommended when parameter filtration is on so that accelerated descent can be used to optimize
parameters that the LM leaves untouched. [[ON21]]

<loop max="15">
<gmc method="linear" move="pbyp">

<!-- Specify the VMC options -->
<parameter name="walkers"> 1
<parameter name="samples"> 20000
<parameter name="stepsbetweensamples"> 1
<parameter name="substeps"> 5
<parameter name="warmupSteps"> 5
<parameter name="blocks"> 50
<parameter name="timestep"> 1.0
<parameter name="usedrift"> no
<estimator name="LocalEnergy" hdf5="no"/>
<!—— Specify the correlated sampling options
<cost name="energy"> 1.00
<cost name="unreweightedvariance"> 0.00
<cost name="reweightedvariance"> 0.00
<!-- Specify the optimizer options —-->

<parameter name="MinMethod">adaptive</parame
<parameter name="max_relative_cost_change">1
<parameter name="shift_i"> 1.00 </parameter>
<parameter name="shift_s"> 1.00 </parameter>
<parameter name="max_param_change"> 0.3 </pa
<parameter name="chase_lowest"> yes </parame

</parameter>
</parameter>
</parameter>
</parameter>
</parameter>
</parameter>
</parameter>
</parameter>

and define the cost function —->
</cost>
</cost>
</cost>

ter>

0.0</parameter>

rameter>
ter>

<parameter name="chase_closest"> yes </parameter>

<parameter name="block_1lm"> no </parameter>
<!-- Specify the BLM specific options if nee
<parameter name="nblocks"> 100 </parameter
<parameter name="nolds"> 5 </parameter>
<parameter name="nkept"> 3 </parameter>
—>
</gme>
</loop>

ded
>

The adaptive optimizer is also able to optimize individual excited states directly. [[ZN16]] In this case, it tries to

144

Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

minimize the following function:
(V|w— H|P)
(Wl - m)*|w)

Q[T =

The global minimum of this function corresponds to the state whose energy lies immediately above the shift parameter
w in the energy spectrum. For example, if w were placed in between the ground state energy and the first excited state
energy and the wavefunction ansatz was capable of a good description for the first excited state, then the wavefunction
would be optimized for the first excited state. Note that if the ansatz is not capable of a good description of the excited
state in question, the optimization could converge to a different state, as is known to occur in some circumstances for
traditional ground state optimizations. Note also that the ground state can be targeted by this method by choosing w to
be below the ground state energy, although we should stress that this is not the same thing as a traditional ground state
optimization and will in general give a slightly different wavefunction. Excited state targeting requires two additional
parameters, as shown in the following table.

Excited state targeting:

parameters:
Name Datatype Values De- Description
fault
targetExcitedtext yes, no no Whether to use the excited state targeting op-
timization
omega real real num- | none Energy shift used to target different excited
bers states

Excited state recommendations:

* Because of the finite variance in any approximate wavefunction, we recommended setting w = wy — o, where
wo is placed just below the energy of the targeted state and o is the energy variance.

» To obtain an unbiased excitation energy, the ground state should be optimized with the excited state variational
principle as well by setting omega below the ground state energy. Note that using the ground state variational
principle for the ground state and the excited state variational principle for the excited state creates a bias in
favor of the ground state.

11.3.8 Descent Optimizer

Gradient descent algorithms are an alternative set of optimization methods to the OneShiftOnly and adaptive opti-
mizers based on the linear method. These methods use only first derivatives to optimize trial wave functions and
convergence can be accelerated by retaining a memory of previous derivative values. Multiple flavors of acceler-
ated descent methods are available. They differ in details such as the schemes for adaptive adjustment of step sizes.
[[ON19]] Descent algorithms avoid the construction of matrices that occurs in the linear method and consequently can
be applied to larger sets of optimizable parameters. Parameters for descent are shown in the table below.

descent method:

parameters:

11.3. Wavefunction optimization 145

QMCPACK Manual

Name Datatyp&/alues De- Description
fault
flavor text RMSprop, Random, | RM- | Particular type of descent method
ADAM, AMSGrad Sprop

Ramp_eta text yes, no no Whether to gradually ramp up step
sizes

Ramp_num inte- >0 30 Number of steps over which to ramp up

ger step size

TJF_2Body_gteal >0 0.01 Step size for two body Jastrow param-
eters

TJF_1Body_eteal >0 0.01 Step size for one body Jastrow parame-
ters

F_eta real >0 0.001 | Step size for number counting Jastrow
F matrix parameters

Gauss_eta | real >0 0.001 | Step size for number counting Jastrow
gaussian basis parameters

CI_eta real >0 0.01 Step size for CI parameters

Orb_eta real >0 0.001 | Step size for orbital parameters

collection| seadp | >0 0.01 Step number to start collecting samples
for final averages

compute_stppeal >0 0.001 | Step number to start computing aver-
aged from stored history

print_deriyseal yes, no no Whether to print parameter derivatives

These descent algorithms have been extended to the optimization of the same excited state functional as the adaptive
LM. [[LON20]] This also allows the hybrid optimizer discussed below to be applied to excited states. The relevant
parameters are the same as for targeting excited states with the adaptive optimizer above.

Additional information and recommendations:

It is generally advantageous to set different step sizes for different types of parameters. More nonlinear parame-
ters such as those for number counting Jastrow factors or orbitals typically require smaller steps sizes than those
for CI coefficients or traditional Jastrow parameters. There are defaults for several parameter types and a default
of .001 has been chosen for all other parameters.

The ability to gradually ramp up step sizes to their input values is useful for avoiding spikes in the average local
energy during early iterations of descent optimization. This initial rise in the energy occurs as a memory of past
gradients is being built up and it may be possible for the energy to recover without ramping if there are enough
iterations in the optimization.

The step sizes chosen can have a substantial influence on the quality of the optimization and the final variational
energy achieved. Larger step sizes may be helpful if there is reason to think the descent optimization is not
reaching the minimum energy. There are also additional hyperparameters in the descent algorithms with default
values. [[ON19]] They seem to have limited influence on the effectiveness of the optimization compared to step
sizes, but users can adjust them within the source code of the descent engine if they wish.

The sampling effort for individual descent steps can be small compared that for linear method iterations as
shown in the example input below. Something in the range of 10,000 to 30,000 seems sufficient for molecules
with tens of electrons. However, descent optimizations may require anywhere from a few hundred to a few
thousand iterations.

For reporting quantities such as a final energy and associated uncertainty, an average over many descent steps
can be taken. The parameters for collection_step and compute_step help automate this task. After
the descent iteration specified by collection_step, a history of local energy values will be kept for deter-
mining a final error and average, which will be computed and given in the output once the iteration specified by

146

Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

compute_step is reached. For reasonable results, this procedure should use descent steps near the end of the
optimization when the wave function parameters are essentially no longer changing.

* In cases where a descent optimization struggles to reach the minimum and a linear method optimization is
not possible or unsatisfactory, it may be useful to try the hybrid optimization approach described in the next

subsection.

<loop max="2000">

<parameter

<gmc method="linear" move="pbyp" checkpoint="-1" gpu="
<!-- VMC inputs --—>
<parameter name="blocks">2000</parameter>
<parameter name="steps">1</parameter>
<parameter name="samples">20000</parameter>
<parameter name="warmupsteps">100</parameter>
<parameter name="timestep">0.05</parameter>

name="MinMethod">descent</parameter>

<estimator name="LocalEnergy" hdf5="no"/>
<parameter name="usebuffer">yes</parameter>
<estimator name="LocalEnergy" hdf5="no"/>
<!-- Descent Inputs —-->
<parameter name="flavor">RMSprop</parameter>
<parameter name="Ramp_eta">no</parameter>
<parameter name="Ramp_num">30</parameter>
<parameter name="TJF_2Body_eta">.02</parameter>
<parameter name="TJF_1Body_eta">.02</parameter>
<parameter name="F_eta">.001</parameter>
<parameter name="Gauss_eta">.001</parameter>
<parameter name="CI_eta">.1l</parameter>
<parameter name="Orb_eta">.0001</parameter>
<parameter name="collection_step">500</parameter>
<parameter name="compute_step">998</parameter>
<parameter name="targetExcited"> yes </parameter>
<parameter name="targetExcited"> -11.4 </parameter>
<parameter name="print_derivs">no</parameter>
</gmc>
</loop>

no">

11.3. Wavefunction optimization

147

QMCPACK Manual

11.3.9 Hybrid Optimizer

Another optimization option is to use a hybrid combination of accelerated descent and blocked linear method. It
provides a means to retain the advantages of both individual methods while scaling to large numbers of parameters
beyond the traditional 10,000 parameter limit of the linear method. [[ON19]] In a hybrid optimization, alternating
sections of descent and BLM optimization are used. Gradient descent is used to identify the previous important
directions in parameter space used by the BLM, the number of which is set by the no1d input for the BLM. Over the
course of a section of descent, vectors of parameter differences are stored and then passed to the linear method engine
after the optimization changes to the BLM. One motivation for including sections of descent is to counteract noise in
linear method updates due to uncertainties in its step direction and allow for a smoother movement to the minimum.
There are two additional parameters used in the hybrid optimization and it requires a slightly different format of input
to specify the constituent methods as shown below in the example.

descent method:

parameters:
Name Datatype | Values | Default | Description
num_updates integer >0 Number of steps for a method
Stored_Vectors | integer >0 5 Number of vectors to transfer to BLM

<loop max="203">
<gmc method="linear" move="pbyp" checkpoint="-1" gpu="no">
<parameter name="Minmethod"> hybrid </parameter>

<optimizer num_updates="100">

<parameter name="blocks">1000</parameter>

<parameter name="steps">1</parameter>
<parameter name="samples">20000</parameter>
<parameter name="warmupsteps">1000</parameter>
<parameter name="timestep">0.05</parameter>

<estimator name="LocalEnergy" hdf5="no"/>

<parameter name="Minmethod"> descent </parameter>
<parameter name="Stored_ Vectors">5</parameter>
<parameter name="flavor">RMSprop</parameter>
<parameter name="TJF_2Body_eta">.01</parameter>
<parameter name="TJF_1Body_eta">.01l</parameter>
<parameter name="CI_eta">.l</parameter>

<parameter name="Ramp_eta">no</parameter>
<parameter name="Ramp_num">10</parameter>

</optimizer>

<optimizer num_updates="3">

<parameter name="blocks">2000</parameter>
<parameter name="steps">1</parameter>
<parameter name="samples">1000000</parameter>
<parameter name="warmupsteps">1000</parameter>
<parameter name="timestep">0.05</parameter>

<estimator name="LocalEnergy" hdf5="no"/>

(continues on next page)

148

Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

(continued from previous page)

<parameter name="Minmethod"> adaptive </parameter>
<parameter name="max_relative_cost_change">10.0</parameter>
<parameter name="max_param_change">3</parameter>
<parameter name="shift_ i">0.01</parameter>
<parameter name="shift_s">1.00</parameter>
<parameter name="block_lm">yes</parameter>
<parameter name="nblocks">2</parameter>
<parameter name="nolds">5</parameter>
<parameter name="nkept">5</parameter>

</optimizer>

</qmc>

</loop>

Additional information and recommendations:

¢ In the example above, the input for 1 ocop gives the total number of steps for the full optimization while the inputs
for num_updates specify the number of steps in the constituent methods. For this case, the optimization
would begin with 100 steps of descent using the parameters in the first opt imizer block and then switch to
the BLM for 3 steps before switching back to descent for the final 100 iterations of the total of 203.

* The design of the hybrid method allows for more than two opt imizer blocks to be used and the optimiza-
tion will cycle through the individual methods. However, the effectiveness of this in terms of the quality of
optimization results is unexplored.

* It can be useful to follow a hybrid optimization with a section of pure descent optimization and take an average
energy over the last few hundred iterations as the final variational energy. This approach can achieve a lower
statistical uncertainty on the energy for less overall sampling effort compared to what a pure linear method
optimization would require. The collection_step and compute_step parameters discussed earlier for
descent are useful for setting up the descent engine to do this averaging on its own.

11.3.10 Quartic Optimizer

This is an older optimizer method retained for compatibility. We recommend starting with the newest OneShiftOnly
or adaptive optimizers. The quartic optimizer fits a quartic polynomial to 7 values of the cost function obtained using
reweighting along the chosen direction and determines the optimal move. This optimizer is very robust but is a bit
conservative when accepting new steps, especially when large parameters changes are proposed.

linear method:

parameters:
Name Datatype| Values | De- Description
fault
bigchange real >0 50.0 Largest parameter change allowed
alloweddifference real >0 le-4 Allowed increase in energy
exp0 real any -16.0 Initial value for stabilizer
value
stabilizerscale | real >0 2.0 Increase in value of exp0 between iter-
ations
nstabilizers integer >0 Number of stabilizers to try
max_its integer >0 1 Number of inner loops with same sam-
ples

11.3. Wavefunction optimization 149

QMCPACK Manual

Additional information:
» expO0 This is the initial value for stabilizer (shift to diagonal of H). The actual value of stabilizer is 105,
Recommendations:

¢ For hard cases (e.g., simultaneous optimization of long MSD and 3-Body J), set exp0 to 0 and do a single inner
iteration (max its=1) per sample of configurations.

<!-—— Specify the optimizer options -->

<parameter name="MinMethod">quartic</parameter>
<parameter name="exp0">-6</parameter>

<parameter name="alloweddifference"> 1.0e-4 </parameter>
<parameter name="nstabilizers"> 1 </parameter>
<parameter name="bigchange">15.0</parameter>

11.3.11 General Recommendations

» All electron wavefunctions are typically more difficult to optimize than pseudopotential wavefunctions because
of the importance of the wavefunction near the nucleus.

* Two-body Jastrow contributes the largest portion of correlation energy from bare Slater determinants. Conse-
quently, the recommended order for optimizing wavefunction components is two-body, one-body, three-body
Jastrow factors and MSD coefficients.

¢ For two-body spline Jastrows, always start from a reasonable one. The lack of physically motivated constraints
in the functional form at large distances can cause slow convergence if starting from zero.

* One-body spline Jastrow from old calculations can be a good starting point.

* Three-body polynomial Jastrow can start from zero. It is beneficial to first optimize one-body and two-body
Jastrow factors without adding three-body terms in the calculation and then add the three-body Jastrow and
optimize all the three components together.

Optimization of Cl coefficients

When storing a CI wavefunction in HDFS format, the CI coefficients and the o and 5 components of each CI are not
in the XML input file. When optimizing the CI coefficients, they will be stored in HDF5 format. The optimization
header block will have to specify that the new CI coefficients will be saved to HDF5 format. If the tag is not added
coefficients will not be saved.

<gmc method="linear" move="pbyp" gpu="no" hdf5="yes">

The rest of the optimization block remains the same.

When running the optimization, the new coefficients will be stored in a *.sXXX.opt.h5 file, where XXX
coressponds to the series number. The HS file contains only the optimized coefficients. The corresponding * . sXXX.
opt . xml will be updated for each optimization block as follows:

<detlist size="1487" type="DETS" nca="0" ncb="0" nea="2" neb="2" nstates="85" cutoff=
—"1le-2" href="../LiH.orbs.h5" opt_coeffs="LiH.s001l.opt.h5"/>

The opt_coeffs tag will then reference where the new CI coefficients are stored.

When restarting the run with the new optimized coeffs, you need to specify the previous hdf5 containing the basis set,
orbitals, and MSD, as well as the new optimized coefficients. The code will read the previous data but will rewrite
the coefficients that were optimized with the values found in the *.sXXX.opt.h5 file. Be careful to keep the pair of
optimized CI coefficients and Jastrow coefficients together to avoid inconsistencies.

150 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

11.3.12 Parameter gradients

The gradients of the energy with respect to the variational parameters can be checked and optionally written to a file.
The check compares the analytic derivatives with a finite difference approximation. These are activated by giving a
gradient_test method in an opt imize block, as follows:

<gmc method="linear" move="pbyp">
<optimize method="gradient_test">
</optimize>
rest of optimizer input

The check will print a table to the standard output with the parameter name, value, analytic gradient, finite difference
gradient, and the percent difference between them.

Writing the analytic parameter gradients to a file is enabled by using the output_param_file parameter. The
file name is <project id>.param.s000.scalar.dat. It contains one line per loop iteration, to allow using
existing tools to compute averages and error bars on the values.

Name Datatype | Values | Default | Description
output_param_file | text yes, no | no Output parameter gradients to a file
finite_diff_delta | double >0 le-5 Finite difference delta

The input would look like the following:

<gmc method="linear" move="pbyp" checkpoint="-1"
<optimize method="gradient_ test">
<parameter name="output_param_file">yes</parameter>
</optimize>
rest of optimizer input

ng:"HO">

The output has columns for the parameter name, value, analytic gradient, numeric gradient, and relative difference
(in percent). Following the relative difference, there may be exclamation marks which highlight large differences that
likely indicate a problem.

Sample output looks like:

Param_Name
— Percent

Value

Numeric

Analytic

updet_orb_rot_0000_0002 0.000000e+00 -1.8622037512e-02 4.6904958207e-02
— 3.52e+02 !!!

updet_orb_rot_0001_0002 0.000000e+00 1.6733860519e-03 3.9023863136e-03
—-1.33e+02 !!!

downdet_orb_rot_0000_0002 0.000000e+00 -9.3267917833e-03 -8.0747281231e-03
— 1.34e+01 !!!

downdet_orb_rot_0001_0002 0.000000e+00 -4.3276838557e-03 2.6684235669e-02
— 7.17e+02 !!!

uu_0 0.000000e+00 -1.2724910770e-02 -1.2724906671e-02
» 3.22e-05

uu_1l 0.000000e+00 2.0305884219e-02 2.0305883999%e-02
— 1.08e-06

uu_2 0.000000e+00 -1.1644597731e-03 -1.1644591818e-03
— 5.08e-05

11.3. Wavefunction optimization

QMCPACK Manual

11.3.13 Output of intermediate values

Use the following parameters to the linear optimizers to output intermediate values such as the overlap and Hamiltonian
matrices.

Name Datatype| Val- De- Description
ues fault

output_matrices_cstext yes, no | no Output linear method matrices to CSV
files

output_matrices_hdftext yes, no | no Output linear method matrices to HDF
file

freeze_parameters | text yes, no | no Do not update parameters between iter-
ations

The output_matrices_csv parameter will write to <base name>.ham.s000.scalar.dat and
<base name>.ovl.scalar.dat. = One line per iteration of the optimizer loop. = Combined with
freeze_parameters, this allows computing error bars on the matrices for use in regression testing.

The output_matrices_hdf parameter will output in HDF format the matrices used in the linear
method along with the shifts and the eigenvalue and eigenvector produced by QMCPACK. The file is
named “<base name>.<series number>.linear_matrices.h5”. It only works with the batched optimizer
(batched version of 1inear)

11.4 Diffusion Monte Carlo

11.4.1 dmc driver

Main input parameters are given in Table 11.4.1, additional in Table 11.4.1.

parameters:
Name Datatype Values De- Description
fault
targetwalkers integer >0 dep. Overall total number of walkers
blocks integer >0 1 Number of blocks
steps integer >0 1 Number of steps per block
warmupsteps integer >0 0 Number of steps for warming up
timestep real >0 0.1 Time step for each electron move
nonlocalmoves string yes, no, v0, v1, v3 no Run with T-moves
branching_cutoff_schenstring clas- classic | Branch cutoff scheme
sic/DRV/ZSGMA/YL
maxcpusecs real >0 3.6e5 Deprecated. Superseded by
max_seconds
max_seconds real >0 3.6e5 Maximum allowed walltime in sec-
onds
blocks_between_recompunteger >0 dep. Wavefunction recompute frequency
spinMass real >0 1.0 Effective mass for spin sampling
debug_checks text see additional info dep. Turn on/off additional recompute
and checks

Table 9 Main DMC input parameters.

152 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

Name Datatype Values De- Description

fault
energyUpdateIntervdlinteger | >0 0 Trial energy update interval
refEnergy real all values dep. Reference energy in atomic units
feedback double >0 1.0 Population feedback on the trial energy
sigmaBound 10 >0 10 Parameter to cutoff large weights
killnode string yes/other no Kill or reject walkers that cross nodes
warmupByReconfigurgtadption yes,no 0 Warm up with a fixed population
reconfiguration string yes/pure/othermo Fixed population technique
branchInterval integer >0 1 Branching interval
substeps integer | >0 1 Branching interval
MaxAge double >0 10 Kill persistent walkers
MaxCopy double >0 2 Limit population growth
maxDisplSqg real all values -1 Maximum particle move
scaleweight string yes/other yes Scale weights (CUDA only)
checkproperties integer >0 100 Number of steps between walker updates
fastgrad text yes/other yes Fast gradients
storeconfigs integer | all values 0 Store configurations
use_nonblocking string yes/no yes Using nonblocking send/recv
debug_disable_brandhstrigg yes/no no Disable branching for debugging without correct-

ness guarantee

Additional information:

Table 10 Additional DMC input parameters.

e targetwalkers: A DMC run can be considered a restart run or a new run. A restart run is considered to be

any method block beyond the first one, such as when a DMC method block follows a VMC block. Alternatively,
a user reading in configurations from disk would also considered a restart run. In the case of a restart run, the
DMC driver will use the configurations from the previous run, and this variable will not be used. For a new run,
if the number of walkers is less than the number of threads, then the number of walkers will be set equal to the
number of threads.

blocks: This is the number of blocks run during a DMC method block. A block consists of a number of DMC
steps (steps), after which all the statistics accumulated in the block are written to disk.

steps: This is the number of DMC steps in a block.

warmupsteps: These are the steps at the beginning of a DMC run in which the instantaneous average energy
is used to update the trial energy. During regular steps, E,..; is used.

timestep: The timestep determines the accuracy of the imaginary time propagator. Generally, multiple
time steps are used to extrapolate to the infinite time step limit. A good range of time steps in which to perform
time step extrapolation will typically have a minimum of 99% acceptance probability for each step.

checkproperties: When using a particle-by-particle driver, this variable specifies how often to reset all the
variables kept in the buffer.

maxcpusecs: Deprecated. Superseded by max_seconds.

max_seconds: The default is 100 hours. Once the specified time has elapsed, the program will finalize the
simulation even if all blocks are not completed.

spinMass This is an optional parameter to allow the user to change the rate of spin sampling. If spin sampling
is on using spinor == yes in the electron ParticleSet input, the spin mass determines the rate of spin sampling,
resulting in an effective spin timestep 7 = -— where 7 is the normal spatial timestep and p is the value of the
spin mass. The algorithm is described in detail in [IMZG+16]] and [[MBM16]].

11.4. Diffusion Monte Carlo

153

QMCPACK Manual

* debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_moves’. If the build type is debug, the default
value is ‘all’. Otherwise, the default value is ‘no’.

* energyUpdateInterval: The default is to update the trial energy at every step. Otherwise the trial energy
is updated every energyUpdateInterval step.

Eyia = refEnergy + feedback - (IntargetWalkers —InN),

where N is the current population.

e refEnergy: The default reference energy is taken from the VMC run that precedes the DMC run. This value
is updated to the current mean whenever branching happens.

* feedback: This variable is used to determine how strong to react to population fluctuations when doing
population control. See the equation in energyUpdatelnterval for more details.

* useBareTau: The same time step is used whether or not a move is rejected. The default is to use an effective
time step when a move is rejected.

* warmupByReconfiguration: Warmup DMC is done with a fixed population.
e sigmaBound: This determines the branch cutoff to limit wild weights based on the sigma and sigmaBound.

* killnode: When running fixed-node, if a walker attempts to cross a node, the move will normally be rejected.
If killnode = “yes,” then walkers are destroyed when they cross a node.

* reconfiguration: If reconfiguration is “yes,” then run with a fixed walker population using the
reconfiguration technique.

e branchInterval: This is the number of steps between branching. The total number of DMC steps in a
block will be BranchInterval*Steps.

e substeps: This is the same as BranchInterval.

* nonlocalmoves: Evaluate pseudopotentials using one of the nonlocal move algorithms such as T-moves.

no(default): Imposes the locality approximation.

yes/v0: Implements the algorithm in the 2006 Casula paper [[Cas06]].

v1: Implements the v1 algorithm in the 2010 Casula paper [[CMSF10]].

v2: Is not implemented and is skipped to avoid any confusion with the v2 algorithm in the 2010 Casula
paper [[CMSF10]].

v3: (Experimental) Implements an algorithm similar to v1 but is much faster. vl computes the transition
probability before each single electron T-move selection because of the acceptance of previous T-moves.
v3 mostly reuses the transition probability computed during the evaluation of nonlocal pseudopotentials
for the local energy, namely before accepting any T-moves, and only recomputes the transition probability
of the electrons within the same pseudopotential region of any electrons touched by T-moves. This is
an approximation to vl and results in a slightly different time step error, but it significantly reduces the
computational cost. vl and v3 agree at zero time step. This faster algorithm is the topic of a paper in
preparation.

The v1 and v3 algorithms are size-consistent and are important advances over the previous vO non-size-
consistent algorithm. We highly recommend investigating the importance of size-consistency.

* scaleweight: This is the scaling weight per Umrigar/Nightingale. CUDA only.

* MaxAge: Set the weight of a walker to min(currentweight,0.5) after a walker has not moved for MaxAge steps.
Needed if persistent walkers appear during the course of a run.

* MaxCopy: When determining the number of copies of a walker to branch, set the number of copies equal to
min(Multiplicity, MaxCopy).

154 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

* fastgrad: This calculates gradients with either the fast version or the full-ratio version.

* maxDisplSqg: When running a DMC calculation with particle by particle, this sets the maximum displacement
allowed for a single particle move. All distance displacements larger than the max are rejected. If initialized to
a negative value, it becomes equal to Lattice(LR/rc).

e sigmaBound: This determines the branch cutoff to limit wild weights based on the sigma and sigmaBound.

* storeconfigs: If storeconfigs is set to a nonzero value, then electron configurations during the DMC
run will be saved. This option is disabled for the OpenMP version of DMC.

* blocks_between_recompute: See details in Variational Monte Carlo.

* branching_cutoff_scheme: Modifies how the branching factor is computed so as to avoid divergences
and stability problems near nodal surfaces.

— classic (default): The implementation found in QMCPACK v3.0.0 and earlier. E.,; = min(max(c? x

sigmaBound, maxSigma), 2.5/7), where o2 is the variance and maxSigma is set to 50 during warmup
(equilibration) and 10 thereafter. sigmaBound is default to 10.

— DRV: Implements the algorithm of DePasquale et al., Eq. 3 in [[DRV88]] or Eq. 9 of [[UNR93]]. E .y =
2.0/y/T.

— ZSGMA: Implements the “ZSGMA” algorithm of [[ZSG+16]] with o = 0.2. The cutoff energy is mod-
ified by a factor including the electron count, E.,; = a+/N/7, which greatly improves size consis-
tency over Eq. 39 of [[UNR93]]. See Eq. 6 in [[ZSG+16]] and for an application to molecular crystals
[[ZBKlimevs+18]].

— YL: An unpublished algorithm due to Ye Luo. E..,; = o X min(sigmaBound, 1/1/7). This option takes
into account both size consistency and wavefunction quality via the term o. sigmaBound is default to 10.

Listing 11.3: The following is an example of a very simple DMC section.

<gmc method="dmc" move="pbyp" target="e">
<parameter name="blocks">100</parameter>
<parameter name="steps">400</parameter>
<parameter name="timestep">0.010</parameter>
<parameter name="warmupsteps">100</parameter>
</qmec>

The time step should be individually adjusted for each problem. Please refer to the theory section on diffusion Monte
Carlo.

Listing 11.4: The following is an example of running a simulation that
can be restarted.

<gmc method="dmc" move="pbyp" checkpoint="0">

<parameter name="timestep"> 0.004 </parameter>

<parameter name="blocks"> 100 </parameter>

<parameter name="steps"> 400 </parameter>
</agmec>

The checkpoint flag instructs QMCPACK to output walker configurations. This also works in VMC. This will output
an hS file with the name projectid.run-number.config.h5. Check that this file exists before attempting a
restart. To read in this file for a continuation run, specify the following:

11.4. Diffusion Monte Carlo 155

QMCPACK Manual

Listing 11.5: Restart (read walkers from previous run).

<mcwalkerset fileroot="BH.s002" version="0 6" collected="yes"/>

BH is the project id, and s002 is the calculation number to read in the walkers from the previous run.

Combining VMC and DMC in a single run (wavefunction optimization can be combined in this way too) is the standard
way in which QMCPACK is typically run. There is no need to run two separate jobs since method sections can be
stacked and walkers are transferred between them.

Listing 11.6: Combined VMC and DMC run.

<gmc method="vmc" move="pbyp" target="e">
<parameter name="blocks">100</parameter>
<parameter name="steps">4000</parameter>
<parameter name="warmupsteps">100</parameter>
<parameter name="samples">1920</parameter>
<parameter name="walkers">1</parameter>
<parameter name="timestep">0.5</parameter>

</gmc>

<gmc method="dmc" move="pbyp" target="e">
<parameter name="blocks">100</parameter>
<parameter name="steps">400</parameter>
<parameter name="timestep">0.010</parameter>
<parameter name="warmupsteps">100</parameter>

</gmc>

<gmc method="dmc" move="pbyp" target="e">
<parameter name="warmupsteps">500</parameter>
<parameter name="blocks">50</parameter>
<parameter name="steps">100</parameter>
<parameter name="timestep">0.005</parameter>

</gmc>

11.4.2 Batched dmc driver (experimental)

parameters:

156 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

Name DatatypeValues De- Description
fault
total_walkers integer | >0 1 Total number of walkers over all
MPI ranks
walkers_per_rank integer | >0 1 Number of walkers per MPI rank
crowds integer | >0 dep. Number of desynchronized
dwalker crowds
blocks integer | >0 1 Number of blocks
steps integer | >0 1 Number of steps per block
warmupsteps integer | >0 0 Number of steps for warming up
timestep real >0 0.1 Time step for each electron move
nonlocalmoves string yes, no, v0, vl, | no Run with T-moves
v3
branching_cutoff_gcitrnge clas- clas- Branch cutoff scheme
sic/DRV/ZSGMA/YKic
blocks_between_recdntegere | > 0 dep. Wavefunction recompute fre-
quency
feedback double | >0 1.0 Population feedback on the trial
energy
sigmaBound 10 >0 10 Parameter to cutoff large weights
reconfiguration string yes/pure/other no Fixed population technique
storeconfigs integer | all values 0 Store configurations
use_nonblocking string yes/no yes Using nonblocking send/recv
debug_disable_branditringy | yes/no no Disable branching for debugging
crowd_serialize_walikteger | yes, no no Force use of single walker APIs
(for testing)
debug_checks text see additional | dep. Turn on/off additional recompute
info and checks
spin_mass real >0 1.0 Effective mass for spin sampling
measure_imbalance | text yes,no no Measure load imbalance at the
end of each block

* crowds The number of crowds that the walkers are subdivided into on each MPI rank. If not provided, it is set
equal to the number of OpenMP threads.

* walkers_per_rank The number of walkers per MPI rank. This number does not have to be a multiple of the
number of OpenMP threads. However, to avoid any idle resources, it is recommended to be at least the number
of OpenMP threads for pure CPU runs. For GPU runs, a scan of this parameter is necessary to reach reasonable
single rank efficiency and also get a balanced time to solution. For highest throughput on GPUs, expect to use
hundreds of walkers_per_rank, or the largest number that will fit in GPU memory. If neither total_ walkers
nor walkers_per_rank is provided, walkers_per_rank is set equal to crowds.

* total_walkers Total number of walkers summed over all MPI ranks, or equivalently the total number of
walkers in the DMC calculation. If not provided, it is computed as walkers_per_rank times the number of
MPI ranks. If both total_walkers and walkers_per_rank are provided, which is not recommended,
total_walkers must be consistently set equal to walkers_per_rank times the number MPI ranks.

¢ debug_checks valid values are ‘no’, ‘all’, ‘checkGL_after_load’, ‘checkGL_after_moves’,
‘checkGL _after_tmove’. If the build type is debug, the default value is ‘all’. Otherwise, the default
value is ‘no’.

* spin_mass Optional parameter to allow the user to change the rate of spin sampling. If spin sampling is on
using spinor == yes in the electron ParticleSet input, the spin mass determines the rate of spin sampling,
resulting in an effective spin timestep 75 = #l The algorithm is described in detail in [[MZG+16]] and

[[MBM]16]].

11.4. Diffusion Monte Carlo 157

QMCPACK Manual

Listing 11.7: The following is an example of a minimal DMC section
using the batched dmc driver

<gmc method="dmc" move="pbyp" target="e">
<parameter name="walkers_per_ rank">256</parameter>
<parameter name="blocks">100</parameter>
<parameter name="steps">400</parameter>
<parameter name="timestep">0.010</parameter>
<parameter name="warmupsteps">100</parameter>
</qmec>

11.5 Reptation Monte Carlo

Like DMC, RMC is a projector-based method that allows sampling of the fixed-node wavefunciton. However, by
exploiting the path-integral formulation of Schrédinger’s equation, the RMC algorithm can offer some advantages
over traditional DMC, such as sampling both the mixed and pure fixed-node distributions in polynomial time, as well
as not having population fluctuations and biases. The current implementation does not work with T-moves.

There are two adjustable parameters that affect the quality of the RMC projection: imaginary projection time 3 of the
sampling path (commonly called a “reptile””) and the Trotter time step 7. /5 must be chosen to be large enough such
that e #H | 1) &~ |®,) for mixed observables, and e~ 3H |¥r) ~ |®g) for pure observables. The reptile is discretized
into M = (/7 beads at the cost of an O(7) time-step error for observables arising from the Trotter-Suzuki breakup of

the short-time propagator.
The following table lists some of the more practical

vmc method:

parameters:
Name Datatype| Val- De- Description
ues fault

beta real >0 dep. Reptile project time

timestep real >0 0.1 Trotter time step 7 for each electron move

beads int >0 1 Number of reptile beads M = 3/7

blocks integer >0 1 Number of blocks

steps integer >0 1 Number of steps per block

vmcpresteps| integer >0 0 Propagates reptile using VMC for given number of
steps

warmupsteps| integer >0 0 Number of steps for warming up

maxAge integer >0 0 Force accept for stuck reptile if age exceeds
maxAge

Additional information:

Because of the sampling differences between DMC ensembles of walkers and RMC reptiles, the RMC block
should contain the following estimator declaration to ensure correct sampling: <estimator name="RMC"
hdf5="no">.

* beta or beads? One or the other can be specified, and from the Trotter time step, the code will construct an
appropriately sized reptile. If both are given, beta overrides beads.

* Mixed vs. pure observables? Configurations sampled by the endpoints of the reptile are distributed according
to the mixed distribution f(R) = ¥r(R)®o(R). Any observable that is computable within DMC and is

158 Chapter 11. Quantum Monte Carlo Methods

QMCPACK Manual

dumped to the scalar.dat file will likewise be found in the scalar.dat file generated by RMC, except
there will be an appended _m to alert the user that the observable was computed on the mixed distribution. For
pure observables, care must be taken in the interpretation. If the observable is diagonal in the position basis (in
layman’s terms, if it is entirely computable from a single electron configuration R, like the potential energy),
and if the observable does not have an explicit dependence on the trial wavefunction (e.g., the local energy
has an explicit dependence on the trial wavefunction from the kinetic energy term), then pure estimates will be
correctly computed. These observables will be found in either the scalar.dat, where they will be appended
with a _p suffix, or in the stat .h5 file. No mixed estimators will be dumped to the hS file.

» Sampling: For pure estimators, the traces of both pure and mixed estimates should be checked. Ergodicity is a
known problem in RMC. Because we use the bounce algorithm, it is possible for the reptile to bounce back and
forth without changing the electron coordinates of the central beads. This might not easily show up with mixed
estimators, since these are accumulated at constantly regrown ends, but pure estimates are accumulated on these
central beads and so can exhibit strong autocorrelations in pure estimate traces.

e Propagator: Our implementation of RMC uses Moroni’s DMC link action (symmetrized), with Umrigar’s
scaled drift near nodes. In this regard, the propagator is identical to the one QMCPACK uses in DMC.

* Sampling: We use Ceperley’s bounce algorithm. MaxAge is used in case the reptile gets stuck, at which point
the code forces move acceptance, stops accumulating statistics, and requilibrates the reptile. Very rarely will
this be required. For move proposals, we use particle-by-particle VMC a total of N, times to generate a new
all-electron configuration, at which point the action is computed and the move is either accepted or rejected.

11.5. Reptation Monte Carlo 159

QMCPACK Manual

160 Chapter 11. Quantum Monte Carlo Methods

CHAPTER
TWELVE

OUTPUT OVERVIEW

QMCPACK writes several output files that report information about the simulation (e.g., the physical properties such
as the energy), as well as information about the computational aspects of the simulation, checkpoints, and restarts.
The types of output files generated depend on the details of a calculation. The following list is not meant to be
exhaustive but rather to highlight some salient features of the more common file types. Further details can be found in
the description of the estimator of interest.

12.1 The .scalar.dat file

The most important output file is the scalar.dat file. This file contains the output of block-averaged properties of
the system such as the local energy and other estimators. Each line corresponds to an average over Nyqikers * Nsteps
samples. By default, the quantities reported in the scalar.dat file include the following:

LocalEnergy The local energy.

LocalEnergy_sq The local energy squared.

LocalPotential The local potential energy.

Kinetic The kinetic energy.

ElecElec The electron-electron potential energy.

Ionlon The ion-ion potential energy.

LocalECP The energy due to the pseudopotential/effective core potential.
NonLocalECP The nonlocal energy due to the pseudopotential/effective core potential.
MPC The modified periodic Coulomb potential energy.

BlockWeight The number of MC samples in the block.

BlockCPU The number of seconds to compute the block.

AcceptRatio The acceptance ratio.

QMCPACK includes a python utility, gmca, that can be used to process these files. Details and examples are given in
Analyzing QMCPACK data.

161

QMCPACK Manual

12.2 The .opt.xml file

This file is generated after a VMC wavefunction optimization and contains the part of the input file that lists the
optimized Jastrow factors. Conveniently, this file is already formatted such that it can easily be incorporated into a
DMC input file.

12.3 The .gqmc.xml file

This file contains information about the computational aspects of the simulation, for example, which parts of the code
are being executed when. This file is generated only during an ensemble run in which QMCPACK runs multiple input
files.

12.4 The .dmc.dat file

This file contains information similar to the . scalar.dat file but also includes extra information about the details
of a DMC calculation, for example, information about the walker population.

Index The block number.

LocalEnergy The local energy.

Variance The variance.

Weight The number of samples in the block.

NumOfWalkers The number of walkers times the number of steps.

AvgSentWalkers The average number of walkers sent. During a DMC simulation, walkers might be created or de-
stroyed. At every step, QMCPACK will do some load balancing to ensure that the walkers are evenly distributed
across nodes.

TrialEnergy The trial energy. See Diffusion Monte Carlo for an explanation of trial energy.
DiffEff The diffusion efficiency.

LivingFraction The fraction of the walker population from the previous step that survived to the current step.

12.5 The .bandinfo.dat file

This file contains information from the trial wavefunction about the band structure of the system, including the avail-
able k-points. This can be helpful in constructing trial wavefunctions.

12.6 Checkpoint and restart files

12.6.1 The .cont.xml file

This file enables continuation of the run. It is mostly a copy of the input XML file with the series number incremented
and the mcwalkerset element added to read the walkers from a config file. The . cont . xm1 file is always created,
but other files it depends on are present only if checkpointing is enabled.

162 Chapter 12. Output Overview

QMCPACK Manual

12.6.2 The .config.h5 file

This file contains stored walker configurations.

12.6.3 The .random.h5 file

This file contains the state of the random number generator to allow restarts. (Older versions used an XML file with a
suffix of . random. xml).

12.6. Checkpoint and restart files 163

QMCPACK Manual

164 Chapter 12. Output Overview

CHAPTER
THIRTEEN

ANALYZING QMCPACK DATA

13.1 Using the qmca tool to obtain total energies and related quanti-
ties

The gmca tool is the primary means of analyzing scalar-valued data generated by QMCPACK. Output files that contain
scalar-valued data are ».scalar.dat and .dmc.dat (see Output Overview for a detailed description of these
files). Quantities that are available for analysis in . scalar.dat files include the local energy and its variance,
kinetic energy, potential energy and its components, acceptance ratio, and the average CPU time spent per block,
among others. The % .dmc.dat files provide information regarding the DMC walker population in addition to the
local energy.

Basic capabilities of gmca include calculating mean values and associated error bars, processing multiple files at once
in batched fashion, performing twist averaging, plotting mean values by series, and plotting traces (per block or step)
of the underlying data. These capabilities are explained with accompanying examples in the following subsections.

To use gmca, installations of Python and NumPy must be present on the local machine. For graphical plotting, the
matplotlib module must also be available.

An overview of all supported input flags to gmca can be obtained by typing gmca at the command line with no other
inputs (also try gmca —x for a short list of examples):

>gmca
no files provided, please see help info below

Usage: gmca [options] [file(s)]

Options:
—-version show program's version number and exit
-v, ——-verbose Print detailed information (default=False).
—-g QUANTITIES, —--quantities=QUANTITIES

Quantity or list of quantities to analyze. See names
and abbreviations below (default=all).
-u UNITS, --units=UNITS
Desired energy units. Can be Ha (Hartree), Ry
(Rydberg), eV (electron volts), kJ_mol (k.
joule/mole), K (Kelvin), J (Joules) (default=Ha).
—e EQUILIBRATION, --equilibration=EQUILIBRATION
Equilibration length in blocks (default=auto).
-a, ——average Average over files in each series (default=False).
-w WEIGHTS, —--weights=WEIGHTS
List of weights for averaging (default=None).
-b, —-—-reblock (pending) Use reblocking to calculate statistics
(default=False).

(continues on next page)

165

QMCPACK Manual

(continued from previous page)

-p, —-plot Plot quantities vs. series (default=False).

-t, —-—-trace Plot a trace of quantities (default=False).

-h, —--histogram (pending) Plot a histogram of quantities
(default=False) .

-0, ——-overlay Overlay plots (default=False).

——legend=LEGEND Placement of legend. None for no legend, outside for
outside legend (default=upper right).

——noautocorr Do not calculate autocorrelation. Warning: error bars
are no longer valid! (default=False).

—-—-noac Alias for —-—-noautocorr (default=False).

—-—-sac Show autocorrelation of sample data (default=False).

——sv Show variance of sample data (default=False).

-i, —-—-image (pending) Save image files (default=False).

-r, —-report (pending) Write a report (default=False).

-s, —--show_options Print user provided options (default=False).

-x, ——examples Print examples and exit (default=False).

—-—help Print help information and exit (default=False).

—d DESIRED_ERROR, —--desired_error=DESIRED_ERROR
Show number of samples needed for desired error bar
(default=none) .

-n PARTICLE_NUMBER, --enlarge_system=PARTICLE_NUMBER
Show number of samples needed to maintain error bar on
larger system: desired particle number first, current
particle number second (default=none)

13.1.1 Obtaining a statistically correct mean and error bar

A rough guess at the mean and error bar of the local energy can be obtained in the following way with gmca:

>gmca —gq e gmc.s000.scalar.dat
gnc series 0 LocalEnergy = -45.876150 +/- 0.017688

In this case the VMC energy of an 8-atom cell of diamond is estimated to be —45.876(2) Hartrees (Ha). This rough
guess should not be used for production-level or publication-quality estimates.

To obtain production-level results, the underlying data should first be inspected visually to ensure that all data included
in the averaging can be attributed to a distribution sharing the same mean. The first steps of essentially any MC
calculation (the “equilibration phase”) do not belong to the equilibrium distribution and should be excluded from
estimates of the mean and its error bar.

We can plot a data trace (—t) of the local energy in the following way:

>gmca -t —-qg e —e 0 gmc.s000.scalar.dat

The —e 0 part indicates that we do not want any data to be initially excluded from the calculation of averages. The
resulting plot is shown in Fig. 13.1. The unphysical equilibration period is visible on the left side of the plot.

Most of the data fluctuates around a well-defined mean (consistent variations around a flat line). This property is
important to verify by plotting the trace for each QMC run.

If we exclude none of the equilibration data points, we get an erroneous estimate of —45.870(2) Ha for the local
energy:

>gmca —q e —e 0 gmc.s000.scalar.dat
gmc series 0 LocalEnergy = -45.870071 +/- 0.018072

166 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

Trace of LocalEnergy

Y | [

s000
-45.0
5. —45.5 ;
< ER H s k- - T N
o : ! llw‘ln‘ | ‘\‘H IH i _L
Z-uo M m UL WAL L
3 ;
o :
| :
-46.51
-47.0f
—47.50 ‘ ‘
0 200 400 600 800
samples

Fig. 13.1: Trace of the VMC local energy for an 8-atom cell of diamond generated with gmca. The x-axis (‘“samples”)
refers to the VMC block index in this case.

The equilibration period is typically estimated by eye, though a few conservative values should be checked to ensure
that the mean remains unaffected. In this dataset, the equilibration appears to have been reached after 100 or so
samples. After excluding the first 100 VMC blocks from the analysis we get

>gmca —q e —e 100 gmc.s000.scalar.dat
gnc series 0 LocalEnergy = -45.877363 +/- 0.017432

This estimate (—45.877(2) Ha) differs significantly from the —45.870(2) Ha figure obtained from the full set of data,
but it agrees with the rough estimate of —45.876(2) Ha obtained with the abbreviated command (qmca -g e gmc.
s000.scalar.dat). This is because qmca makes a heuristic guess at the equilibration period and got it reasonably
correct in this case. In many cases, the heuristic guess fails and should not be relied on for quality results.

We have so far obtained a statistically correct mean. To obtain a statistically correct error bar, it is best to include ~100
or more statistically independent samples. An estimate of the number of independent samples can be obtained by
considering the autocorrelation time, which is essentially a measure of the number of samples that must be traversed
before an uncorrelated/independent sample is reached. We can get an estimate of the autocorrelation time in the
following way:

>gmca —q e —e 100 gmc.s000.scalar.dat —-sac
gqmc series 0 LocalEnergy = -45.877363 +/- 0.017432 4.8

The flag —sac stands for (s)how (a)uto(c)orrelation. In this case, the autocorrelation estimate is 4.8 = 5 samples.
Since the total run contained 800 samples and we have excluded 100 of them, we can estimate the number of indepen-
dent samples as (800 — 100)/5 = 140. In this case, the error bar is expected to be estimated reasonably well.

Keep in mind that the error bar represents the expected range of the mean with a certainty of only ~ 70%s; i.e., it is
a one sigma error bar. The actual mean value will lie outside the range indicated by the error bar in 1 out of every 3
runs, and in a set of 20 runs 1 value can be expected to deviate from its estimate by twice the error bar.

13.1. Using the qmca tool to obtain total energies and related quantities 167

QMCPACK Manual

Trace of LocalEnergy

—44.0 5004 s001 5002 s003 5004 s00§ 5006 s007

—44.5|

|
A
(5]
o
T

—45.5

LocalEnergy

. .
A e iy s ertnanibis b Ak sk
W- v Y Y 4 N

—46.0

—46.51

0 200 400 600 800
samples

Fig. 13.2: Trace of the local energy during one- and two-body Jastrow optimizations for an 8-atom cell of diamond
generated with gmca. Data for each optimization cycle (QMCPACK series) is separated by a vertical black line.

13.1.2 Judging wavefunction optimization

Wavefunction optimization is a highly nonlinear and sometimes sensitive process. As such, there is a risk that system-
atic errors encountered at this stage of the QMC process can be propagated into subsequent (expensive) DMC runs
unless they are guarded against with vigilance.

In this section we again consider an 8-atom cell of diamond but now in the context of Jastrow optimization (one- and
two-body terms). In optimization runs it is often preferable to use a large number of warmupsteps (~ 100) so that
equilibration bias does not propagate into the optimization process. We can check that the added warm-up has had its
intended effect by again checking the local energy trace:

>gmca -t —gq e xscalarx

The resulting plot can be found in Fig. 13.2. In this case sufficient warmupsteps were used to exit the equilibration
period before samples were collected and we can proceed without using the —e option with gmca.

After inspecting the trace, we should inspect the text output from gmca, now including the total energy and its
variance:

>gmca —q ev optxscalar.dat

LocalEnergy Variance ratio
opt series 0 -44.823616 +/- 0.007430 7.054219 +/- 0.041998 0.1574
opt series 1 -45.877643 +/- 0.003329 1.095362 +/- 0.041154 0.0239
opt series 2 -45.883191 +/- 0.004149 1.077942 +/- 0.021555 0.0235
opt series 3 -45.877524 +/- 0.003094 1.074047 +/- 0.010491 0.0234
opt series 4 -45.886062 +/- 0.003750 1.061707 +/- 0.014459 0.0231
opt series 5 -45.877668 +/- 0.003475 1.091585 +/- 0.021637 0.0238
opt series 6 -45.877109 +/- 0.003586 1.069205 +/- 0.009387 0.0233
opt series 7 -45.882563 +/- 0.004324 1.058771 +/- 0.008651 0.0231

The flags —g ev requested the energy (e) and the variance (v). For this combination of quantities, a third column
(ratio) is printed containing the ratio of the variance and the absolute value of the local energy. The variance/energy
ratio is an intensive quantity and is useful to inspect regardless of the system under study. Successful optimization of
molecules and solids of any size generally result in comparable values for the variance/energy ratio.

The first line of the output (series 0) corresponds to the local energy and variance of the system without a Jastrow
factor (all Jastrow coefficients were initialized to zero in this case), reflecting the quality of the orbitals alone. For

168 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

pseudopotential systems, a variance/energy ratio > 0.20 Ha generally indicates there is a problem with the input
orbitals that needs to be resolved before performing wavefunction optimization.

The subsequent lines correspond to energies and variances of intermediate parameterizations of the trial wavefunc-
tion during the optimization process. The output line containing opt series 1, for example, corresponds to the
trial wavefunction parameterized during the series 0 step (the parameters of this wavefunction would be found
in an output file matching *s000+opt .xml). The first thing to check about the resulting optimization is again the
variance/energy ratio. For pseudopotential systems, a variance/energy ratio < 0.03 Ha is consistent with a trial wave-
function of production quality, and values of 0.01 Ha are rarely obtainable for standard Slater-Jastrow wavefunctions.
By this metric, all parameterizations obtained for optimizations performed in series 0-6 are of comparable quality
(note that the quality of the wavefunction obtained during optimization series 7 is effectively unknown).

A good way to further discriminate among the parameterizations is to plot the energy and variance as a function of
series with gmca:

>gmca —-p —gq ev optxscalar.dat

The —p option results in plots of means plus error bars vs. series for all requested quantities. The resulting plots for
the local energy and variance are shown in Fig. 13.3. In this case, the resulting energies and variances are statistically
indistinguishable for all optimization cycles.

A good way to choose the optimal wavefunction for use in DMC is to select the one with the lowest statistically
significant energy within the set of optimized wavefunctions with reasonable variance (e.g., among those with a vari-
ance/energy ratio < 0.03 Ha). For pseudopotential calculations, minimizing according to the total energy is recom-
mended to reduce locality errors in DMC.

LocalEnergy vs. series

—45.84}
> —45.86[
o
(O]
c
o
© —45.88f K‘/\\‘/___f\{ 1
(o]
|

—45.90}

—-45.92

1 2 3 2 5 6 7
series

13.1. Using the gmca tool to obtain total energies and related quantities 169

QMCPACK Manual

Variance vs. series
; :

1.25F T —
1.20

1.15¢

1.10}

Variance

1.05¢

1.00¢

0 1 2 3 4 5 6 7
series

Fig. 13.3: Energy and variance vs. optimization series for an 8-atom cell of diamond as plotted by gmca.

13.1.3 Judging diffusion Monte Carlo runs

Judging the quality of the DMC projection process requires more care than is needed in VMC. To reduce bias, a small
time step is required in the approximate projector but this also leads to slow equilibration and long autocorrelation
times. Systematic errors in the projection process can also arise from statistical fluctuations due to pseudopotentials
or from trial wavefunctions with larger-than-necessary variance.

To illustrate the problems that can arise with respect to slow equilibration and long autocorrelation times, we consider
the 8-atom diamond system with VMC (200 blocks of 160 steps) followed by DMC (400 blocks of 5 steps) with a
small time step (0.002 Ha—1). A good first step in assessing the quality of any DMC run is to plot the trace of the local
energy:

>gmca -t —g e —e 0 xscalarx

The resulting trace plot is shown in Fig. 13.4. As always, the DMC local energy decreases exponentially away from
the VMC value, but in this case it takes a long time to do so. At least half of the DMC run is inefficiently consumed
by equilibration. If we are not careful to inspect and remove the transient, the estimated DMC energy will be strongly
biased by the transient as shown by the horizontal red line (estimated mean) in the figure. The autocorrelation time is
also large (~ 12 blocks):

>gmca —q e —e 200 —--sac *s001l.scalar~
gmc series 1 LocalEnergy = -46.045720 +/- 0.004813 11.6

Of the included 200 blocks, fewer than 20 contribute to the estimated error bar, indicating that we cannot trust the
reported error bar. This can also be demonstrated directly from the data. If we halve the number of included samples
to 100, we expect from Gaussian statistics that the error bar will grow by a factor of v/2, but instead we get

>gmca —gq e —e 300 xs00l.scalarx
agmc series 1 LocalEnergy = -46.048537 +/- 0.009280

which erroneously shows an estimated increase in the error bar by a factor of about 2. Overall, this run is simply too
short to gain meaningful information.

170 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

Trace of LocalEnergy

-4585|
—45.90]
>
o
& _a5.05|
i
©
S TN
9 -46.00} A |
. nh
W
—46.10/
0 100 200 300 400 500 600

samples

Fig. 13.4: Trace of the local energy for VMC followed by DMC with a small time step (0.002 Ha™') for an 8-atom
cell of diamond generated with gmca.

Consider the case in which we are interested in the cohesive energy of diamond, and, after having performed a time
step study of the cohesive energy, we have found that the energy difference between bulk diamond and atomic carbon
converges to our required accuracy with a larger time step of 0.01 Ha~!. In a production setting, a small cell could
be used to determine the appropriate time step, while a larger cell would subsequently be used to obtain a converged
cohesive energy, though for purposes of demonstration we still proceed here with the 8-atom cell. The new time step
of 0.01 Ha~! will result in a shorter autocorrelation time than the smaller time step used previously, but we would
like to shorten the equilibration time further still. This can be achieved by using a larger time step (say 0.02 Ha~!)
in a short intermediate DMC run used to walk down the transient. The rapidly achieved equilibrium with the 0.02
Ha~! time step projector will be much nearer to the 0.01 Ha~! time step we seek than the original VMC equilibrium,
so we can expect a shortened secondary equilibration time in the production 0.01 Ha~" time step run. Note that this
procedure is fully general, even if having to deal with an even shorter time step (e.g., 0.002 Ha~1) for a particular
problem.

‘We now rerun the previous example but with an intermediate DMC calculation using 40 blocks of 5 steps with a time
step of 0.02 Ha™!, followed by a production DMC calculation using 400 blocks of 10 steps with a time step of 0.01
Ha~!. We again plot the local energy trace using gmca:

>gmca -t —-qg e —e 0 *scalarx

with the result shown in Fig. 13.5. The projection transient has been effectively contained in the short DMC run with
a larger time step. As expected, the production run contains only a short equilibration period. Removing the first 20
blocks as a precaution, we obtain an estimate of the total energy in VMC and DMC:

>gmca —q ev —-e 20 —-—-sac gmc.*.scalar.dat

LocalEnergy Variance ratio
gqmc series 0 -45.881042 +/- 0.001283 1.0 1.076726 +/- 0.007013 1.0 0.0235
gmc series 1 -46.040814 +/- 0.005046 3.9 1.011303 +/- 0.016807 1.1 0.0220
gmc series 2 -46.032960 +/- 0.002077 5.2 1.014940 +/- 0.002547 1.0 0.0220

Notice that the variance/energy ratio in DMC (0.220 Ha) is similar to but slightly smaller than that obtained with VMC
(0.235 Ha). If the DMC variance/energy ratio is ever significantly larger than with VMC, this is cause to be concerned
about the correctness of the DMC run. Also notice the estimated autocorrelation time (~ 5 blocks). This leaves us

13.1. Using the qmca tool to obtain total energies and related quantities 171

QMCPACK Manual

Trace of LocalEnergy
—45.80} ‘ ‘

—45.85
—45.90

—45.95f

LocalEnergy

—46.00

—46.05}

—46.10

0 100 200 300 400 500 600
samples

Fig. 13.5: Trace of the local energy for VMC followed by a short intermediate DMC with a large time step (0.02
Ha~') and finally a production DMC run with a time step of 0.01 Ha~!. Calculations were performed in an 8-atom
cell of diamond.

with an estimated ~ 76 independent samples, though we should recall that the autocorrelation time is also a statistical
estimate that can be improved with more data. We can gain a better estimate of the autocorrelation time by using the
x.dmc . dat files, which contain output data resolved per step rather than per block (there are 10x more steps than
blocks in this example case):

>gmca —gq ev —e 200 --sac gmc.s002.dmc.dat
LocalEnergy Variance ratio
gmc series 2 -46.032909 +/- 0.002068 31.2 1.015781 +/- 0.002536 1.4 0.0221

This results in an estimated autocorrelation time of ~ 31 steps, or ~ 3 blocks, indicating that we actually have ~ 122
independent samples, which should be sufficient to obtain a trustworthy error bar. Our final DMC total energy is
estimated to be —46.0329(2) Ha.

Another simulation property that should be explicitly monitored is the behavior of the DMC walker population. Data
regarding the walker population is contained in the * . dmc.dat files. In Fig. 13.6 we show the trace of the DMC
walker population for the current run:

>gmca -t —g nw xdmc.dat
gmc series 1 NumOfWalkers = 2056.905405 +/- 8.775527
gmc series 2 NumOfWalkers = 2050.164160 +/- 4.954850

Following a DMC run, the walker population should be checked for two qualities: (1) that the population is sufficiently
large (a number > 2, 000 is generally sufficient to reduce population control bias) and (2) that the population fluctuates
benignly around its intended target value. In this case the target walker count (provided in the input file) was 2, 048
and we can confirm from the plot that the population is simply fluctuating around this value. Also, from the text output
we have a dynamic population estimate of 2,050(5) walkers. Rapid population reductions or increases—population
explosions—are indicative of problems with a run. These issues sometimes result from using a considerably poor
wavefunction (see comments regarding variance/energy ratio in the preceding subsections). QMCPACK has internal
guards in place that prevent the population from exceeding certain maximum and minimum bounds, so in particularly
faulty runs one might see the population “stabilize” to a constant value much larger or smaller than the target. In
such cases the cause(s) for the divergent population behavior needs to be investigated and resolved before proceeding

172 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

further.

21501

2050

NumOfWalkers

2000

1950,

Trace of NumOfWalkers

21001

sQ;

s002

1000 2000 3000
samples

4000

Fig. 13.6: Trace of the DMC walker population for an 8-atom cell of diamond obtained with gmca.

13.1.4 Obtaining other quantities

A number of other scalar-valued quantities are available with gmca. To obtain text output for all quantities available,
simply exclude the —q option used in previous examples. The following example shows output for a DMC calculation
of the 8-atom diamond system from the scalar.dat file:

>gmca —-e 20 gmc.s002.scalar.dat

gmc series 2

LocalEnergy -46.0330 +/- 0.0021
Variance 1.0149 +/- 0.0025
Kinetic 33.851 +/- 0.019
LocalPotential -79.884 +/- 0.020
ElecElec -11.4483 +/- 0.0083
LocalECP -22.615 +/- 0.029
NonLocalECP 5.2815 +/- 0.0079
IonIon -51.10 +/- 0.00
LocalEnergy_sq 2120.05 +/- 0.19
BlockWeight 20514.27 +/- 48.38
BlockCPU 1.4890 +/- 0.0038
AcceptRatio 0.9963954 +/- 0.0000055
Efficiency 71.88 +/- 0.00
TotalTime 565.80 +/- 0.00
TotalSamples 7795421 +/- 0

Similarly, for the dmc . dat file we get

>gmca —-e 20 gmc.s002.dmc.dat

gmc series 2
LocalEnergy -46.0329 +/- 0.0020
Variance 1.0162 +/- 0.0025

(continues on next page)

13.1. Using the gmca tool to obtain total energies and related quantities

173

QMCPACK Manual

(continued from previous page)

TotalSamples
TrialEnergy
DiffEff

Weight
NumOfWalkers
LivingFraction
AvgSentWalkers

= 8201275
. -46.0343
= 0.9939150
= 2050.23
= 2050
= 0.996427
= 0.2625

+/- 0
+/- 0.0023
+/- 0.0000088
+/- 4.82
+/- 5
+/- 0.000021
+/- 0.0011

Any subset of desired quantities can be obtained by using the —g option with either the full names of the quantities

just listed

>gmca —q 'LocalEnergy Kinetic LocalPotential'

gmc series 2
LocalEnergy
Kinetic
LocalPotential

= -46.0330
= 33.851
= -79.884

+/- 0.0021
+/- 0.019
+/- 0.020

—e 20 gmc.s002.scalar.dat

or with their corresponding abbreviations.

>gmca —gq ekp —-e 20 gmc.s002.scalar.dat

agmc series 2
LocalEnergy
Kinetic
LocalPotential

. -46.0330
= 33.851
= -79.884

+/- 0.0021
+/- 0.019
+/- 0.020

Abbreviations for each quantity can be found by typing gmca at the command line with no other input. This following

is a current list:

Abbreviations and full names for quantities:
= AcceptRatio

ar
bc
bw
ce
de
e
ee
eff

BlockCPU
BlockWeight
CorrectedEnergy
DiffEff
LocalEnergy
ElecElec
Efficiency
IonIon

Kinetic

KEcorr
LocalECP
LocalEnergy_sqg
MPC
NonLocalECP
NumOfWalkers
LocalPotential
AvgSentWalkers
TrialEnergy
TotalSamples
TotalTime
Variance
Weight

See the output overview for scalar.dat (The .scalardat file) and dmc.dat (The .dmc.dat file) for more infor-
mation about these quantities. The data analysis aspects for these quantities are essentially the same as for the local
energy as covered in the preceding subsections. Quantities that do not belong to an equilibrium distribution (e.g.,
BlockCPU) are somewhat different, though they still exhibit statistical fluctuations.

174

Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

13.1.5 Processing multiple files

Batch file processing is a common use case for gqmca. If we consider an “equation-of-state” calculation involving the
8-atom diamond cell we have used so far, we might be interested in the total energy for the various supercell volumes
along the trajectory from compression to expansion. After checking the traces (qmca -t -gq e scale_x/vmc/
xscalar«) to settle on a sensible equilibration cutoff as discussed in the preceding subsections, we can obtain the
total energies all at once:

>gmca —q ev —e 40 scale_x/vmc/+scalar«

LocalEnergy Variance ratio
scale_0.80/vmc/gmc series 0 -44.670984 +/- 0.006051 2.542384 +/- 0.019902 0.0569
scale_0.82/vmc/gmc series 0 -44.982818 +/- 0.005757 2.413011 +/- 0.022626 0.0536
scale_0.84/vmc/gmc series 0 -45.228257 +/- 0.005374 2.258577 +/- 0.019322 0.0499
scale_0.86/vmc/gmc series 0 -45.415842 +/- 0.005532 2.204980 +/- 0.052978 0.0486
scale_0.88/vmc/gmc series 0 -45.570215 +/- 0.004651 2.061374 +/- 0.014359 0.0452
scale_0.90/vmc/gmc series 0 -45.683684 +/- 0.005009 1.988539 +/- 0.018267 0.0435
scale_0.92/vmc/gmc series 0 -45.751359 +/- 0.004928 1.913282 +/- 0.013998 0.0418
scale_0.94/vmc/gmc series 0 -45.791622 +/- 0.005026 1.843704 +/- 0.014460 0.0403
scale_0.96/vmc/gmc series 0 -45.809256 +/- 0.005053 1.829103 +/- 0.014536 0.0399
scale_0.98/vmc/gmc series 0 -45.806235 +/- 0.004963 1.775391 +/- 0.015199 0.0388
scale_1.00/vmc/gmc series 0 -45.783481 +/- 0.005293 1.726869 +/- 0.012001 0.0377
scale_1.02/vmc/gmc series 0 -45.741655 +/—- 0.005627 1.681776 +/—- 0.011496 0.0368
scale_1.04/vmc/gmc series 0 -45.685101 +/- 0.005353 1.682608 +/—- 0.015423 0.0368
scale_1.06/vmc/gmc series 0 -45.615164 +/- 0.005978 1.652155 +/- 0.010945 0.0362
scale_1.08/vmc/gmc series 0 -45.543037 +/- 0.005191 1.646375 +/- 0.013446 0.0361
scale_1.10/vmc/gmc series 0 -45.450976 +/- 0.004794 1.707649 +/- 0.048186 0.0376
scale_1.12/vmc/gmc series 0 -45.371851 +/- 0.005103 1.686997 +/- 0.035920 0.0372
scale_1.14/vmc/gmc series 0 -45.265490 +/- 0.005311 1.631614 +/- 0.012381 0.0360
scale_1.16/vmc/gmc series 0 -45.161961 +/- 0.004868 1.656586 +/- 0.014788 0.0367
scale_1.18/vmc/gmc series 0 -45.062579 +/- 0.005971 1.671998 +/- 0.019942 0.0371
scale_1.20/vmc/gmc series 0 -44.960477 +/- 0.004888 1.651864 +/- 0.009756 0.0367

In this case, we are using a Jastrow factor optimized only at the equilibrium geometry (scale_1.00) but with radial
cutoffs restricted to the Wigner-Seitz radius of the most compressed supercell (scale_0.80) to avoid introducing
wavefunction cusps at the cell boundary (had we tried, QMCPACK would have aborted with a warning in this case).
It is clear that this restricted Jastrow factor is not an optimal choice because it yields variance/energy ratios between
0.036 and 0.057 Ha. This issue is largely a result of our undersized (8-atom) supercell; larger cells should always be
used in real production calculations.

Batch processing is also possible for multiple quantities. If multiple quantities are requested, an additional line is
inserted to separate results from different runs:

>gmca —gq 'e bc eff' -e 40 scale_x/vmc/*scalarx
scale_0.80/vmc/gmc series 0
LocalEnergy = -44.6710 +/- 0.0061
BlockCPU = 0.02986 +/- 0.00038
Efficiency = 38104.00 +/- 0.00
scale_0.82/vmc/gmc series 0
LocalEnergy = -44.9828 +/- 0.0058
BlockCPU = 0.02826 +/- 0.00013
Efficiency = 44483.91 +/- 0.00
scale_0.84/vmc/gmc series 0
LocalEnergy = -45.2283 +/- 0.0054
BlockCPU = 0.02747 +/- 0.00030
Efficiency = 52525.12 +/- 0.00

(continues on next page)

13.1. Using the qmca tool to obtain total energies and related quantities 175

QMCPACK Manual

(continued from previous page)

scale_0.86/vmc/gmc series 0

LocalEnergy = -45.4158 +/- 0.0055
BlockCPU = 0.02679 +/- 0.00013
Efficiency = 50811.55 +/- 0.00

scale_0.88/vmc/gmc series 0

LocalEnergy = -45.5702 +/- 0.0047
BlockCPU = 0.02598 +/- 0.00015
Efficiency = 74148.79 +/- 0.00

scale_0.90/vmc/gmc series 0

LocalEnergy = -45.6837 +/- 0.0050
BlockCPU = 0.02527 +/- 0.00011
Efficiency = 65714.98 +/- 0.00

13.1.6 Twist averaging

Twist averaging can be performed straightforwardly for any output quantity listed in Obtaining other quantities with
gmca. We illustrate these capabilities by repeating the 8-atom diamond DMC runs performed in Section Judging
diffusion Monte Carlo runs at 8 real-valued supercell twist angles (a 2 x 2 x 2 Monkhorst-Pack grid centered at the
I'-point). Data traces for each twist can be overlapped on the same plot:

>gmca -to —-qg e —e '30 20 30' xscalar* —-legend outside

The —o option requests the plots to be overlapped; otherwise, 8 separate plots would be generated. The equilibration
input —e '30 20 30' cuts out from the analyzed data the first 30 blocks for series 0 (VMC), 20 blocks for series 1
(intermediate DMC), and 30 blocks for series 2 (production DMC). The resulting plot is shown in Fig. 13.7.

Trace of LocalEnergy

qmc.g000
5000 5001 5002 gmc.g001
qmc.g002
qmc.g003
qmc.g004
qmc.g005
qmc.g006
qmc.g007

—44.5

-45.0

—45.5

LocalEnergy

—46.0

-46.5

0 100 200 300 400 500 600
samples

Fig. 13.7: Overlapped energy traces from VMC to DMC for an 8-supercell diamond obtained with gmca. Data for
each twist appears in a different color.

Twist averaging is performed by providing the —a option. If provided on its own, uniform weights are applied to each
twist angle. To obtain a trace plot with twist averaging enforced, use a command similar to the following:

176 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

>gmca —a -t —g e —e '"30 20 30' =xscalarx

The resulting plot is shown in Fig. 13.8. As can be seen from the trace plot, the chosen equilibration lengths are
appropriate, and we proceed to obtain the twist-averaged total energy from the scalar.dat files

>gmca —a —q ev —e 30 —--sac xs002.scalarx
LocalEnergy Variance ratio
avg series 2 -45.873369 +/- 0.000753 5.3 1.028751 +/- 0.001056 1.3 0.0224

and also from the dmc . dat files

>gmca —a —gq ev —e 300 —--sac xs002.dmcx*
LocalEnergy Variance ratio
avg series 2 -45.873371 +/- 0.000741 30.5 1.028843 +/- 0.000972 1.6 0.0224

yielding a twist-averaged total energy of —45.8733(8) Ha.

Trace of LocalEnergy

=

—45.65}

—45.70

—45.75}¢

—45.80

LocalEnergy

—45.85}

—45.90 . 1

—45.95 L L L L L L
0 100 200 300 400 500 600

samples

Fig. 13.8: Twist-averaged energy trace from VMC to DMC for an 8-supercell diamond obtained with gmca.

As can be seen from Fig. 13.7, some of the twist angles are degenerate. This is seen more clearly in the text output

>gmca —q ev —-e 30 xs002.scalarx*

LocalEnergy Variance ratio
gqmc.g000 series 2 —-45.264510 +/- 0.001942 1.057065 +/- 0.002318 0.0234
gmc.g001 series 2 -46.035511 +/- 0.001806 1.015992 +/- 0.002836 0.0221
gmc.g002 series 2 -46.035410 +/- 0.001538 1.015039 +/- 0.002661 0.0220
qmc.g003 series 2 -46.047285 +/- 0.001898 1.018219 +/- 0.002588 0.0221
gmc.g004 series 2 -46.034225 +/- 0.002539 1.013420 +/- 0.002835 0.0220
gmc.g005 series 2 -46.046731 +/- 0.002963 1.018337 +/- 0.004109 0.0221
gqmc.g006 series 2 -46.047133 +/- 0.001958 1.021483 +/- 0.003082 0.0222
agmc.g007 series 2 -45.476146 +/- 0.002065 1.070456 +/- 0.003133 0.0235

The degenerate twists grouped by set are {0}, {1, 2,4}, {3,5,6}, and {7}.

Alternatively, the run could have been performed at the four unique (irreducible) twist angles only. We will emulate
this situation by analyzing data for twists 0, 1, 3, and 7 only. In a production setting with irreducibly weighted twists,
the run would be performed on these twists alone; we reuse the uniform twist data for illustration purposes only.

13.1. Using the qmca tool to obtain total energies and related quantities 177

QMCPACK Manual

We can use gmca to perform twist averaging with different weights applied to each twist:

>gmca —a —w 'l 3 3 1'" —g ev —e 30 xg000+2+scx xg001l*x2xscx »g003x2xsc* *xg007*2*sc*
LocalEnergy Variance ratio
avg series 2 -45.873631 +/- 0.001044 1.028769 +/- 0.001520 0.0224

yielding a total energy value of —45.874(1) Ha, in agreement with the uniform weighted twist average performed
previously.

The decision of whether or not to perform irreducible weighted twist averaging should be made on the basis of effi-
ciency. The relative efficiency of irreducible vs. uniform weighted twist averaging depends on the irreducible weights
and the ratio of the lengths of the available sampling and equilibration periods. A formula for the relative efficiency of
these two cases is derived and discussed in more detail in Appendix A: Derivation of twist averaging efficiency.

13.1.7 Setting output units

Estimates outputted by gmca are in Hartree units by default. The output units for energetic quantities can be changed
by using the —u option.

Energy in Hartrees:

>gmca —g e -u Ha -e 20 gmc.s002.scalar.dat
agmc series 2 LocalEnergy = -46.032960 +/- 0.002077

Energy in electron volts:

>gmca —q e —u eV —e 20 gmc.s002.scalar.dat
gmc series 2 LocalEnergy = -1252.620565 +/- 0.056521

Energy in Rydbergs:

>gmca —gq e -u rydberg -e 20 gmc.s002.scalar.dat
gmc series 2 LocalEnergy = -92.065919 +/- 0.004154

Energy in kilojoules per mole:

>gmca —9q € -u kj_mol -e 20 gmc.s002.scalar.dat
gmc series 2 LocalEnergy = -120859.512998 +/- 5.453431

13.1.8 Speeding up trace plotting

When working with many files or files with many entries, gmca might take a long time to produce plots. The time
delay is actually due to the autocorrelation time estimate used to calculate error bars. The calculation time for the
autocorrelation scales as O(M?), with M being the number of statistical samples. If you are interested only in plotting
traces and not in the estimated error bars, the autocorrelation time estimation can be turned off with the —noac option:

>gmca -t —-qg e —e 20 —--noac gmc.s002.scalar.dat

Note that the resulting error bars printed to the console will be underestimated and are not meaningful. Do not use
—-noac in conjunction with the —p plotting option as these plots are of no use without meaningful error bars.

178 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

13.1.9 Short usage examples

Plotting a trace of the local energy:

>gmca -t —-g e *scalarx ‘

Applying an equilibration cutoff to VMC data (series 0):

’>qmca g e —e 30 xs000.scalarx* ‘

Applying the same equilibration cutoff to VMC and DMC data (series 0, 1, 2):

’>qmca q e —e 20 xscalar= ‘

Applying different equilibration cutoffs to VMC and DMC data (series 0, 1, 2):

’>qmca g e —e '"30 20 40" *scalarx ‘

Obtaining the energy, variance, and variance/energy ratio for all series:

’>qmca -q ev —e 30 *scalarx* ‘

Overlaying plots of mean + error bar for energy and variance for separate two- and three-body Jastrow optimization
runs:

>gmca -po —gq ev ./optJ2/xscalarx ./optd3/+scalarx ‘

Obtaining the acceptance ratio:

>gmca —gq ar -e 30 xscalarx ‘

Obtaining the average DMC walker population:

>gmca —q nw —e 400 xs002.dmc.dat ‘

Obtaining the MC efficiency:

>gmca —q eff -e 30 xscalarx ‘

Obtaining the total wall clock time per series:

’>qmca -q tt —e 0 xscalar= ‘

Obtaining the average wall clock time spent per block:

’>qmca -q bc —e 0 xscalar= ‘

Obtaining a subset of desired quantities:

’>qmca -q 'e v ar eff' -e 30 xscalar~= ‘

Obtaining all available quantities:

’>qmca —-e 30 xscalar= ‘

Obtaining the twist-averaged total energy with uniform weights:

13.1. Using the qmca tool to obtain total energies and related quantities 179

QMCPACK Manual

’>qmca -a —g e —e 40 xgxs002.scalar.dat

Obtaining the twist-averaged total energy with specific weights:

’>qmca -a w 'l 3 31" -ge —e 40 xgxs002.scalar.dat

Obtaining the local, kinetic, and potential energies in eV:

’>qmca -gq ekp —e 30 —u eV =xscalarx

13.1.10 Production quality checklist

1.

10.

11.

12.

Inspect the trace plots (-t option) for any oddities in the data. Typical behavior is a short equilibration period
followed by benign fluctuations around a clear mean value. There should not be any large spikes in the data.
This applies to all runs (VMC, optimization, DMC, etc.).

Remove all equilibration steps (—e option) from the data by inspecting the trace plot.

Check the quality of the orbitals (standalone Jastrow-less VMC or sometimes the first scalar file produced
during optimization) by inspecting the variance/energy ratio gmca —g ev xscalarx*. For pseudopotential
systems without a Jastrow, the variance/energy ratio should not exceed 0.2 Ha; otherwise, there is a problem
with the orbitals.

Check the quality of the optimized Jastrow factor by inspecting the variance/energy ratio. For pseudopotential
systems with a Jastrow, the variance/energy ratio should not exceed 0.04 Ha for pseudopotential systems. A
good Jastrow is indicated by a variance/energy ratio in the range of 0.01 — 0.03 Ha. A value less than 0.01 Ha
is difficult to achieve.

. Confirm that the optimization has converged by plotting the energy and variance vs. optimization series (qmca

-p —g ev =xscalarx*). Do not assume that optimization has converged in only a few cycles. Use at least 10
cycles with about 100,000 samples unless you already have experience with the system in question.

Optimize Jastrow factors according to energy minimization to reduce locality errors arising from the use of
nonlocal pseudopotentials in DMC. A good approach is to optimize with a few cycles of variance minimization
followed by several cycles of energy minimization.

Occasionally try optimizing with more samples and/or cycles to see if improved results are obtained.

If using a B-spline representation of the orbitals, converge the VMC energy and variance with respect to the
mesh size (controlled via meshfactor). This is best done in the presence of any Jastrow factor to reduce noise.
Consider using the hybrid LMTO representation of the orbitals as this can reduce both the VMC/DMC variance
and the DMC time step error, in addition to saving memory.

Check the variance/energy ratio of all production VMC and DMC calculations. In all cases, the DMC ratio
should be slightly less than the VMC ratio and both should abide the preceding guidelines, i.e., the ratio should
be less than 0.04 Ha for pseudopotential systems. The production ratio should also be consistent with what is
observed during wavefunction optimization.

Be aware of population control bias in DMC. Run with a population of ~ 2,000 or greater. Occasionally repeat
a run using a larger population to explicitly confirm that population control bias is small.

Check the stability of the DMC walker population by plotting the trace of the population size (gmca -t -g
nw *dmc.dat). Verify that the average walker population is consistent with the requested value provided in
the input.

In DMC, perform a time step study to obtain either (1) extrapolated results or (2) a time step for future production
where an energy difference shows convergence (e.g., a band gap or defect formation energy). For pseudopo-

180

Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

tential systems, converged time steps for many systems are in the range of 0.002 — 0.01 Ha™?, but the actual
converged time step must be explicitly checked.

13. In periodic systems, converge the total energy with respect to the size of the twist/k-point grid. Results for
smaller systems can easily be transferred to larger ones (e.g., a2 x 2 x 2 twist grid in a 2 x 2 x 2 tiled cell is
equivalenttoal x 1 x 1 twist gridin a4 x 4 x 4 tiled cell).

14. In periodic systems, perform finite-size extrapolation including two body corrections (needed for cohesive en-
ergy/phase stability studies) unless it can be shown that finite-size effects cancel for the energy difference in
question (e.g., some defect formation energies).

13.2 Using the qmc-fit tool for statistical time step extrapolation and
curve fitting

The gmc-fit tool is used to provide statistical estimates of curve-fitting parameters based on QMCPACK data.
Although gmc—-fit will eventually support many types of fitted curves (e.g., Morse potential binding curves and
various equation-of-state fitting curves), it is currently limited to estimating fitting parameters related to time step
extrapolation.

13.2.1 The jackknife statistical technique

The gmc-fit tool obtains estimates of fitting parameter means and associated error bars via the “jack-knife” tech-
nique. This technique is a powerful and general tool to obtain meaningful error bars for any quantity that is related in
a nonlinear fashion to an underlying set of statistical data. For this reason, we give a brief overview of the jackknife
technique before proceeding with usage instructions for the gmc—-fit tool.

Consider N statistical variables {z,, }_, that have been outputted by one or more simulation runs. If we have M

samples of each of the NV variables, then the mean values of each these variables can be estimated in the standard way,
. M

thatis, T, ~ 27 >0 1 Tom.

Suppose we are interested in P statistical quantities {y,,} 5:1 that are related to the original [V variables by a known

multidimensional function F':

y17y2a"'7yP:F(gjtha"'amN) or
y=F().

The relationship implied by F' is completely general. For example, the {x,,} might be elements of a matrix with
{yp} being the eigenvalues, or F' might be a fitting procedure for N energies at different time steps with P fitting
parameters. An approximate guess at the mean value of ¢/ can be obtained by evaluating F' at the mean value of Z (i.e.
F(Z;...Z%nN)), but with this approach we have no way to estimate the statistical error bar of any g,.

In the jackknife procedure, the statistical variability intrinsic to the underlying data {x,, } is used to obtain estimates of
the mean and error bar of {y,, }. We first construct a new set of « statistical data by taking the average over all samples

but one:
1
Trm = —— (NZ,, — 1, M]. 13.1
Tom = 37— (NTn = Znm) m € [1, M] (13.1)

The result is a distribution of approximate x mean values. These are used to construct a distribution of approximate
means for y:

glma-"aﬂPm:F(i'lma"-vi'Nm) me [I;M] (132)

13.2. Using the qmc-fit tool for statistical time step extrapolation and curve fitting 181

QMCPACK Manual

Estimates for the mean and error bar of the quantities of interest can finally be obtained using the following formulas:

1 M
Yp = M Z gpm .
m=1

(13.3)

M
M -1 - _
oy, = i (E y%m—Myg> .

m=1

13.2.2 Performing time step extrapolation

In this section, we use a 32-atom supercell of MnO as an example system for time step extrapolation. Data for this sys-
tem has been collected in DMC using the following sequence of time steps: 0.04, 0.02, 0.01, 0.005, 0.0025, 0.00125
Ha~!. For a typical production pseudopotential study, time steps in the range of 0.02 — 0.002 Ha~! are usually suf-
ficient and it is recommended to increase the number of steps/blocks by a factor of two when the time step is halved.
To perform accurate statistical fitting, we must first understand the equilibration and autocorrelation properties of the
inputted local energy data. After plotting the local energy traces (qmca -t -g e —e 0 ./gmcx/*scalarx),it
is clear that an equilibration period of 30 blocks is reasonable. Approximate autocorrelation lengths are also obtained
with gmca:

>gmca -e 30 —-q e —-sac ./gmc*/gmc.g000.s002.scalar.dat

./amc_tm_0.00125/gmc.g000 series 2 LocalEnergy = -3848.234513 +/- 0.055754 1.7
./qmc_tm_0.00250/gmc.g000 series 2 LocalEnergy = -3848.237614 +/- 0.055432 2.2
./gmc_tm_0.00500/gmc.g000 series 2 LocalEnergy = -3848.349741 +/- 0.069729 2.8
./agmc_tm_0.01000/gmc.g000 series 2 LocalEnergy = —-3848.274596 +/- 0.126407 3.9
./qmc_tm_0.02000/gmc.g000 series 2 LocalEnergy = -3848.539017 +/- 0.075740 2.4
./gmc_tm_0.04000/gmc.g000 series 2 LocalEnergy = -3848.976424 +/- 0.075305 1.8

The autocorrelation must be removed from the data before jackknifing, so we will reblock the data by a factor of 4.

The gmc—-fit tool can be used in the following way to obtain a linear time step fit of the data:

>gmc-fit ts -e 30 -b 4 -s 2 —-t '0.00125 0.0025 0.005 0.01 0.02 0.04" ./gmcx/*scalarx
fit function : linear

fitted formula: (-3848.193 +/- 0.037) + (-18.95 +/- 1.95)+*t

intercept : —-3848.193 +/- 0.037 Ha

The input arguments are as follows: t s indicates we are performing a time step fit, —e 30 is the equilibration period
removed from each set of scalar data, ~b 4 indicates the data will be reblocked by a factor of 4 (e.g., a file containing
400 entries will be block averaged into a new set of 100 before jackknife fitting), —s 2 indicates that the time step
data begins with series 2 (scalar files matching «s000* or xs001« are to be excluded), and -t ‘0.00125 0.0025
0.005 0.01 0.02 0.04’ provides a list of time step values corresponding to the inputted scalar files. The —e and -b
options can receive a list of file-specific values (same format as —t) if desired. As can be seen from the text output,
the parameters for the linear fit are printed with error bars obtained with jackknife resampling and the zero time step
“intercept” is —3848.19(4) Ha. In addition to text output, the previous command will result in a plot of the fit with the
zero time step value shown as a red dot, as shown in the top panel of Fig. 13.9.

Different fitting functions are supported via the —f option. Currently supported options include 1inear (a + bt),
quadratic (a + bt + ct?), and sqrt (a + bv/t + ct). Results for a quadratic fit are shown subsequently and in the
bottom panel of Fig. 13.9.

>gmc-fit ts -f quadratic -e30 -b4 -s2 -t '0.00125 0.0025 0.005 0.01 0.02 0.04" ./gmc«/
—*xscalarx

fit function : quadratic
fitted formula: (-3848.245 +/- 0.047) + (=7.25 +/- 8.33)*t + (-285.00 +/- 202.39)*t"2
intercept : —-3848.245 +/- 0.047 Ha

182 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

In this case, we find a zero time step estimate of —3848.25(5) Ha=!. A time step of 0.04 Ha~! might be on the large
side to include in time step extrapolation, and it is likely to have an outsize influence in the case of linear extrapolation.
Upon excluding this point, linear extrapolation yields a zero timestep value of —3848.22(4) Ha~!. Note that quadratic
extrapolation can result in intrinsically larger uncertainty in the extrapolated value. For example, when the 0.04 Ha~!
point is excluded, the uncertainty grows by 50% and we obtain an estimated value of —3848.28(7) instead.

0.0=3:848e3

-0.2}

-0.4}

-0.6}

DMC Energy (Ha)

-0.8}

-1.0

~1-2—550 0.01 0.02 0.03 0.04

DMC Timestep (1/Ha)

—3.848e3

-0.2}

-0.4}

-0.6}

DMC Energy (Ha)

-0.8}

-1.0}

-1.2 s s . ‘ ‘
0.00 0.01 0.02 0.03 0.04

DMC Timestep (1/Ha)

Fig. 13.9: Linear (top) and quadratic (bottom) time step fits to DMC data for a 32-atom supercell of MnO obtained
with gmc—-fit. Zero time step estimates are indicated by the red data point on the left side of either panel.

13.2. Using the gmc-fit tool for statistical time step extrapolation and curve fitting 183

QMCPACK Manual

13.3 Using the gqdens tool to obtain electron densities

The gdens tool is provided to post-process the heavy density data produced by QMCPACK and output the mean
density (with and without errorbars) in file formats viewable with, e.g., XCrysDen or VESTA. The tool currently
works only with the SpinDensity estimator in QMCPACK.

Note: this tool is provisional and may be changed or replaced at any time. The planned successor to this tool (gstat)
will expand access to other observables and will retain at least the non-plotting capabilities of gdens.

To use gdens, Nexus must be installed along with NumPy and H5Py. A short list of example use cases are covered
in the next section. Current input flags are:

>qgdens

Usage: gdens [options] [file(s)]

Options:
--version show program's version number and exit
-h, —-help Print help information and exit (default=False) .
-v, ——-verbose Print detailed information (default=False).

—-f FORMATS, —-formats=FORMATS
Format or list of formats for density file output.
Options: dat, xsf, chgcar (default=None).

—e EQUILIBRATION, —-equilibration=EQUILIBRATION
Equilibration length in blocks (default=0).
—-r REBLOCK, —-reblock=REBLOCK

Block coarsening factor; use estimated autocorrelation
length (default=None) .

-a, ——average Average over files in each series (default=False).

-w WEIGHTS, —-weights=WEIGHTS
List of weights for averaging (default=None) .

-1 INPUT, --input=INPUT
QOMCPACK input file containing structure and grid
information (default=None) .

—-s STRUCTURE, --structure=STRUCTURE

File containing atomic structure (default=None) .
—-g GRID, --grid=GRID Density grid dimensions (default=None) .
—-c CELL, —-cell=CELL Simulation cell axes (default=None).

——1lineplot=LINEPLOT Produce a line plot along the selected dimension: 0,
1, or 2 (default=None) .
—--noplot Do not show plots interactively (default=False).

13.3.1 Usage examples

Process a single file, excluding the first 40 blocks, and produce XSF files:

’qdens -v —e 40 -f xsf —-i gmc.in.xml gmc.s000.stat.h5

Process files for all available series:

’qdens -v —e 40 -f xsf -1 gmc.in.xml *stat.hb5

Combine groups of 10 adjacent statistical blocks together (appropriate if the estimated autocorrelation time is about
10 blocks):

184 Chapter 13. Analyzing QMCPACK data

QMCPACK Manual

’qdens -v —e 40 -r 10 —-f xsf -i gmc.in.xml gmc.s000.stat.h5

Apply different equilibration lengths and reblocking factors to each series (below is appropriate if there are three
series, e.g. s000, s001, and s002):

’qdens -v —e '20 20 40' -r '4 4 8' —-f xsf -1 gmc.in.xml *stat.h5

Produce twist averaged densities (also works with multiple series and reblocking):

’qdens -v —a —e 40 —-f xsf —-i gmc.g000.twistnum_0.in.xml gmc.gx.s000.stat.h5

Twist averaging with arbitrary weights can be performed via the —w option in a fashion identical to gmca.

13.3.2 Files produced

Look for files with names and extensions similar to:

gmc.s000.SpinDensity_u.xsf
amc.s000.SpinDensity_u-err.xsf
gmc.s000.SpinDensity_uterr.xsf

amc.s000.SpinDensity_d.xsf
gmc.s000.SpinDensity_d-err.xsf
agmc.s000.SpinDensity_d+err.xsf

gmc.s000.SpinDensity_u+d.xsf
amc.s000.SpinDensity_u+d-err.xsf
gmc.s000.SpinDensity_ut+d+terr.xsf

amc.s000.SpinDensity_u-d.xsf
amc.s000.SpinDensity_u-d-err.xsf
gmc.s000.SpinDensity_u-d+err.xsf

Files postfixed with u relate to the up electron density, d to down, u+d to the total charge density, and u—d to the
difference between up and down electron densities.

Files without err in the name contain only the mean, whereas files with +err/-err in the name contain the mean
plus/minus the estimated error bar. Please use caution in interpreting the error bars as their accuracy depends crucially
on a correct estimation of the autocorrelation time by the user (see —r option) and having a sufficient number of blocks
remaining following any reblocking.

When twist averaging, the group tag (e.g. g000 or similar) will be replaced with avg in the names of the outputted
files.

13.3. Using the qdens tool to obtain electron densities 185

QMCPACK Manual

186 Chapter 13. Analyzing QMCPACK data

CHAPTER
FOURTEEN

PERIODIC LCAO FOR SOLIDS

14.1 Introduction

QMCPACK implements the linear combination of atomic orbitals (LCAO) and Gaussian basis sets in periodic bound-
ary conditions. This method uses orders of magnitude less memory than the real-space spline wavefunction. Although
the spline scheme enables very fast evaluation of the wavefunction, it might require too much on-node memory for a
large complex cell. The periodic Gaussian evaluation provides a fallback that will definitely fit in available memory
but at significantly increased computational expense. Well-designed Gaussian basis sets should be used to accurately
represent the wavefunction, typically including both diffuse and high angular momentum functions.

The current implementation is not highly optimized for efficiency but can handle real and complex trial wavefunctions
generated by PySCF [[SBB+18]], but other codes such as Crystal can be interfaced on request. Supercell tiling
is handled outside QMCPACK through a proper PySCF input generated by Nexus and the Supercell geometry and
coefficients of the molecular orbotals are constructed in the converter provided by QMCPACK. This is different from
the plane wave/spline route where the tiling is provided in QMCPACK.

LCAO schemes use physical considerations to construct a highly efficient basis set compared with plane waves. Typi-
cally only a few tens of basis functions per atom are required compared with thousands of plane waves. Many forms
of LCAO schemes exist and are being implemented in QMCPACK. The details of the already-implemented methods
are described in the following section.

GTOs: The Gaussian basis functions follow a radial-angular decomposition of

(;5(1‘) = Rl(r)}/lm(& (b) ’ (14.1)

where Y., (0, ¢) is a spherical harmonic, [and m are the angular momentum and its z component, and r, , ¢ are
spherical coordinates. In practice, they are atom centered and the [expansion typically includes 1-3 additional chan-
nels compared with the formally occupied states of the atom (e.g., 4-6 for a nickel atom with occupied s, p, and d
electron shells.

The evaluation of GTOs within PBC differs slightly from evaluating GTOs in open boundary conditions (OBCs). The
orbitals are evaluated at a distance 7 in the primitive cell (similar to OBC), and then the contributions of the periodic
images are added by evaluating the orbital at a distance r + 7', where T is a translation of the cell lattice vector.
This requires loops over the periodic images until the contributions are orbitals ®. In the current implementation, the
number of periodic images is an input parameter named PBCimages, which takes three integers corresponding to the
number of periodic images along the supercell axes (X, Y and Z axes for a cubic cell). By default these parameters are
setto PBCimages= 8 8 8, butthey require manual convergence checks. Convergence checks can be performed
by checking the total energy convergence with respect to PBCimages, similar to checks performed for plane wave
cutoff energy and B-spline grids. Use of diffuse Gaussians might require these parameters to be increased, while
sharply localized Gaussians might permit a decrease. The cost of evaluating the wavefunction increases sharply as
PBCimages is increased. This input parameter will be replaced by a tolerance factor and numerical screening in the
future.

187

QMCPACK Manual

14.2 Generating and using periodic Gaussian-type wavefunctions
using PySCF

Similar to any QMC calculation, using periodic GTOs requires the generation of a periodic trial wavefunction. QM-
CPACK is currently interfaced to PySCF, which is a multipurpose electronic structure written mainly in Python with
key numerical functionality implemented via optimized C and C++ libraries [[SBB+18]]. Such a wavefunction can be
generated according to the following example for a 2 x 1 x 1 supercell using tiling (kpoints) and a supertwist shifted
away from I, leading to a complex wavefunction.

Listing 14.1: Example PySCF input for single k-point calculation for a
2 x 1 x 1 carbon supercell.

#! /usr/bin/env python3

import numpy

import h5py

from pyscf.pbc import gto, scf, dft, df
from pyscf.pbc import df

cell = gto.Cell()

cell.a = '
3.37316115 3.37316115 0.00000000
0.00000000 3.37316115 3.37316115
3.37316115 0.00000000 3.37316115"""
cell.atom = ""'
C 0.00000000 0.00000000 0.00000000
C 1.686580575 1.686580575 1.686580575
cell .basis = 'bfd-vdz'
cell.ecp = 'bfd'
cell.unit = 'B'

cell.drop_exponent = 0.1
cell.verbose =
cell.charge =
cell.spin =
cell.build()

o o wm

sp_twist=[0.07761248, 0.07761248, -0.07761248]

kmesh=[2,1,1]
kpts=[[0.07761248, 0.07761248, -0.07761248],[0.54328733, 0.54328733, -0.543287331]11]

mf = scf.KRHF (cell, kpts)
mf.exxdiv = 'ewald'
mf.max_cycle = 200

e_scf=mf .kernel ()

ener = open('e_scf','w")
ener.write('2s\n' % (e_scf))
print ('e_scf',e_scf)
ener.close ()

title="C_diamond-tiled-cplx"
from PyscfToQmcpack import savetogmcpack

(continues on next page)

188 Chapter 14. Periodic LCAO for Solids

QMCPACK Manual

(continued from previous page)

savetogmcpack (cell, mf,title=title, kmesh=kmesh, kpts=kpts, sp_twist=sp_twist)

Note that the last three lines of the file

title="C_diamond-tiled-cplx"
from PyscfToQmcpack import savetogmcpack
savetogmcpack (cell, mf,title=title, kmesh=kmesh, kpts=kpts, sp_twist=sp_twist)

contain the title (name of the HDF5 to be used in QMCPACK) and the call to the converter. The title vari-
able will be the name of the HDF5 file where all the data needed by QMCPACK will be stored. The func-
tion savetogmcpack will be called at the end of the calculation and will generate the HDFS5 similarly to the non-
periodic PySCF calculation in convert4gmc. The function is distributed with QMCPACK and is located in the
gmepack/src/QMCTools directory under the name PyscfToQmcpack.py. Note that you need to specify the super-
twist coordinates that was used with the provided kpoints. The supertwist must match the coordinates of the K-
points otherwise the phase factor for the atomic orbital will be incorrect and incorrect results will be obtained.
(For more details on how to generate tiling with PySCF and Nexus, refer to the Nexus guide or the 2019 QMC-
PACK Workshop material available on github: https://github.com/QMCPACK/qmcpack_workshop_2019 under gme-
pack_workshop_2019/day2_nexus/pyscf/04_pyscf_diamond_hf qmc/

For the converter in the script to be called properly, you need to specify the path to the file in your PYTHONPATH
such as

’ export PYTHONPATH=QMCPACK_PATH/src/QMCTools:S$SPYTHONPATH

To generate QMCPACK input files, you will need to run convert4gme exactly as specified in convertdgmce for both
cases:

’convert4qmc —-orbitals C_diamond-tiled-cplx

This tool can be used with any option described in convertdgmc. Since the HDF5 contains all the information needed,
there is no need to specify any other specific tag for periodicity. A supercell at I'-point or using multiple k-points will
work without further modification.

Running convert4qme will generate 3 input files:

Listing 14.2: C_diamond-tiled-cplx.structure.xml. This file contains the
geometry of the system.

<?xml version="1.0"7?>
<gmcsystem>
<simulationcell>
<parameter name="lattice">
6.74632230000000e+00 6.74632230000000e+00 0.00000000000000e+00
0.00000000000000e+00 3.37316115000000e+00 3.37316115000000e+00
3.37316115000000e+00 0.00000000000000e+00 3.37316115000000e+00
</parameter>
<parameter name="bconds">p p p</parameter>
<parameter name="LR_dim_cutoff">15</parameter>
</simulationcell>
<particleset name="ionO" size="4">
<group name="C">
<parameter name="charge">4</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">6</parameter>
</group>
<attrib name="position" datatype="posArray">

(continues on next page)

14.2. Generating and using periodic Gaussian-type wavefunctions using PySCF 189

https://github.com/QMCPACK/qmcpack_workshop_2019

QMCPACK Manual

(continued from previous page)

0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
1.6865805750e+00 1.6865805750e+00 1.6865805750e+00
3.3731611500e+00 3.3731611500e+00 0.0000000000e+00
5.0597417250e+00 5.0597417250e+00 1.6865805750e+00
</attrib>
<attrib name="ionid" datatype="stringArray">
cccc
</attrib>
</particleset>

<particleset name="e" random="yes" randomsrc="ionO0O">
<group name="u" size="8">
<parameter name="charge">-1</parameter>
</group>
<group name="d" size="8">
<parameter name="charge">-1</parameter>
</group>
</particleset>
</gmcsystem>

As one can see, for both examples, the two-atom primitive cell has been expanded to contain four atomsina2 x 1 x 1
carbon cell.

Listing 14.3: C_diamond-tiled-cplx.wfj.xml. This file contains the trial
wavefunction.

<?xml version="1.0"?>
<gmcsystem>
<wavefunction name="psiO" target="e">
<determinantset type="MolecularOrbital" name="LCAOBSet" source="ion0O" transform=
—"yes" twist="0.07761248 0.07761248 -0.07761248" href="C_diamond-tiled-cplx.h5"
—PBCimages="8 8 8">
<slaterdeterminant>
<determinant id="updet" size="8">
<occupation mode="ground"/>
<coefficient size="52" spindataset="0"/>
</determinant>
<determinant id="downdet" size="8">
<occupation mode="ground"/>
<coefficient size="52" spindataset="0"/>
</determinant>

</slaterdeterminant>
</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation size="10" speciesA="u" speciesB="u">
<coefficients id="uu" type="Array"> 0 0 0 0 0 0 0 O O O</coefficients>
</correlation>
<correlation size="10" speciesA="u" speciesB="d">
<coefficients id="ud" type="Array"> 0 0 0 0 0 0 O 0 O O</coefficients>
</correlation>
</Jjastrow>
<jastrow name="J1l" type="One-Body" function="Bspline" source="ion0" print="yes">
<correlation size="10" cusp="0" elementType="C">
<coefficients id="eC" type="Array"> 0 0 0 0 0 0 O O 0 O</coefficients>
</correlation>
</jastrow>

(continues on next page)

190 Chapter 14. Periodic LCAO for Solids

QMCPACK Manual

(continued from previous page)

</wavefunction>
</gmcsystem>

This file contains information related to the trial wavefunction. It is identical to the input file from an OBC calculation
to the exception of the following tags:

* wfj.xml specific tags:

tag tag de- description
type fault
twist 3 dou- | (000) | Coordinate of the twist to compute
bles
href string default | Name of the HDFS5 file generated by PySCF and used for con-
vert4gmc
PBCimages| 3 Inte- | 888 Number of periodic images to evaluate the orbitals
ger

Other files containing QMC methods (such as optimization, VMC, and DMC blocks) will be generated and will behave
in a similar fashion regardless of the type of SPO in the trial wavefunction.

14.2. Generating and using periodic Gaussian-type wavefunctions using PySCF 191

QMCPACK Manual

192 Chapter 14. Periodic LCAO for Solids

CHAPTER
FIFTEEN

SELECTED CONFIGURATION INTERACTION

A direct path towards improving the accuracy of a QMC calculation is through a better trial wavefunction. Although
using a multireference wavefunction can be straightforward in theory, in actual practice methods such as CASSCF are
not always intuitive and often require being an expert in either the method or the code generating the wavefunction.
An alternative is to use a selected configuration of interaction method (selected CI) such as CIPSI (configuration
interaction using a perturbative selection done iteratively). This provides a direct route to systematically improving
the wavefunction.

15.1 Theoretical background

The principle behind selected CI is rather simple and was first published in 1955 by R. K. Nesbet [[Nes55]]. The first
calculations on atoms were performed by Diner, Malrieu, and Claverie [[DMC67]] in 1967 and became computation-
ally viable for larger molecules in 2013 by Caffarel et al. [[EG13]].

As described by Caffarel et al. in [[EG13]], multideterminantal expansions of the ground-state wavefunction W1 are
written as a linear combination of Slater determinants

chdequkyq’r(rT)Dk,qi(Ti)) (15.1)
k q

where each determinant corresponds to a given occupation by the IV, and Ny electrons of N = N, + Ng orbitals
among a set of M spin-orbitals {¢1,., ¢pr} (restricted case). When no symmetries are considered, the maximum

number of such determinants is
M M
(Na>.<NB>7 (152

a number that grows factorially with M and N. The best representation of the exact wavefunction in the determinantal
basis is the full configuration interaction (FCI) wavefunction written as

Wo) = > ai|Di) (15.3)

3

where ¢; are the ground-state coefficients obtained by diagonalizing the matrix, H;; = (D;|H|D;), within the full
orthonormalized set (D;||D;) = §;; of determinants | D;). CIPSI provides a convenient method to build up to this full
wavefunction with a single criteria.

A CIPSI wavefunction is built iteratively starting from a reference wavefunction, usually Hartree-Fock or CASSCEF, by
adding all single and double excitations and then iteratively selecting relevant determinants according to some criteria.
Detailed iterative steps can be found in the reference by Caffarel et al. and references within [[EG13]], [[SAGC16]],
[[SGCLO]] and [[GSLC17]] and are summarized as follows:

* Step 1: Define a reference wavefunction:

193

QMCPACK Manual

: (V|H|T)
‘\I/> = Zci|l> Evar = T a (154)
2 (W)
* Step 2: Generate external determinants |«): New determinants are added by generating all single and double
excitations from determinants ¢ € D such as:
(UM |H|D;,) #0. (15.5)
* Step 3: Evaluate the second-order perturbative contribution to each determinant |c):

AE — <‘I’|H\Oé><04|1ff|‘1’> . (15.6)
Eyar — (| H|t)

» Step 4: Select the determinants with the largest contributions and add them to the Hamiltonian.

e Step 5: Diagonalize the Hamiltonian within the new added determinants and update the wavefunction and the
the value of F,,,;.

* Step 6: Iterate until reaching convergence.
Repeating this process leads to a multireference trial wavefunction of high quality that can be used in QMC.
Ur(r) = e’tr) Z Ck Z dhqu,qT(TT)Dhqi(ri) ‘ 15.7)
k q
The linear coefficients ¢, are then optimized with the presence of the Jastrow function.
Note the following:

* When all determinants |«) are selected, the full configuration interaction result is obtained.

CIPSI can be seen as a deterministic counterpart of FCIQMC.

¢ In practice, any wavefunction method can be made multireference with CIPSI. For instance, a multireference
coupled cluster (MRCC) with CIPSI is implemented in QP. [[GGMS17]]

* At any time, with CIPSI selection, Epr, = Za AFE,, estimates the distance to the FCI solution.

15.1.1 CIPSI wavefunction interface

The CIPSI method is implemented in the QP code:cite:QP developed by the Caffarel group. Once the trial wavefunc-
tion is generated, QP is able to produce output readable by the QMCPACK converter as described in convert4gme. QP
can be installed with multiple plugins for different levels of theory in quantum chemistry. When installing the “QMC”
plugin, QP can save the wavefunction in a format readable by the QMCPACK converter.

In the following we use the CyO2 H3 N molecule (Fig. 15.1) as an example of how to run a multireference calculation
with CIPSI as a trial wavefunction for . The choice of this molecule is motivated by its multireference nature. Although
the molecule remains small enough for CCSD(T) calculations with aug-cc-pVTZ basis set, the D1 diagnostic shows a
very high value for Co0OH3 N, suggesting a multireference character. Therefore, an accurate reference for the system
is not available, and it becomes difficult to trust the quality of a single-determinant wavefunction even when using
the DFT-B3LYP exchange and correlation functional. Therefore, in the following, we show an example of how to
systematically improve the nodal surface by increasing the number of determinants in the trial wavefunction.

The following steps show how to run from Hartree-Fock to selected CI using QP2, convert the wavefunction to a
QMCPACK trial wavefunction, and analyze the result.

¢ Step 1: Generate the QP input file. QP takes for input an XYZ file containing the geometry of the molecule such
as:

194 Chapter 15. Selected Configuration Interaction

QMCPACK Manual

C

Fig. 15.1: C205H3 N molecule.

8

C202H3N

C 1.067070 | -0.370798 | 0.020324
C -1.115770 | -0.239135 | 0.081860
o -0.537581 | 1.047619 | -0.091020
N 0.879629 | 0.882518 | 0.046830
H -1.525096 | -0.354103 | 1.092299
H -1.868807 | -0.416543 | -0.683862
H 2.035229 | -0.841662 | 0.053363
o -0.025736 | -1.160835 | -0.084319

The input file is generated through the following command line:

gp_create_ezfio C202H3N.xyz -b cc-pvtz

This means that we will be simulating the molecule in all electrons within the cc-pVTZ basis set. Other options
are, of course, possible such as using ECPs, different spin multiplicities, etc. For more details, see the QP
tutorial at https://quantumpackage.github.io/qp2/

A directory called C202H3N.ezfio is created and contains all the relevant data to run the SCF Hartree-Fock
calculation. Note that because of the large size of molecular orbitals (MOs) (220), it is preferable to run QP in
parallel. QP parallelization is based on a master/slave process that allows a master node to manage the work load
between multiple MPI processes through the LibZMQ library. In practice, the run is submitted to one master
node and is then submitted to as many nodes as necessary to speed up the calculations. If a slave node dies
before the end of its task, the master node will resubmit the workload to another available node. If more nodes
are added at any time during the simulation, the master node will use them to reduce the time to solution.

» Step 2: Run Hartree-Fock. To save the integrals on disk and avoid recomputing them later, edit the ezfio
directory with the following command:

gp_edit C202H3N.ezfio

This will generate a temporary file showing all the contents of the simulation and opens an editor to allow
modification of their values. Look for io_ao_one_e_integrals and modify its value from None to
Write.

To run a simulation with QP, use the binary texttt{qp_run} with the desired level of theory, in this case Hartree-
Fock (scf).

15.1. Theoretical background 195

https://quantumpackage.github.io/qp2/

QMCPACK Manual

’mpirun -np 1 gp_run scf C202H3N.ezfio &> C202H3N-SCF.out

If run in serial, the evaluation of the integrals and the Hamiltonian diagonalization would take a substantial
amount of computer time. We recommend adding a few more slave nodes to help speed up the calculation.

’mpirun -np 20 gp_run -s scf C202H3N.ezfio &> C202H3N-SCF-Slave.out

The total Hartree-Fock energy of the system in cc-pVTZ is :math:"E_{HF }=-283.0992 Ha.

 Step 3: Freeze core electrons. To avoid making excitation from the core electrons, freeze the core electrons and
do only the excitations from the valence electrons.

gp_set_frozen_core C202H3N.ezfio

This will will automatically freeze the orbitals from 1 to 5, leaving the remaining orbitals active.

 Step 4: Transform atomic orbitals (AOs) to MOs. This step is the most costly, especially given that its imple-
mentation in QP is serial. We recommend completing it in a separate run and on one node.

gp_run four_idx_transform C202H3N.ezfio

The MO integrals are now saved on disk, and unless the orbitals are changed, they will not be recomputed.

e Step 5: CIPSI At this point the wavefunction is ready for the selected CI. By default, QP has two convergence
criteria: the number of determinants (set by default to 1M) or the value of PT2 (set by default to 1.10~*Ha).
For this molecule, the total number of determinants in the FCI space is 2.07e 4 88 determinants. Although this
number is completely out of range of what is possible to compute, we will set the limit of determinants in QP to
5M determinants and see whether the nodal surface of the wavefunction is converged enough for the DMC. At
this point it is important to remember that the main value of CIPSI compared with other selected CI methods, is
that the value of PT2 is evaluated directly at each step, giving a good estimate of the error to the FCI energy. This
allows us to conclude that when the E+PT2 energy is converged, the nodal surface is also probably converged.
Similar to the SCF runs, FCI runs have to be submitted in parallel with a master/slave process:

mpirun -np 1 gp_run fci C202H3N.ezfio &> C202H3N-FCI.out &

sleep 300
mpirun —np 199 gp_run -s fci C202H3N.ezfio &> C202H3N-FCI-Slave.out
wait

» Step 6 (optional): Natural orbitals Although this step is optional, it is important to note that using natural
orbitals instead of Hartree-Fock orbitals will always improve the quality of the wavefunction and the nodal
surface by reducing the number of needed determinants for the same accuracy. When a full convergence to the
FCI limit is attainable, this step will not lead to any change in the energy but will only reduce the total number
of determinants. However, if a full convergence is not possible, this step can significantly increase the accuracy
of the calculation at the same number of determinants.

gp_run save_natorb C202H3N.ezfio

At this point, the orbitals are modified, a new AO —MO transformation is required, and steps 3 and 4 need to
be run again.

e Step 7: Analyze the CIPSI results. Fig. 15.2 shows the evolution of the variational energy and the energy
corrected with PT2 as a function of the number of determinants up to 4M determinants. Although it is clear
that the raw variational energy is far from being converged, the Energy + PT2 appears converged around 0.4M
determinants.

e Step 8: Truncate the number of determinants. Although using all the 4M determinants from CIPSI always
guarantees that all important determinants are kept in the wavefunction, practically, such a large number of

196 Chapter 15. Selected Configuration Interaction

QMCPACK Manual

-281.8

282 —&—E Variational

——E+PT2

-2822

-2824

Energy in Ha

-282.6

-282.8

-283

-283.2
1.E+00 1E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Number of Determinants

Fig. 15.2: Evolution of the variational energy and the Energy + PT2 as a function of the number of determinants for
the CoO02 H3 N molecule.

determinants would make any QMC calculation prohibitively expensive because the cost of evaluating a de-
terminant in DMC grows as\/Nge:, where Ny is the number of determinants in the trial wavefunction. To
truncate the number of determinants, we follow the method described by Scemama et al. [[SGCLO]] where the
wavefunction is truncated by independently removing spin-up and spin-down determinants whose contribution
to the norm of the wavefunction is below a user-defined threshold, e. For this step, we choose to truncate the
determinants whose coefficients are below, 1.1072, 1.10~%, 1.107°, and 1.107°, translating to 239, 44539,
541380, and 908128 determinants, respectively.

To truncate the determinants in QP, edit the ez f 1o file as follows:

’qp_edit C202H3N.ezfio

Then look for ci_threshold and modify the value according to the desired threshold. Use the following
run to truncate the determinants:

’qp_run truncate_wf_spin C202H3N.ezfio

Method N_det Energy
Hartree-Fock 1 -281.6729
Natural orbitals | 1 -281.6735

E_Variational 438,753 -282.2951
E_Variational 4,068,271 | -282.4882
E+PT2 438,753 -282.6809
E+PT2 4,068,271 | -282.6805

Table 15.1.1 Energies of CoO2 H3 N using orbitals from Hartree-Fock, natural orbitals, and 0.4M and 4M
determinants

e Save the wavefunction for QMCPACK. The wavefunction in QP is now ready to be converted to QMC-
PACK format. Save the wavefunction into QMCPACK format and then convert the wavefunction using the
convert4gmce tool.

gp_run save_for_gmcpack C202H3N.ezfio
convertdgmc -orbitals QP2QMCPACK.h5 -multidets QP2QMCPACK.h5 -addCusp -production

Note that QP2 produces an HDFS5 file in the QMCPACK format, named QP2QMCPACK. Such file can be
used fir single determinants or multideterminants calculations. Since we are running all-electron calculations,
orbitals in QMC need to be corrected for the electron-nuclearcusp condition. This is done by adding the option
—addCusp to convert4dqgme, which adds a tag forcing QMCPACK to run the correction or read them from a

15.1. Theoretical background 197

QMCPACK Manual

file if pre-computed. When running multiple DMC runs with different truncation thresholds, only the number of
determinants is varied and the orbitals remain unchanged from one calculation to another and the cusp correction
needs to be run only once.

* Step 10: Run QMCPACK. At this point, running a multideterminant DMC becomes identical to running a
regular DMC with QMCPACK; After correcting the orbitals for the cusp, optimize the Jastrow functions and
then run the DMC. It is important, however, to note a few items:

(1) QMCPACK allows reoptimization of the coefficients of the determinants during the Jastrow optimization
step. Although this has proven to lower the energy significantly when the number of determinants is below
10k, a large number of determinants from CIPSI is often too large to optimize conveniently. Keeping the
coefficients of the determinants from CIPSI unoptimized is an alternative strategy.

(2) The large determinant expansion and the Jastrows are both trying to recover the missing correlations from
the system. When optimizing the Jastrows, we recommend first optimizing J1 and J2 without the J3, and
then with the added J3. Trying to initially optimize J1, J2, and J3 at the same time could lead to numerical
instabilities.

(3) The parameters of the Jastrow function will need to be optimized for each truncation scheme and usually
cannot be reused efficiently from one truncation scheme to another.

» Step 11: Analyze the DMC results from QMCPACK. From Table 15.1.1, we can see that increasing the number
of determinants from 0.5M to almost 1M keeps the energy within error bars and does not improve the quality
of the nodal surface. We can conclude that the DMC energy is converged at 0.54M determinants. Note that this
number of determinants also corresponds to the convergence of E+PT2 in CIPSI calculations, confirming for
this case that the convergence of the nodal surface can follow the convergence of E+PT?2 instead of the more
difficult variational energy.

N_det DMC CISPI
1 -283.0696 (6) | -283.0063
239 -283.0730 (9) | -282.9063

44,539 | -283.078 (1) | -282.7339
541,380 | -283.088 (1) | -282.6772
908,128 | -283.089 (1) | -282.6775

Table 12 DMC Energies and CIPSI(E+PT2) of C;02 H3N in function of the number of determinants in the trial
wavefunction.

As mentioned in previous sections, DMC is variational relative to the exact nodal surface. A nodal surface is “better”
if it lowers DMC energy. To assess the quality of the nodal surface from CIPSI, we compare these DMC results to
other single-determinant calculations from multiple nodal surfaces and theories. Fig. 15.3 shows the energy of the
C505H3 N molecule as a function of different single-determinant trial wavefunctions with an aug-cc-pVTZ basis set,
including Hartree-Fock, DFT-PBE, and hybrid functionals B3LYP and PBEQ. The last four points in the plot show the
systematic improvement of the nodal surface as a function of the number of determinants.

When the DMC-CIPSI energy is converged with respect to the number of determinants, its nodal surface is still lower
than the best SD-DMC (B3LYP) by 6(1) mHa. When compared with CCSD(T) with the same basis set, Eccsp(r)
is 4 mHa higher than DMC-CIPSI and 2 mHa lower than DMC-B3LYP. Although 6 (1) mHa can seem very small, it
is important to remember that CCSD(T) cannot correctly describe multireference systems; therefore, it is impossible
to assess the correctness of the single-determinant-DMC result, making CIPSI-DMC calculations an ideal benchmark
tool for multireference systems.

198 Chapter 15. Selected Configuration Interaction

QMCPACK Manual

-283.067

-283.072 X\

-283.077

Total Energy (Ha)
gl
]
/44

I/

-283.082

-283.087

Trial Wavefunction Functional

-283.092

PBE

PBEO

B3LYP

Hartree Fock
CIPSI-239 D
CIPSI-44539D
CIPSI - 541380 D
CIPSI - 908128 D

Fig. 15.3: DMC energy of the CoO2 H3 N molecule as a function of different single-determinant trial wavefunctions
with aug-ccp-VTZ basis set using nodal surfaces from Hartree-Fock, DFT-PBE, and DFT with hybrid functionals
PBEO and P3LYP. As indicated, the CIPSI trial wavefunction contains 239, 44539, 514380, and 908128 determinants
(D).

15.1. Theoretical background 199

QMCPACK Manual

200 Chapter 15. Selected Configuration Interaction

CHAPTER
SIXTEEN

SPIN-ORBIT CALCULATIONS IN QMC

16.1 Introduction

In order to introduce relativistic effects in real materials, in principle the full Dirac equation must be solved where
the resulting wave function is a four-component spinor. For the valence electrons that participate in chemistry, the
single particle spinors can be well approximated by two-component spinors as two of the components are negligible.
Note that this is not true for the deeper core electrons, where all four components contribute. In light of this fact,
relativistic pseudopotentials have been developed to remove the core electrons while providing an effective potential
for the valence electrons [[DC12]]. This allows relativistic effects to be studied in QMC methods using two-component
spinor wave functions.

In QMCPACK, spin-orbit interactions have been implemented following the methodology described in [[MZG+16]]
and [[MBM16]]. We briefly describe some of the details below.

16.2 Single-Particle Spinors

The single particle spinors used in QMCPACK take the form

¢<r7 S) =
¢ (r)x"(s) + ¢*(x)x*(s) (16.1)

O ()¢t + gH(r)e

where s is the spin variable and using the complex spin representation. In order to carry out spin-orbit calculations
in solids, the single-particle spinors can be obtained using Quantum ESPRESSO. After carrying out the spin-orbit
calculation in QE (with flags noncolin = .true., 1spinorb = .true., and a relativistic . UPF pseudopotential), the
spinors can be obtained by using the converter convertpw4gmc:

convertpwdgmc data-file-schema.xml

where the data-file—schema.xml file is output from your QE calculation. This will produce an eshdf . h5 file
which contains the up and down components of the spinors per k-point.

201

QMCPACK Manual

16.3 Trial Wavefunction

Using the generated single particle spinors, we build the many-body wavefunction in a similar fashion to the normal
non-relativistic calculations, namely

Ur(R,S) = e’) cadet [9i(r),s))] | (16.2)

where we now utilize determinants of spinors, as opposed to the usual product of up and down determinants. An
example xml input block for the trial wave function is show below:

Listing 16.1: wavefunction specification for a single determinant trial
wave function

<?xml version="1.0"?2>
<gmcsystem>
<wavefunction name="psiO" target="e">
<sposet_builder name="spo_builder" type="bspline" href="eshdf.hb5" tilematrix=
—"100010001" twistnum="0" source="ionQ" size="10">
<sposet type="bspline" name="myspo" size="10">
<occupation mode="ground"/>
</sposet>
</sposet_builder>
<determinantset>
<slaterdeterminant>
<determinant id="det" group="u" sposet="myspo" size="10"/>
</slaterdeterminant>
</determinantset>
<jastrow type="One-Body" name="Jl" function="bspline" source="ion0" print="yes">
<correlation elementType="0O" size="8" cusp="0.0">
<coefficients id="eO" type="Array">
</coefficients>
</correlation>
</Jjastrow>
<jastrow type="Two-Body" name="J2" function="bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="8">
<coefficients id="uu" type="Array">
</coefficients>
</correlation>
</Jjastrow>
</wavefunction>
</gmcsystem>

We note that we only specify an “up” determinant, since we no longer need a product of up and down determinants. In
the Jastrow specification, we only need to provide the jastrow terms for the same spin as there is no longer a distinction
between the up and down spins.

We also make a small modification in the particleset specification:

Listing 16.2: specification for the electron particle when performing
spin-orbit calculations

—_n

<particleset name="e" random="yes" randomsrc="ion0" spinor="yes">
<group name="u" size="10" mass="1.0">

<parameter name="charge" > -1 </parameter>
<parameter name="mass" > 1.0 </parameter>
</group>
</particleset>

202 Chapter 16. Spin-Orbit Calculations in QMC

QMCPACK Manual

Note that we only provide a single electron group to represent all electrons in the system, as opposed to the usual
separation of up and down electrons. The additional keyword spinor=yes is the only required keyword for spinors.
This will be used internally to determine which movers to use in QMC drivers (e.g. VMCUpdatePbyP vs SOVMCUp-
datePbyP) and which SPOSets to use in the trial wave function (spinors vs. normal orbitals)

note: In the current implementation, spinor wavefunctions are only supported at the single determinant level. Multi-
determinant spinor wave functions will be supported in a future release.

16.4 QMC Methods

In this formalism, the spin degree of freedom becomes a continuous variable similar to the spatial degrees of freedom.
In order to sample the spins, we introduce a spin kinetic energy operator

-3 1{ #1]. (16.3)

=1 2MS

where us is a spin mass. This operator vanishes when acting on an arbitrary spinor or anti-symmetric product of
spinors due to the offset. This avoids any unphysical contribution to the local energy. However, this does contribute to
the Green’s function in DMC,

2
GR'S' « RS;7,us) x G(R' + R;7)exp [—gj_] , (16.4)

where G(R’ < R;7) is the usual Green’s function for the spatial evolution and the spin kinetic energy operator
introduces a Green’s function for the spin variables. Note that this includes a contribution from the spin drift vg(S) =
Vs In \I/T(S)

In both the VMC and DMC methods, there are no required changes to a typical input

<gmc method="vmc/dmc">

<parameter name="steps" > 50 </parameter>
<parameter name="blocks" > 50 </parameter>
<parameter name="walkers" > 10 </parameter>
<parameter name="timestep" > 0.01 </parameter>

</gmc>

Whether or not spin moves are used is determined internally by the spinor=yes flag in particleset.

By default, the spin mass ps (which controls the rate of spin sampling relative to the spatial sampling) is set to 1.0.
This can be changed by adding an additional parameter to the QMC input

’<parameter name="spinMass" > 0.25 </parameter>

A larger/smaller spin mass corresponds to slower/faster spin sampling relative to the spatial coordinates.

16.5 Spin-Orbit Effective Core Potentials

The spin-orbit contribution to the Hamiltonian can be introduced through the use of Effective Core Potentials (ECPs).
As described in [[MBM16]], the relativistic (semilocal) ECPs take the general form

WRECP — yy7, (i *ZW”J r)|eim;)(€im;]| , (16.5)

Lim;

16.4. QMC Methods 203

QMCPACK Manual

where the projectors |¢jm;) are the so-called spin spherical harmonics. An equivalent formulation is to decouple
the fully relativistic effective core potential (RECP) into averaged relativistic (ARECP) and spin-orbit (SORECP)
contributions:

JWRECP _

WARECP + WSOECP

JWARECP _
WARECP () | Z WARECP (1| 0my) (6my| (16.6)
Imy
WSORECP _

2 —
S ST AWEOREE () 37) (el 5o} (e
L

me,m}

Note that the WARECP takes exactly the same form as the semilocal pseudopotentials used in standard QMC calcula-
tions. In the pseudopotential . xm1 file format, the WéARECP(r) terms are tabulated as usual If spin-orbit terms are
included in the . xml file, the file must tabulate the entire radial spin-orbit prefactor AWPORECP (1) " We note
the following relations between the two representations of the relativistic potentials

2Z+1

WéARECP (7’) —

t+1 RECP 4 RECP
2+ 1 L,j= €+1/2()+ 2€+1 0j=0— 1/2(T) (16.7)
AWSORECP (7’) —
W%E%ilm() — eR]ECeP 1/2(7")

The structure of the spin-orbit . xm1 is

<?xml version="1.0" encoding="UTF-8"7?>
<pseudo>

<header ... relativistic="yes" ... />

<grid ... />

<semilocal units="hartree" format="rxV" npots-down="4" npots-up="0" l-local="3"
—npots="2">

<vps 1="s" .../>
<vps 1l="p" .../>
<vps 1="d" .../>
<vps 1="f" .../>
<vps_so 1l="p" .../>
<vps_so 1="d" .../>
</semilocal>
</pseudo>

This is included in the Hamiltonian in the same way as the usual pseudopotentials. If the <vps_so> elements are
found, the spin-orbit contributions will be present in the calculation. By default, the spin-orbit terms will be included
in the local energy. In order to accumulate the spin-orbit energy, but exclude it from the local energy (and therefore
will not be propogated into the walker weights in DMC for example), the physicalSO0 flag should be set to no in the
Hamiltonian input. A typical application will include the SOC terms in the local energy, and an example input block
is given as

<hamiltonian name="h0" type="generic" target="e">
<pairpot name="ElecElec" type="coulomb" source="e" target="e" physical="true"/>
<pairpot name="IonlIon" type="coulomb" source=ion0" target="ion0" physical="true"/>
<pairpot name="PseudoPot" type="pseudo" source="i" wavefunction="psi0" format="xml"
—algorithm="non-batched">
<pseudo elementType="Pb" href="Pb.xml"/>

(continues on next page)

204 Chapter 16. Spin-Orbit Calculations in QMC

QMCPACK Manual

(continued from previous page)

</pairpot>
</hamiltonian>

The contribution from the spin-orbit will be printed to the . stat .h5 and . scalar.dat files for post-processing.

An example output is shown below

LocalEnergy = -3.4419
Variance = 0.1132
Kinetic = 1.1252
LocalPotential = -4.5671
ElecElec = 1.6881
LocalECP = -6.5021
NonLocalECP = 0.3286
LocalEnergy_sqg = 11.9601
SOECP = -0.08163

+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-

O O O O O O o o o

.0014
.0013
.0027
.0028
.0025
.0062
.0025
.0086
.0003

The NonLocalECP represents the WARECP sORCP represents the WSORECP and the sum is the full WRECP

contribution.

Note that for now, the default “batched” non-local pseudopotential evaluation is not compatible with dynamical spin
QMC calculations. Therefore, the specification of algorithm="non-batched” in all pseudopotential blocks is required.

16.5. Spin-Orbit Effective Core Potentials

205

QMCPACK Manual

206 Chapter 16. Spin-Orbit Calculations in QMC

CHAPTER
SEVENTEEN

AUXILIARY-FIELD QUANTUM MONTE CARLO

The AFQMC method is an orbital-space formulation of the imaginary-time propagation algorithm. We refer the reader
to one of the review articles on the method [[PZ04], [Zhal3], [ZKO03]] for a detailed description of the algorithm. It
uses the Hubbard-Stratonovich transformation to express the imaginary-time propagator, which is inherently a 2-body
operator, as an integral over 1-body propagators, which can be efficiently applied to an arbitrary Slater determinant.
This transformation allows us to represent the interacting many-body system as an average over a noninteracting
system (e.g., Slater determinants) in a time-dependent fluctuating external field (the Auxiliary fields). The walkers
in this case represent nonorthogonal Slater determinants, whose time average represents the desired quantum state.
QMCPACK currently implements the phaseless AFQMC algorithm of Zhang and Krakauer [[ZK03]], where a trial
wavefunction is used to project the simulation to the real axis, controlling the fermionic sign problem at the expense
of a bias. This approximation is similar in spirit to the fixed-node approximation in real-space DMC but applied in the
Hilbert space where the AFQMC random walk occurs.

17.1 Input

The input for an AFQMC calculation is fundamentally different to the input for other real-space algorithms in QM-
CPACK. The main source of input comes from the Hamiltonian matrix elements in an appropriate single particle
basis. This must be evaluated by an external code and saved in a format that QMCPACK can read. More details
about file formats follow. The input file has six basic xml-blocks: AFQMCInfo, Hamiltonian, Wavefunction,
WalkerSet, Propagator, and execute. The first five define input structures required for various types of calcu-
lations. The execute block represents actual calculations and takes as input the other blocks. Nonexecution blocks
are parsed first, followed by a second pass where execution blocks are parsed (and executed) in order. Listing 51
shows an example of a minimal input file for an AFQMC calculation. Table 17.5 shows a brief description of the most
important parameters in the calculation. All xml sections contain a “name” argument used to identify the resulting
object within QMCPACK. For example, in the example, multiple Hamiltonian objects with different names can be
defined. The one actually used in the calculation is the one passed to “execute” as ham.

Listing 17.1: Sample input file for AFQMC.

<?xml version="1.0"?>
<simulation method="afgmc">
<project id="Carbon" series="0"/>

<AFQMCInfo name="infoO">
<parameter name="NMO">32</parameter>
<parameter name="NAEA">16</parameter>
<parameter name="NAEB">16</parameter>
</AFQMCInfo>

<Hamiltonian name="ham0O" info="infoO">
<parameter name="filename">fcidump.h5</parameter>

(continues on next page)

207

QMCPACK Manual

(continued from previous page)

</Hamiltonian>

<Wavefunction name="wfnO" type="MSD" info="infoO">
<parameter name="filetype">hdf5</parameter>
<parameter name="filename">wfn.h5</parameter>
</Wavefunction>

<WalkerSet name="wsetO0">
<parameter name="walker_type">closed</parameter>
</WalkerSet>

<Propagator name="propO" info="infol0">
</Propagator>

<execute wset="wset0" ham="ham0" wfn="wfn0" prop="propO" info="infolO">
<parameter name="timestep">0.005</parameter>
<parameter name="blocks">10000</parameter>
<parameter name="nWalkers">20</parameter>
<Estimator name="back_propagation">
<parameter name="naverages">4</parameter>
<parameter name="nsteps">400</parameter>
<parameter name="path_restoration">true</parameter>
<onerdm/>
<diag2rdm/>
<twordm/>
<ontop2rdm/>
<realspace_correlators/>
<correlators/>
<genfock/>
</Estimator>
</execute>

</simulation>

The following list includes all input sections for AFQMC calculations, along with a detailed explanation of accepted
parameters. Since the code is under active development, the list of parameters and their interpretation might change in
the future.

AFQMCInfo: Input block that defines basic information about the calculation. It is passed to all other input blocks to
propagate the basic information: <AFQMCInfo name="info0">

¢ NMO. Number of molecular orbitals, i.e., number of states in the single particle basis.
* NAEA. Number of active electrons-alpha, i.e., number of spin-up electrons.
* NAEB. Number of active electrons-beta, i.e., number of spin-down electrons.

Hamiltonian: Controls the object that reads, stores, and manages the hamiltonian. <Hamiltonian
name="ham0" type="SparseGeneral” info="infolO">

* filename. Name of file with the Hamiltonian. This is a required parameter.

* cutoff_1bar. Cutoff applied to integrals during reading. Any term in the Hamiltonian smaller than this value is
set to zero. (For filetype="hdf5”, the cutoff is applied only to the 2-electron integrals). Default: 1e-8

« cutoff_decomposition. Cutoff used to stop the iterative cycle in the generation of the Cholesky decomposition
of the 2-electron integrals. The generation of Cholesky vectors is stopped when the maximum error in the diago-
nal reaches this value. In case of an eigenvalue factorization, this becomes the cutoff applied to the eigenvalues.
Only eigenvalues above this value are kept. Default: 1e-6

208 Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

* nblocks. This parameter controls the distribution of the 2-electron integrals among processors. In the default
behavior (nblocks=1), all nodes contain the entire list of integrals. If nblocks > 1, the of nodes in the calcu-
lation will be split in nblocks groups. Each node in a given group contains the same subset of integrals and
subsequently operates on this subset during any further operation that requires the hamiltonian. The maximum
number of groups is NMO. Currently only works for filetype="hdf5” and the file must contain integrals. Not yet
implemented for input hamiltonians in the form of Cholesky vectors or for ASCII input. Coming soon! Default:
No distribution

* printEig. If “yes”, prints additional information during the Cholesky decomposition. Default: no

« fix_2eint. If this is set to “yes”, orbital pairs that are found not to be positive definite are ignored in the generation
of the Cholesky factorization. This is necessary if the 2-electron integrals are not positive definite because of
round-off errors in their generation. Default: no

Wavefunction: controls the object that manages the trial wavefunctions. This block expects a list of xml-blocks
defining actual trial wavefunctions for various roles. <Wavefunction name="wfn0" type="MSD/PHMSD"
info="infoO">

« filename. Name of file with wavefunction information.

* cutoff. cutoff applied to the terms in the calculation of the local energy. Only terms in the Hamiltonian above
this cutoff are included in the evaluation of the energy. Default: le-6

* nnodes. Defines the parallelization of the local energy evaluation and the distribution of the Hamiltonian
matrix (not to GPU)

* nbatch_qr. This turns on(>=1)/off(==0) batched QR calculation. -1 means all the walkers in the batch. Default:
0 (CPU) /-1 (GPU)

WalkerSet: Controls the object that handles the set of walkers. <WalkerSet name="wset0">
» walker_type. Type of walker set: closed or collinear. Default: collinear

e pop_control. Population control algorithm. Options: “simple”: Uses a simple branching scheme with a
fluctuating population. Walkers with weight above max_weight are split into multiple walkers of weight re-
set_weight. Walkers with weight below min_weight are killed with probability (weight/min_weight); “pair’:
Fixed-population branching algorithm, based on QWalk’s branching algorithm. Pairs of walkers with weight
above/below max_weight/min_weight are combined into 2 walkers with weights equal to (w; + w2)/2. The
probability of replicating walker w1 (larger weight) occurs with probability w; /(wy 4+ w2), otherwise walker
w2 (lower weight) is replicated; “comb”: Fixed-population branching algorithm based on the Comb method.
Will be available in the next release. Default: “pair”

* min_weight. Weight at which walkers are possibly killed (with probability weight/min_weight). Default: 0.05
» max_weight. Weight at which walkers are replicated. Default: 4.0
* reset_weight. Weight to which replicated walkers are reset to. Default: 1.0

Propagator: Controls the object that manages the propagators. <Propagator name="propO"
info="infoO">

* cutoff. Cutoff applied to Cholesky vectors. Elements of the Cholesky vectors below this value are set to zero.
Only meaningful with sparse hamiltonians. Default: le-6

* substractMF. If “yes”, apply mean-field subtraction based on the ImpSamp trial wavefunction. Must set to
“no” to turn it off. Default: yes

* vbias_bound. Upper bound applied to the vias potential. Components of the vias potential above this value are
truncated there. The bound is currently applied to \/7Tvp;as, SO a larger value must be used as either the time step
or the fluctuations increase (e.g. from running a larger system or using a poor trial wavefunction). Default: 3.0

 apply_constrain. If “yes”, apply the phaseless constrain to the walker propagation. Currently, setting this to
“no” produces unknown behavior, since free propagation algorithm has not been tested. Default: yes

17.1. Input 209

QM

CPACK Manual

e hybrid. If “yes”, use hybrid propagation algorithm. This propagation scheme doesn’t use the local energy
during propagation, leading to significant speed ups when its evaluation cost is high. The local energy of the
ImpSamp trial wavefunction is never evaluated. To obtain energy estimates in this case, you must define an
Estimator xml-block with the Wave function block. The local energy of this trial wavefunction is evaluated
and printed. It is possible to use a previously defined trial wavefunction in the Estimator block, just set its
“name” argument to the name of a previously defined wavefunction. In this case, the same object is used for
both roles. Default: no

* nnodes. Controls the parallel propagation algorithm. If nnodes > 1, the nodes in the simulation are split
into groups of nnodes nodes, each group working collectively to propagate their walkers. Default: 1 (Serial
algorithm)

e nbatch. This turns on(>=1)/off(==0) batched calculation of density matrices and overlaps. -1 means all the
walkers in the batch. Default: 0 (CPU) /-1 (GPU)

* nbatch_qr. This turns on(>=1)/off(==0) batched QR calculation. -1 means all the walkers in the batch. Default:
0 (CPU) /-1 (GPU)

execute: Defines an execution region. <execute wset="wset0" ham="ham0" wfn="wfnQ"
prop="prop0" info="info0">

* nWalkers. Initial number of walkers per core group (see ncores). This sets the number of walkers for a given
group of “ncores” on a node; the total number of walkers in the simulation depends on the total number of nodes
and on the total number of cores on a node in the following way: #.alkers,otal = nWalkers x #,0des
#coresiotal /ncores. Default: 5

* timestep. Time step in 1/a.u. Default: 0.01

* blocks. Number of blocks. Slow operations occur once per block (e.g., write to file, slow observables, check-
points), Default: 100

* step. Number of steps within a block. Operations that occur at the step level include load balance, orthogonal-
ization, branching, etc. Default: 1

* substep. Number of substeps within a step. Only walker propagation occurs in a substep. Default: 1
 ortho. Number of steps between orthogonalization. Default: 1

* ncores. Number of nodes in a task group. This number defines the number of cores on a node that share the
parallel work associated with a distributed task. This number is used in the Wavefunction and Propagator
task groups. The walker sets are shares by the ncores on a given node in the task group.

 checkpoint. Number of blocks between checkpoint files are generated. If a value smaller than 1 is given, no file
is generated. If hdf_write_file is not set, a default name is used. Default: 0

e hdf_write_file. If set (and checkpoint>0), a checkpoint file with this name will be written.

¢ hdf_read_file. If set, the simulation will be restarted from the given file.

Within the Est imators xml block has an argument name: the type of estimator we want to measure. Currently

LLINNT3 LLINNT3

available estimators include: “basic”, “energy”, “mixed_one_rdm”, and “back_propagation”.

The

The

basic estimator has the following optional parameters:

e timers. print timing information. Default: true

back_propagation estimator has the following parameters:

* ortho. Number of back-propagation steps between orthogonalization. Default: 10
* nsteps. Maximum number of back-propagation steps. Default: 10

* naverages. Number of back propagation calculations to perform. The number of steps will be chosed equally
distributed in the range O,nsteps. Default: 1

210

Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

* block_size. Number of blocks to use in the internal average of the back propagated estimator. This is used to
block data and reduce the size of the output. Default: 1

 nskip. Number of blocks to skip at the start of the calculation for equilibration purposes. Default: 0

 path_restoration. Use full path restoration. Can result in better back propagated results. Default false.
The following observables can be computed with the back_propagated estimator

* onerdm. One-particle reduced density matrix.

e twordm. Full Two-particle reduced density matrix.

 diag2rdm. Diagonal part of the two-particle reduced density matrix.

e ontop2rdm. On top two-particle reduced density matrix.

* realspace_correlators. Charge-Charge, and spin-spin correlation functions in real space.

* correlators. Charge-Charge, and spin-spin correlation functions in real space centered about atomic sites.

» genfock. Generalized Fock matrix.

Real space correlation functions require a real space grid. Details coming soon..

17.2 Hamiltonian File formats

QMCPACK offers three factorization approaches which are appropriate in different settings. The most generic
approach implemented is based on the modified-Cholesky factorization [[ADVFerre+09], [BL77], [KdMerasP03],
[PKVZI11], [PZK13]] of the ERI tensor:

Nchol
Vpars = Vipr) (sq) = Z LyrnLign, (17.1)
n

where the sum is truncated at Nepoo = z.M, x. is typically between 5 and 10, M is the number of basis func-
tions and we have assumed that the single-particle orbitals are in general complex. The storage requirement is thus
naively O(M?). Note we follow the usual definition of v,ys = (pg|rs) = (prlgs). With this form of factorization
QMCPACK allows for the integrals to be stored in either dense or sparse format.

The dense case is the simplest and is only implemented for Hamiltonians with real integrals (and basis functions, i.e.
not the homegeneous electron gas which has complex orbitals but real integrals). The file format is given as follows:

Listing 17.2: Sample Dense Cholesky QMCPACK Hamtiltonian.

$ h5dump -n afgmc.h5
HDEF5 "afgmc.hb5" {
FILE_CONTENTS {

group /

group /Hamiltonian

group /Hamiltonian/DenseFactorized
dataset /Hamiltonian/DenseFactorized/L
dataset /Hamiltonian/dims

dataset /Hamiltonian/hcore

dataset /Hamiltonian/Energies

where the datasets are given by the following

e /Hamiltonian/DenseFactorized/L Contains the [M?, Nyc01] dimensional matrix representatation of

Lprn-

17.2. Hamiltonian File formats 211

QMCPACK Manual

* /Hamiltonian/dims Descriptor array of length 8 containing [0,0, 0, M, N, Ng, 0, Nychol]- Note that N,
and Ng are somewhat redundant and will be read from the input file and wavefunction. This allows for the
Hamiltonian to be used with different (potentially spin polarized) wavefunctions.

e /Hamiltonian/hcore Contains the [M, M| dimensional one-body Hamiltonian matrix elements h,,q.

e /Hamiltonian/Energies Array containing [Err, Ecorc]- Err should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy. E.q. is deprecated and not used.

Typically the Cholesky matrix is sparse, particularly if written in the non-orthogonal AO basis (not currently supported
in QMCPACK). In this case only a small number of non-zero elements (denoted nnz below) need to be stored which
can reduce the memory overhead considerably. Internally QMCPACK stores this matrix in the CSR format, and the
HDFS5 file format is reflective of this. For large systems and, more generally when running in parallel, it is convenient
to chunk the writing/reading of the Cholesky matrix into blocks of size [M?2,]\J,\&ﬁ} (if interpreted as a dense array).

This is achieved by writing these blocks to different data sets in the file. For the sparse case the Hamtiltonian file
format is given as follows:

Listing 17.3: Sample Sparse Cholesky QMCPACK Hamtiltonian.

$ h5dump -n afgmc.h5
HDF5 "afgmc.hb" {
FILE_CONTENTS {

group /

group /Hamiltonian

group /Hamiltonian/Factorized

dataset /Hamiltonian/Factorized/block_sizes
dataset /Hamiltonian/Factorized/index_0
dataset /Hamiltonian/Factorized/vals_0
dataset /Hamiltonian/ComplexIntegrals
dataset /Hamiltonian/dims

dataset /Hamiltonian/hcore

dataset /Hamiltonian/Energies

* /Hamiltonian/Factorized/block_sizes Contains the number of elements in each block of the
sparse representation of the Cholesky matrix Ly, ,,. In this case there is 1 block.

e /Hamiltonian/Factorized/index_0 [2 X nnz| dimensional array, containing the indices of the non-
zero values of L;j, ,,. The row indices are stored in the even entries, and the column indices in the odd entries.

e /Hamiltonian/Factorized/vals_0 [nnz] length array containing non-zero values of L,, ,, for chunk
0.

* /Hamiltonian/dims Descriptor array of length 8 containing [0, nnz, Nyjock; M, Noy Ng, 0, Nychol-

e /Hamiltonian/ComplexIntegrals Length 1 array that specifies if integrals are complex valued. 1 for
complex integrals, O for real integrals.

e /Hamiltonian/hcore Contains the [M, M| dimensional one-body Hamiltonian matrix elements hy,. Due
to its small size this is written as a dense 2D-array.

* /Hamiltonian/Energies Array containing [Ery, Ecore]- Err should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy. E.q.e is deprecated and not used.

To reduce the memory overhead of storing the three-index tensor we recently adapted the tensor-hypercontraction
[[HPMartinez12], [HPSMartinez12], [PHMartinezS 12]] (THC) approach for use in AFQMCcite{MaloneISDF2019}.

212 Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

Within the THC approach we can approximate the orbital products entering the ERIs as

N,

op(0)er(r) = > Culr) e () (ry), (17.2)

W
where ¢, (r) are the one-electron orbitals and r,, are a set of specially selected interpolating points, ¢, (r) are a set of
interpolating vectors and N,, = x,, M. We can then write the ERI tensor as a product of rank-2 tensors

Vpgrs & 3 @5(0)0r (1) M0y (1) (x0), (17.3)
g

where

M,, = /drdr’@(r)). (17.4)

v —r'|

We also require the half-rotated versions of these quantities which live on a different set of N, 1, interpolating points 1,
(see [[MZM19]]). The file format for THC factorization is as follows:

Listing 17.4: Sample Sparse Cholesky QMCPACK Hamtiltonian.

$ h5dump -n afgmc.h5
HDEF5 "afgmc.hb5" {
FILE_CONTENTS {

group /

group /Hamiltonian

group /Hamiltonian/THC

dataset /Hamiltonian/THC/Luv

dataset /Hamiltonian/THC/Orbitals

dataset /Hamiltonian/THC/HalfTransformedMuv

dataset /Hamiltonian/THC/HalfTransformedFullOrbitals
dataset /Hamiltonian/THC/HalfTransformedOccOrbitals
dataset /Hamiltonian/THC/dims

dataset /Hamiltonian/ComplexIntegrals

dataset /Hamiltonian/dims

dataset /Hamiltonian/hcore

dataset /Hamiltonian/Energies

* /Hamiltonian/THC/Luv Cholesky factorization of the M,,, matrix givenin (17.4).

* /Hamiltonian/THC/Orbitals [M,N,] dimensional array of orbitals evaluated at chosen interpolating
points ¢, (r,,).

* /Hamiltonian/THC/HalfTransformedMuv [Nw Nﬂ] dimensional array containing half-transformed
M

pv-
* /Hamiltonian/THC/HalfTransformedFullOrbitals [M,N,] dimensional array containing or-
bital set computed at half-transformed interpolating points ;(T,,).

* /Hamiltonian/THC/HalfTransformedOccOrbitals [N, + Ng, N,] dimensional array containing
half-rotated orbital set computed at half-transformed interpolating points ¢, (T,) = Ep A¥ . op(T,), where A
is the Slater-Matrix of the (currently single-determinant) trial wavefunction.

* /Hamiltonian/THC/dims Descriptor array containing [M, N,,, N,,].

* /Hamiltonian/ComplexIntegrals Length 1 array that specifies if integrals are complex valued. 1 for
complex integrals, O for real integrals.

17.2. Hamiltonian File formats 213

QMCPACK Manual

* /Hamiltonian/dims Descriptor array of length 8 containing [0,0,0, M, N,, Ng,0,0].
e /Hamiltonian/hcore Contains the [M, M| dimensional one-body Hamiltonian matrix elements h;;.

e /Hamiltonian/Energies Array containing [E;;, Ecore]. Err should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy (such as the electron-electron interaction
Madelung contribution of %N §). Ecore is deprecated and not used.

Finally, we have implemented an explicitly k-point dependent factorization for periodic systems [[MZM20], [MZC19]]
(kppk,r[kogkys) = Y LK LK (17.5)

where k, k’ and Q are vectors in the first Brillouin zone. The one-body Hamiltonian is block diagonal in k and in
(17.5) we have used momentum conservation (k, — k, + k, — k;) = G with G being some vector in the reciprocal
lattice of the simulation cell. The convention for the Cholesky matrix LI?,:}‘W is as follows: k, =k, — Q, so the vector
k labels the k-point of the first band index, p, while the k-point vector of the second band index, r, is given by k — Q.
Electron repulsion integrals at different Q vectors are zero by symmetry, resulting in a reduction in the number of
required Q vectors. For certain Q vectors that satisfy Q # —Q (this is not satisfied at the origin and at high symmetry
points on the edge of the 1BZ), we have qu’f‘v* = L;S?V’k_o, which requires us to store Cholesky vectors for either

one of the (Q, —Q) pair, but not both.

In what follows let my denote the number of basis functions for basis functions of a given k-point (these can in
principle differ for different k-points due to linear dependencies), ny; the number of « electrons in a given k-point and
”3121 the number of Cholesky vectors for momentum transfer Q,,. The file format for this factorization is as follows
(for a2 x 2 x 2 k-point mesh, for denser meshes generally there will be far fewer symmetry inequivalent momentum

transfer vectors than there are k-points):

Listing 17.5: Sample Dense k-point dependent Cholesky QMCPACK
Hamtiltonian.

$ h5dump -n afgmc.h5
HDF5 "afgmc.hb5" {
FILE_CONTENTS {

group /

group /Hamiltonian

group /Hamiltonian/KPFactorized
dataset /Hamiltonian/KPFactorized/LO
dataset /Hamiltonian/KPFactorized/L1l
dataset /Hamiltonian/KPFactorized/L2
dataset /Hamiltonian/KPFactorized/L3
dataset /Hamiltonian/KPFactorized/L4
dataset /Hamiltonian/KPFactorized/L5
dataset /Hamiltonian/KPFactorized/L6
dataset /Hamiltonian/KPFactorized/L7
dataset /Hamiltonian/NCholPerKP
dataset /Hamiltonian/MinusK

dataset /Hamiltonian/NMOPerKP
dataset /Hamiltonian/QKTok2

dataset /Hamiltonian/H1_kpO

dataset /Hamiltonian/H1_kpl

dataset /Hamiltonian/H1_kp?2

dataset /Hamiltonian/H1_kp3

dataset /Hamiltonian/H1_kp4

dataset /Hamiltonian/H1_kp5

dataset /Hamiltonian/H1_kp6

dataset /Hamiltonian/H1_kp7

dataset /Hamiltonian/ComplexIntegrals

(continues on next page)

214 Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

(continued from previous page)

dataset /Hamiltonian/KPoints
dataset /Hamiltonian/dims
dataset /Hamiltonian/Energies

e /Hamiltonian/KPFactorized/L[n] This series of datasets store elements of the Cholesky tensors
L[Qn, k, pr,n]. Each data set is of dimension [Ny, my X my, n?h"g)l], where, again, k is the k-point associ-
ated with basis function p, the k-point of basis function r is defined via the mapping QKt ok2.

e /Hamiltonian/NCholPerKP Ny length array giving number of Cholesky vectors per k-point.
e /Hamiltonian/MinusK: Ni length array mapping a k-point to its inverse: k;4+MinusK[i] =0 mod G.
* /Hamiltonian/NMOPerKP: i length array listing number of basis functions per k-point.

e /Hamiltonian/QKTok2: [Ny, Ni] dimensional array. QKtok2 [i, j] yields the & point index satisfying
k=Q;—-k; +G.

e /Hamiltonian/dims: Descriptor array of length 8 containing [0, 0,0, M, N,, N3, 0,0].

e /Hamiltonian/H1_kp[n] Contains the [my, , my,]| dimensional one-body Hamiltonian matrix elements
hcp) (k) -

* /Hamiltonian/ComplexIntegrals Length 1 array that specifies if integrals are complex valued. 1 for
complex integrals, O for real integrals.

e /Hamiltonian/KPoints [Ny, 3] Dimensional array containing k-points used to sample Brillouin zone.

* /Hamiltonian/dims Descriptor array of length 8 containing [0, 0, Ny, M, Ny, N3, 0, Nychot]. Note that AL
is the total number of basis functions, i.e. M = Zk my, and likewise for the number of electrons.

e /Hamiltonian/Energies Array containing [E;;, Ecore]. Frr should contain ion-ion repulsion energy and
any additional constant terms which have to be added to the total energy (such as the electron-electron interaction
Madelung contribution of %N €). Ecore is deprecated and not used.

Complex integrals should be written as an array with an additional dimension, e.g., a 1D array should be written
as a 2D array with array_hdf5[:,0]=real (1d_array) and array_hdf5[:,1l]=imag(ld_array).
The functions afgmctools.utils.misc.from_gmcpack_complex and afgmctools.utils.misc.
to_agmcpack_complex can be used to transform gmcpack format to complex valued numpy arrays of the ap-
propriate shape and vice versa.

Finally, if using external tools to generate this file format, we provide a sanity checker script in utils/
afgmctools/bin/test_afgmc_input.py which will raise errors if the format does not conform to what
is being used internally.

17.3 Wavefunction File formats

AFQMC allows for two types of multi-determinant trial wavefunctions: non-orthogonal multi Slater determinants
(NOMSD) or SHCI/CASSCEF style particle-hole multi Slater determinants (PHMSD).

The file formats are described below

17.3. Wavefunction File formats 215

QMCPACK Manual

17.3.1 NOMSD

h5dump —n wfn.h5

HDF5 "wfn.hb" {
FILE_CONTENTS {

group /

group /Wavefunction

group /Wavefunction/NOMSD

dataset /Wavefunction/NOMSD/Psi0O_alpha

dataset /Wavefunction/NOMSD/PsiO_beta

group /Wavefunction/NOMSD/PsiT_0

dataset /Wavefunction/NOMSD/PsiT_0/data_

dataset /Wavefunction/NOMSD/PsiT_0/dims

dataset /Wavefunction/NOMSD/PsiT_0/jdata_

dataset /Wavefunction/NOMSD/PsiT_0/pointers_begin_
dataset /Wavefunction/NOMSD/PsiT_0/pointers_end_
group /Wavefunction/NOMSD/PsiT_1

dataset /Wavefunction/NOMSD/PsiT_1/data_

dataset /Wavefunction/NOMSD/PsiT_1/dims

dataset /Wavefunction/NOMSD/PsiT_1/7jdata_

dataset /Wavefunction/NOMSD/PsiT_1/pointers_begin_
dataset /Wavefunction/NOMSD/PsiT_1/pointers_end_
dataset /Wavefunction/NOMSD/ci_coeffs

dataset /Wavefunction/NOMSD/dims

Note that the oz components of the trial wavefunction are stored under PsiT_{2n} and the 5 components are stored
under PsiT_{2n+1}.

¢ /Wavefunction/NOMSD/PsiO_alpha [M, N,] dimensional array « component of initial walker wave-
function.

* /Wavefunction/NOMSD/Psi0_beta [M, Ng] dimensional array for /5 initial walker wavefunction.

e /Wavefunction/NOMSD/PsiT_{2n}/data_ Array of length nnz containing non-zero elements of n-th
« component of trial wavefunction walker wavefunction. Note the conjugate transpose of the Slater matrix is
stored.

* /Wavefunction/NOMSD/PsiT_{2n}/dims Array of length 3 containing [M, N,,, nnz] where nnz is the
number of non-zero elements of this Slater matrix

* /Wavefunction/NOMSD/PsiT_{2n}/jdata_ CSR indices array.

* /Wavefunction/NOMSD/PsiT_{2n}/pointers_begin_ CSR format begin index pointer array.
* /Wavefunction/NOMSD/PsiT_{2n}/pointers_end_ CSR format end index pointer array.

* /Wavefunction/NOMSD/ci_coeffs Np length array of ci coefficients. Stored as complex numbers.

e /Wavefunction/NOMSD/dims Integer array of length 5 containing [M, N,, N, walker_type , Np]

216 Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

17.3.2 PHMSD

h5dump —n wfn.h5

HDF5 "wfn.hb" {
FILE_CONTENTS {

group /

group /Wavefunction

group /Wavefunction/PHMSD

dataset /Wavefunction/PHMSD/Psi0O_alpha
dataset /Wavefunction/PHMSD/Psi0_beta
dataset /Wavefunction/PHMSD/ci_coeffs
dataset /Wavefunction/PHMSD/dims
dataset /Wavefunction/PHMSD/occs
dataset /Wavefunction/PHMSD/type

* /Wavefunction/NOMSD/PsiO_alpha [M, N,] dimensional array oo component of initial walker wave-

function.

e /Wavefunction/NOMSD/Psi0_beta [M, Ng] dimensional array for /5 initial walker wavefunction.

e /Wavefunction/PHMSD/ci_coeffs Np length array of ci coefficients. Stored as complex numbers.

* /Wavefunction/PHMSD/dims Integer array of length 5 containing [M, N, N, walker_type , Np)]

* /Wavefunction/PHMSD/occs Integer array of length (N, + Ng) * Np describing the determinant occu-
pancies. For example if (N, = Ng = 2) and Np = 2, M = 4, and if |¥7) = |0,1)]0,1) + |0, 1|0, 2) > then
oces =[0,1,4,5,0,1,4,6]. Note that 5 occupancies are displacd by M.

* /Wavefunction/PHMSD/type integer 0/1. 1 implies trial wavefunction is written in different basis than
the underlying basis used for the integrals. If so a matrix of orbital coefficients is required to be written in the
NOMSD format. If 0 then assume wavefunction is in same basis as integrals.

17.4 Current Feature Implementation Status

The current status of features available in QMCPACK is as follows:

Table 17.1: Code features available on CPU

Hamiltonian | SD | NOMSD | PHMSD | Real Build | Complex Build
Sparse Yes | Yes Yes Yes Yes
Dense Yes | Yes No Yes No
k-point Yes | No No No Yes
THC Yes | No No Yes Yes
Table 17.2: Code features available on GPU
Hamiltonian | SD | NOMSD | PHMSD | Real Build | Complex Build
Sparse No | No No No No
Dense Yes | No No Yes No
k-point Yes | No No No Yes
THC Yes | No No Yes Yes

17.4. Current Feature Implementation Status

217

QMCPACK Manual

17.5 Advice/Useful Information

AFQMC calculations are computationally expensive and require some care to obtain reasonable performance. The
following is a growing list of useful advice for new users, followed by a sample input for a large calculation.

* Generate Cholesky-decomposed integrals with external codes instead of the 2-electron integrals directly. The
generation of the Cholesky factorization is faster and consumes less memory.

» Use the hybrid algorithm for walker propagation. Set steps/substeps to adequate values to reduce the number of
energy evaluations. This is essential when using large multideterminant expansions.

¢ Adjust cutoffs in the wavefunction and propagator bloxks until desired accuracy is reached. The cost of the
calculation will depend on these cutoffs.

* Adjust ncores/nWalkers to obtain better efficiency. Larger nWalkers will lead to more efficient linear algebra
operations but will increase the time per step. Larger ncores will reduce the time per step but will reduce
efficiency because of inefficiencies in the parallel implementation. For large calculations, values between 6—12
for both quantities should be reasonable, depending on architecture.

Listing 17.6: Example of sections of an AFQMC input file for a large
calculation.

<Hamiltonian name="ham0" type="SparseGeneral" info="infoO">
<parameter name="filename">fcidump.h5</parameter>
<parameter name="cutoff_ lbar">le-6</parameter>
<parameter name="cutoff_ decomposition">le-5</parameter>
</Hamiltonian>

<Wavefunction name="wfn0" type="MSD" info="infoO">
<parameter name="filetype">ascii</parameter>
<parameter name="filename">wfn.dat</parameter>
</Wavefunction>

<WalkerSet name="wsetO0">
<parameter name="walker_ type">closed</parameter>
</WalkerSet>

<Propagator name="prop0" info="infoO">
<parameter name="hybrid">yes</parameter>
</Propagator>

<execute wset="wset0" ham="ham0" wfn="wfn0" prop="prop0" info="infolO">
<parameter name='"ncores">8</parameter>
<parameter name="timestep">0.01l</parameter>
<parameter name="blocks">10000</parameter>
<parameter name="steps">10</parameter>
<parameter name="substeps">5</parameter>
<parameter name="nWalkers">8</parameter>
<parameter name="ortho">5</parameter>
</execute>

afgmc method

parameters in AFQMCInfo

218 Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

Name | Datatype | Values | Default | Description
NMO integer >0 no Number of molecular orbitals
NAEA | integer >0 no Number of active electrons of spin-up
NAEB | integer >0 no Number of active electrons of spin-down
parameters in Hamiltonian
Name Datatype | Values | Default | Description
info argument Name of AFQMCInfo block
filename | string no Name of file with the hamiltonian
filetype | string hdf5 yes Native HDF5-based format of QMCPACK
parameters in Wavefunction
Name Datatype| Values De- Description
fault
info argu- name of AFQMCInfo block
ment
type argu- MSD, no Linear combination of (assumed non-orthogonal) Slater de-
ment PHMSD terminants
filetype| string ascii, hdf5 no CI-type multi-determinant wave function
parameters in WalkerSet
Name Datatype | Values | Default | Description
walker_type | string collinear | yes Request a collinear walker set.
closed no Request a closed shell (doubly-occupied) walker set.
parameters in Propagator
Name Datatype | Values | Default | Description
type argument | afgmc afqmc Type of propagator
info argument Name of AFQMCInfo block
hybrid | string yes Use hybrid propagation algorithm.
no Use local energy based propagation algorithm.
parameters in execute
Name Datatype | Values | Default | Description
wset argument
ham argument
win argument
prop argument
info argument Name of AFQMCInfo block
nWalkers | integer >0 5 Initial number of walkers per task group
timestep | real >0 0.01 Time step in 1/a.u.
blocks integer >0 100 Number of blocks
step integer >0 1 Number of steps within a block
substep integer >0 1 Number of substeps within a step
ortho integer >0 1 Number of steps between walker orthogonalization.

17.5.

Advice/Useful Information

219

QMCPACK Manual

17.6 AFQMCTOOLS

The afgmctools library found in gmcpack/utils/afagmctools provides a number of tools to interface elec-
tronic structure codes with AFQMC in QMCPACK. Currently PYSCF is the best supported package and is capable of
generating both molecular and solid state input for AFQMC.

In what follows we will document the most useful routines from a user’s perspective.

afgmctools has to be in your PYTHONPATH.

17.6.1 pyscf_to_afgmc.py

This is the main script to convert PYSCF output into QMCPACK input. The command line options are as follows:

> pyscf_to_afgmc.py -h

usage: pyscf_to_afgmc.py [-h] [-1 CHK_FILE] [-o HAMIL_FILE] [-w WEN_FILE]
[-g OMC_INPUT] [-t THRESH] [-k] [-—-density-fit] [-a]
[-c CAS] [-d] [-n NDET_MAX] [-r] [-p]
[--low LOW_THRESH] [-—-high HIGH_THRESH] [--dense]
[-Vv]
optional arguments:
-h, —--help show this help message and exit
-1 CHK_FILE, --input CHK_FILE

Input pyscf .chk file.
-o HAMIL_FILE, —--output HAMIL_FILE
Output file name for QMCPACK hamiltonian.
-w WEN_FILE, —--wavefunction WEN_FILE
Output file name for QMCPACK wavefunction. By default
will write to hamil_file.

-gq QMC_INPUT, --gmcpack-input QMC_INPUT
Generate skeleton QOMCPACK input xml file.

-t THRESH, --cholesky-threshold THRESH
Cholesky convergence threshold.

-k, ——kpoint Generate explicit kpoint dependent integrals.

—-—-density-fit Use density fitting integrals stored in input pyscf
chkpoint file.

-a, ——ao, —-ortho-ao Transform to ortho AO basis. Default assumes we work
in MO basis

-c CAS, --cas CAS Specify a CAS in the form of N,M.

-d, —-—-disable—ham Disable hamiltonian generation.

-n NDET_MAX, —--num-dets NDET_MAX
Set upper limit on number of determinants to generate.

-r, ——-real-ham Write integrals as real numbers.

-p, ——-phdf Use parallel hdfb.

—-—low LOW_THRESH Lower threshold for non-integer occupanciesto include
in multi-determinant exansion.

—-high HIGH_THRESH Upper threshold for non-integer occupanciesto include
in multi-determinant exansion.

——dense Write dense Hamiltonian.

-v, ——-verbose Verbose output.

examples on how to generate AFQMC input from PYSCF simulations are available in AFQMC Tutorials

220 Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

17.6.2 afqmc_to_fcidump.py

This script is useful for converting AFQMC hamiltonians to the FCIDUMP format.

> afgmc_to_fcidump.py

usage: afgmc_to_fcidump.py [-h] [-1 INPUT_FILE] [-o OUTPUT_FILE] [-s SYMM]
[-t TOL] [-c] [—-—-complex-paren] [-

<~>VJ

optional arguments:
-h, —--help show this help message and exit
-i INPUT_FILE, --input INPUT_FILE
Input AFQMC hamiltonian file.

—o OUTPUT_FILE, —--output OUTPUT_FILE

Output file for FCIDUMP.
-s SYMM, —--symmetry SYMM

Symmetry of integral file (1,4,8).
-t TOL, —--tol TOL Cutoff for integrals.
-c, ——complex Whether to write integrals as complex numbers.
—-—complex—-paren Whether to write FORTRAN format complex numbers.
-v, ——-verbose Verbose output.

17.6.3 fcidump_to_afgmc.py

This script is useful for converting Hamiltonians in the FCIDUMP format to the AFQMC file format.

> fcidump_to_afgmc.py -h

usage: fcidump_to_afgmc.py [-h] [-1 INPUT_FILE] [-o OUTPUT_FILE]
[-—write-complex] [-t THRESH] [-s

[

—SYMM] [-V]

optional arguments:

-h, —--help show this help message and exit
—-i INPUT_FILE, --input INPUT_FILE

Input FCIDUMP file.
—o OUTPUT_FILE, —--output OUTPUT_FILE

Output file name for PAUXY data.
--write-complex Output integrals in complex format.
-t THRESH, --cholesky-threshold THRESH

Cholesky convergence threshold.
-s SYMM, —--symmetry SYMM

Symmetry of integral file (1,4,8).
-v, ——-verbose Verbose output.

17.6. AFQMCTOOLS 221

QMCPACK Manual

17.6.4 Writing a Hamiltonian

write_gmcpack_sparse and write_gmcpack_dense can be used to write either sparse or dense gqmcpack
Hamiltonians.

import numpy
from afgmctools.hamiltonian.io import write_gmcpack_sparse, write_gmcpack_dense

nmo = 50
nchol = 37
nelec = (3,3)
enuc = -108.3

hcore and eri should obey the proper symmetry in real applications
h_1i7j

hcore = numpy.random.random((nmo, nmo))
L_{(ik),n}
chol = numpy.random.random((nmox*nmo, nchol))

write_gmcpack_dense (hcore, chol, nelec, nmo, enuc,
real_chol=True,
filename="hamil dense.hb5")
write_gmcpack_sparse (hcore, chol, nelec, nmo, enuc,
real_chol=True,
filename="hamil_sparse.h5")

Note the real_chol parameter controls whether the integrals are written as real or complex numbers. Complex
numbers should be used if -DENABLE_QMC_COMPLEX=1, while the dense Hamiltonian is only available for real
builds.

17.6.5 Writing a wavefunction

write_gmcpack_wfn can be used to write either NOMSD or PHMSD wavefunctions:

import numpy
from afgmctools.wavefunction.mol import write_gmcpack_wfn

NOMSD

ndet = 100

nmo = 50

nelec = (3, 7)

wfn = numpy.array (numpy.random.random((ndet, nmo, sum(nelec))), dtype=numpy.
—complex128)

coeffs = numpy.array (numpy.random.random((ndet)), dtype=numpy.complexl28)
uhf = True

write_gmcpack_wfn ('wfn.h5"', (coeffs, wfn), uhf, nelec, nmo)

By default the first term in the expansion will be used as the initial walker wavefunction. To use another wavefunction
we can pass a value to the init parameter:

init = numpy.array (numpy.random.random((nmo, sum(nelec)), dtype=numpy.complexl28)
write_gmcpack_wfn ('wfn.h5"', (coeffs, wfn), uhf, nelec, nmo, init=[init,init])

Particle-hole wavefunction (PHMSD) from SHCI or CASSCF calculations are also written using the same function:

import numpy
from afgmctools.wavefunction.mol import write_gmcpack_wfn

(continues on next page)

222 Chapter 17. Auxiliary-Field Quantum Monte Carlo

QMCPACK Manual

(continued from previous page)

PHMSD

ndet = 2
nmo = 4

nelec = (2,2)

uhf = True

|psi_T> = 1/sqrt(2)(]0,1>/0,1> + |0,1>/0,2>)

coeffs = numpy.array([0.707,0.707], dtype=numpy.complexl28)

occa = numpy.array ([(0,1), (0,1)1)

occb = numpy.array ([(0,1), (0,2)1)

write_gmcpack_wfn('wfn.h5', (coeffs, occa, occb), uhf, nelec, nmo)

17.6.6 Analyzing Estimators

The afgmctools.analysis.average module can be used to perform simple error analysis for estimators com-
puted with AFQMC.

Warning: Autocorrelation is not accounted for. Use with caution.

average_one_rdm Returns P[s,i,j] = <C;-fscjs> as a (nspin, M, M) dimensional array.

average_two_rdm Gammal[sls2,i,k,j,l] = (cjc;[clcw. For closed shell systems, returns [(a,a,a,a),(a,a,b,b)]. For

collinear systems, returns [(a,a,a,a),(a,a,b,b),(b,b,b,b)].

average_diag_two_rdm Returns <c;c;§cjtcis> as a (2M,2M) dimensional array.

average_on_top_pdm Returns ny(r, r) for a given real space grid.

average_realspace_correlations Returns (C(r1)C(r2)) and (S(r1)S(rz)) for a given set of points in real space.

C =y +ny), 5= (i —ny)
average_atom_correlations Returns (C(1)), (S(1)), (C(I)C(J)), (S(1)S(J)) for a given set of atomic sites I, J.

C = (p +7y), S = (Ay —ny)

average_gen_fock Returns generalized Fock matrix F.. The parameter fock_type is used to specify F
(fock_type='plus')or F_ (fock_type="'minus"')

get_noons Get natural orbital occupation numbers from one-rdm.

As an example the following will extract the back propagated one rdm for the maximum propagation time, and skip
10 blocks as the equilibration phase.

from afgmctools.analysis.average import average_one_rdm

P, Perr = average_one_rdm('gmc.s000.stat.hb', estimator='back propagated', eqlb=10)

17.6. AFQMCTOOLS 223

QMCPACK Manual

224 Chapter 17. Auxiliary-Field Quantum Monte Carlo

CHAPTER
EIGHTEEN

EXAMPLES

WARNING: THESE EXAMPLES ARE NOT CONVERGED! YOU MUST CONVERGE PARAMETERS
(SIMULATION CELL SIZE, JASTROW PARAMETER NUMBER/CUTOFF, TWIST NUMBER, DMC TIME
STEP, DFT PLANE WAVE CUTOFF, DFT K-POINT MESH, ETC.) FOR REAL CALCUATIONS!

The following examples should run in serial on a modern workstation in a few hours.

18.1 Using QMCPACK directly

In examples/molecules are the following examples. Each directory also contains a README file with more
details.

Directory | Description
H20 H20 molecule from GAMESS orbitals
He Helium atom with simple wavefunctions

18.2 Using Nexus

For more information about Nexus, see the User Guide in nexus/documentation.

For Python to find the Nexus library, the PYTHONPATH environment variable should be set to <QMCPACK
source>/nexus/library. For these examples to work properly, the executables for QE and QMCPACK ei-
ther need to be on the path, or the paths in the script should be adjusted.

These examples can be found under the nexus/examples/gmcpack directory.

Directory Description

diamond Bulk diamond with VMC
graphene Graphene sheet with DMC
c20 C20 cage molecule
oxygen_dimer | Binding curve for Oy molecule
H20 H>0O molecule with QE orbitals
LiH LiH crystal with QE orbitals

225

QMCPACK Manual

226 Chapter 18. Examples

CHAPTER
NINETEEN

LAB 1: MC STATISTICAL ANALYSIS

19.1 Topics covered in this lab

This lab focuses on the basics of analyzing data from MC calculations. In this lab, participants will use data from
VMC calculations of a simple 1-electron system with an analytically soluble system (the ground state of the hydrogen
atom) to understand how to interpret an MC situation. Most of these analyses will also carry over to DMC simulations.
Topics covered include:

Averaging MC variables

The statisical error bar of mean values

The effects of autocorrelation and variance on the error bar
The relationship between MC time step and autocorrelation
The use of blocking to reduce autocorrelation

The significance of the acceptance ratio

The significance of the sample size

How to determine whether an MC run was successful

The relationship between wavefunction quality and variance
Gauging the efficiency of MC runs

The cost of scaling up to larger system sizes

19.2 Lab directories and files

labs/labl_gmc_statistics/

— atom - H atom VMC calculation
t:: H.s000.scalar.dat - H atom VMC data

H.xml - H atom VMC input file

— autocorrelation - varying autocorrelation
H.dat - data for gnuplot
H.plt - gnuplot for time step vs. E_L, tau_c
H.s000.scalar.dat - H atom VMC data: time step = 10
H.s00l.scalar.dat - H atom VMC data: time step = 5
H.s002.scalar.dat - H atom VMC data: time step = 2
H.s003.scalar.dat - H atom VMC data: time step = 1

(continues on next page)

227

QMCPACK Manual

(continued from previous page)

— H.s004.scalar.dat - H atom VMC data: time step = 0.5
— H.s005.scalar.dat - H atom VMC data: time step = 0.2
— H.s006.scalar.dat - H atom VMC data: time step = 0.1
— H.s007.scalar.dat - H atom VMC data: time step = 0.05
— H.s008.scalar.dat - H atom VMC data: time step = 0.02
—— H.s009.scalar.dat - H atom VMC data: time step = 0.01
— H.s010.scalar.dat - H atom VMC data: time step = 0.005
—— H.s0ll.scalar.dat - H atom VMC data: time step = 0.002
—— H.s0l2.scalar.dat - H atom VMC data: time step = 0.001
— H.s01l3.scalar.dat - H atom VMC data: time step = 0.0005
— H.s0l4.scalar.dat - H atom VMC data: time step = 0.0002
—— H.s0l5.scalar.dat - H atom VMC data: time step = 0.0001
L— H.xml - H atom VMC input file
— average - Python scripts for average/std. dev.
— average.py - average five E_L from H atom VMC
— stddev2.py - standard deviation using (E_L)"2
-— stddev.py - standard deviation around the mean
— basis - varying basis set for orbitals
— H__exact.s000.scalar.dat - H atom VMC data using STO basis
—— H_STO-2G.s000.scalar.dat - H atom VMC data using STO-2G basis
—— H_STO-3G.s000.scalar.dat - H atom VMC data using STO-3G basis
L— H STO-6G.s000.scalar.dat - H atom VMC data using STO-6G basis
— blocking - varying block/step ratio
—— H.dat — data for gnuplot
— H.plt - gnuplot for N_block vs. E, tau_c
—— H.s000.scalar.dat - H atom VMC data 50000:1 blocks:steps
—— H.s00l.scalar.dat - " " " " 25000:2 blocks:steps
— H.s002.scalar.dat - " " " " 12500:4 blocks:steps
—— H.s003.scalar.dat - " " " " 6250: 8 blocks:steps
—— H.s004.scalar.dat - " " " " 3125:16 blocks:steps
— H.s005.scalar.dat - " " " " 2500:20 blocks:steps
—— H.s006.scalar.dat - """ " " 1250:40 blocks:steps
—— H.s007.scalar.dat - " " " " 1000:50 blocks:steps
— H.s008.scalar.dat - """ " " 500:100 blocks:steps
—— H.s009.scalar.dat - " " " " 250:200 blocks:steps
—— H.s01l0.scalar.dat - " " " " 125:400 blocks:steps
— H.s0ll.scalar.dat - " " " " 100:500 blocks:steps
—— H.s0l2.scalar.dat - """ " " 50:1000 blocks:steps
—— H.s0l3.scalar.dat - " " " " 40:1250 blocks:steps
— H.s0l4.scalar.dat - """ " " 20:2500 blocks:steps
—— H.s0l5.scalar.dat - " " " " 10:5000 blocks:steps
— H.xml - H atom VMC input file
— blocks - wvarying total number of blocks
—— H.dat - data for gnuplot
— H.plt — gnuplot for N_block vs. E
— H.s000.scalar.dat - H atom VMC data 500 blocks
—— H.s00l.scalar.dat - " " " " 2000 blocks
— H.s002.scalar.dat -" " " " 8000 blocks
— H.s003.scalar.dat -"n " " " 32000 blocks
— H.s004.scalar.dat - " " " 128000 blocks
— H.xml - H atom VMC input file
— dimer - comparing no and simple Jastrow factor

(continues on next page)

228 Chapter 19. Lab 1: MC Statistical Analysis

QMCPACK Manual

(continued from previous page)

|: H2_STO___ _no_jastrow.s000.scalar.dat - H dimer VMC data without Jastrow
H2_STO_with_jastrow.s000.scalar.dat — H dimer VMC data with Jastrow
— docs - documentation
|: Lab_1_MC_Analysis.pdf - this document
Lab_1_Slides.pdf - slides presented in the lab
— nodes - varying number of computing nodes
H.dat - data for gnuplot
H.plt - gnuplot for N_node vs. E
H.s000.scalar.dat - H atom VMC data with 32 nodes
H.s00l.scalar.dat - H atom VMC data with 128 nodes
H.s002.scalar.dat - H atom VMC data with 512 nodes
— problematic - problematic VMC run
L— H.s000.scalar.dat - H atom VMC data with a problem
L— size — scaling with number of particles
— 01 H.s000.scalar.dat - H atom VMC data
— 02 H2.s000.scalar.dat - H dimer " "
— 06 C.s000.scalar.dat - C atom " "
— 10 CH4.s000.scalar.dat - methane " "
— 12 C2.s000.scalar.dat - C dimer " "
— 16 C2H4.s000.scalar.dat - ethene "
—— 18__ CH4CH4.s000.scalar.dat - methane dimer VMC data
—— 32_C2H4C2H4.s000.scalar.dat — ethene dimer " "
—— nelectron_tcpu.dat - data for gnuplot
— Nelectron_tCPU.plt - gnuplot for N_elec vs. t_CPU

19.3 Atomic units

QMCPACK operates in Ha atomic units to reduce the number of factors in the Schrodinger equation. Thus, the unit of
length is the bohr (5.291772 x 10~ m = 0.529177 A); the unit of energy is the Ha (4.359744 x 10718 J =27.211385
eV). The energy of the ground state of the hydrogen atom in these units is -0.5 Ha.

19.4 Reviewing statistics

We will practice taking the average (mean) and standard deviation of some MC data by hand to review the basic
definitions.

Enter Python’s command line by typing python [Enter]. You will see a prompt “>>>."

The mean of a dataset is given by:

1 N
f:N;xi. (19.1)

To calculate the average of five local energies from an MC calculation of the ground state of an electron in the hydrogen
atom, input (truncate at the thousandths place if you cannot copy and paste; script versions are also available in the
average directory):

19.3. Atomic units 229

QMCPACK Manual

.45298911858)
.45481953564)
.48066105923)
)
)

+ 4+ + +

.47316713469
.46204733302

Then, press [Enter] to get:

>>> ((-0.45298911858) + (-0.45481953564) + (-0.48066105923) +
(-0.47316713469) + (-0.4620473302))/5.
-0.46473683566800006

To understand the significance of the mean, we also need the standard deviation around the mean of the data (also
called the error bar), given by:

N
(x; —T)2. (19.2)
=1

o =

1
N(N —1)

To calculate the standard deviation around the mean (-0.464736835668) of these five data points, put in:

1./(5.%(5.-1.))) * (

 ()

(—0.45298911858-(-0.464736835668)) xx2 + \\
(-0.45481953564-(-0.464736835668)) **x2 +
(-0.48066105923-(-0.464736835668)) x*x2 +
(-0.47316713469-(-0.464736835668)) **x2 +
(-0.46204733302-(-0.464736835668)) **2)

y*x0.5

Then, press [Enter] to get:

>>> ((1./(5.%(5.-1.))) = ((-0.45298911858-(-0.464736835668)) *xx2 +

(-0.45481953564—-(-0.464736835668))**2 + (-0.48066105923-(-0.464736835668)) %2 +
(-0.47316713469-(-0.464736835668))**2 + (—-0.46204733302-(-0.464736835668)) **2

))*x0.5

0.0053303187464332066

Thus, we might report this data as having a value -0.465 +/- 0.005 Ha. This calculation of the standard deviation
assumes that the average for this data is fixed, but we can continually add MC samples to the data, so it is better to use
an estimate of the error bar that does not rely on the overall average. Such an estimate is given by:

N
1
GF=,| —— 2). — (x,)?]. 19.3
To calculate the standard deviation with this formula, input the following, which includes the square of the local energy
calculated with each corresponding local energy:

((1./(5.-1.)) * (
(0.60984565298-(-0.45298911858) xx2) + \\
(0.61641291630-(-0.45481953564) xx2) +
(1.35860151160-(-0.48066105923) xx2) + \\
(0.78720769003-(-0.47316713469) xx2) +
(0.56393677687-(-0.46204733302) **2))

) *%x0.5

230 Chapter 19. Lab 1: MC Statistical Analysis

QMCPACK Manual

and press [Enter] to get:

>>> ((1./(5.-1.))*((0.60984565298-(-0.45298911858) +*2)+
(0.61641291630-(-0.45481953564) x%2)+(1.35860151160-(-0.48066105923) x%2) +
(0.78720769003-(-0.47316713469) »x2)+(0.56393677687—(-0.46204733302) x*2))
yx%0.5

0.84491636672906634

This much larger standard deviation, acknowledging that the mean of this small data set is not the average in the limit
of infinite sampling, more accurately reports the value of the local energy as -0.5 +/- 0.8 Ha.

Type quit () and press [Enter] to exit the Python command line.

19.5 Inspecting MC Data

QMCPACK outputs data from MC calculations into files ending in scalar.dat. Several quantities are calculated
and written for each block of MC steps in successive columns to the right of the step index.

Change directories to at om, and open the file ending in scalar.dat with a text editor (e.g., vi *.scalar.dat or
emacs *.scalar.dat. If possible, adjust the terminal so that lines do not wrap. The data will begin as follows (broken
into three groups to fit on this page):

index LocalEnergy LocalEnergy_sq LocalPotential
0 -4.5298911858e-01 6.0984565298e-01 -1.1708693521e+00
1 -4.5481953564e-01 6.1641291630e-01 -1.1863425644e+00
2 -4.8066105923e-01 1.3586015116e+00 -1.1766446209e+00
3 -4.7316713469%e-01 7.8720769003e-01 -1.1799481122e+00
4 -4.6204733302e-01 5.6393677687e-01 -1.1619244081e+00
5 -4.4313854290e-01 6.0831516179e-01 -1.2064503041e+00
6 -4.5064926960e-01 5.9891422196e-01 -1.1521370176e+00
7 -4.5687452611e-01 5.8139614676e-01 -1.1423627617e+00
8 -4.5018503739%9e-01 8.4147849706e-01 -1.1842075439e+00
9 -4.3862013841e-01 5.5477715836e-01 -1.2080979177e+00

The first line begins with a #, indicating that this line does not contain MC data but rather the labels of the columns.
After a blank line, the remaining lines consist of the MC data. The first column, labeled index, is an integer indicating
which block of MC data is on that line. The second column contains the quantity usually of greatest interest from
the simulation: the local energy. Since this simulation did not use the exact ground state wavefunction, it does not
produce -0.5 Ha as the local energy although the value lies within about 10%. The value of the local energy fluctuates
from block to block, and the closer the trial wavefunction is to the ground state the smaller these fluctuations will be.
The next column contains an important ingredient in estimating the error in the MC average—the square of the local
energy—found by evaluating the square of the Hamiltonian.

Kinetic Coulomb BlockWeight
7.1788023352e-01 -1.1708693521e+00 1.2800000000e+04
7.3152302871e-01 -1.1863425644e+00 1.2800000000e+04
6.9598356165e-01 -1.1766446209e+00 1.2800000000e+04
7.0678097751e-01 -1.1799481122e+00 1.2800000000e+04
6.9987707508e-01 -1.1619244081e+00 1.2800000000e+04
7.6331176120e-01 -1.2064503041e+00 1.2800000000e+04
7.0148774798e-01 -1.1521370176e+00 1.2800000000e+04
6.8548823555e-01 -1.1423627617e+00 1.2800000000e+04
7.3402250655e-01 -1.1842075439e+00 1.2800000000e+04
7.6947777925e-01 -1.2080979177e+00 1.2800000000e+04

19.5. Inspecting MC Data 231

QMCPACK Manual

The fourth column from the left consists of the values of the local potential energy. In this simulation, it is identical to
the Coulomb potential (contained in the sixth column) because the one electron in the simulation has only the potential
energy coming from its interaction with the nucleus. In many-electron simulations, the local potential energy contains
contributions from the electron-electron Coulomb interactions and the nuclear potential or pseudopotential. The fifth
column contains the local kinetic energy value for each MC block, obtained from the Laplacian of the wavefunction.
The sixth column shows the local Coulomb interaction energy. The seventh column displays the weight each line of
data has in the average (the weights are identical in this simulation).

BlockCPU AcceptRatio

6.0178991748e-03 9.8515625000e-01
5.8323097461e-03 9.8562500000e-01
5.8213412744e-03 9.8531250000e-01
5.8330412549e-03 9.8828125000e-01
5.8108362256e-03 9.8625000000e-01
5.8254170264e-03 9.8625000000e-01
5.8314813086e-03 9.8679687500e-01
5.8258469971e-03 9.8726562500e-01
5.8158433545e-03 9.8468750000e-01
5.7959401123e-03 9.8539062500e-01

The eighth column shows the CPU time (in seconds) to calculate the data in that line. The ninth column from the left
contains the acceptance ratio (1 being full acceptance) for MC steps in that line’s data. Other than the block weight,
all quantities vary from line to line.

Exit the text editor ([Esc] :q! [Enter] in vi, [Ctrl]-x [Ctrl]-c in emacs).

19.6 Averaging quantities in the MC data

QMCPACK includes the gqmca Python tool to average quantities in the scalar.dat file (and also the dmc.dat
file of DMC simulations). Without any flags, qmca will output the average of each column with a quantity in the
scalar.dat file as follows.

Execute gqmca by gmca *.scalar.dat, which for this data outputs:

H series 0

LocalEnergy = -0.45446 +/- 0.00057
Variance = 0.529 +/- 0.018
Kinetic = 0.7366 +/- 0.0020
LocalPotential = -1.1910 +/- 0.0016
Coulomb = -1.1910 +/- 0.0016
LocalEnergy_sq = 0.736 +/- 0.018
BlockWeight = 12800.00000000 +/- 0.00000000
BlockCPU = 0.00582002 +/- 0.00000067
AcceptRatio = 0.985508 +/- 0.000048
Efficiency = 0.00000000 +/- 0.00000000

After one blank, qmca prints the title of the subsequent data, gleaned from the data file name. In this case, H.s000.
scalar.dat became “H series 0.” Everything before the first “. s” will be interpreted as the title, and the number

between “. s” and the next “.” will be interpreted as the series number.

The first column under the title is the name of each quantity qmca averaged. The column to the right of the equal signs
contains the average for the quantity of that line, and the column to the right of the plus-slash-minus is the statistical
error bar on the quantity. All quantities calculated from MC simulations have and must be reported with a statistical
error bar!

Two new quantities not present in the scalar.dat file are computed by qmca from the data—variance and effi-
ciency. We will look at these later in this lab.

232 Chapter 19. Lab 1: MC Statistical Analysis

QMCPACK Manual

To view only one value, gqmca takes the -q (quantity) flag. For example, the output of gqmca —-g LocalEnergy
*x.scalar.dat in this directory produces a single line of output:

’H series 0 LocalEnergy = -0.454460 +/- 0.000568

Type gmnca —-help to see the list of all quantities and their abbreviations.

19.7 Evaluating MC simulation quality

There are several aspects of a MC simulation to consider in deciding how well it went. Besides the deviation of the
average from an expected value (if there is one), the stability of the simulation in its sampling, the autocorrelation
between MC steps, the value of the acceptance ratio (accepted steps over total proposed steps), and the variance in the
local energy all indicate the quality of an MC simulation. We will look at these one by one.

19.7.1 Tracing MC quantities

Visualizing the evolution of MC quantities over the course of the simulation by a trace offers a quick picture of whether
the random walk had the expected behavior. qmca plots traces with the -t flag.

Type amca -g e -t H.s000.scalar.dat, which produces a graph of the trace of the local energy:

Trace of LocalEnergy

s000

0.0+ i

LocalEnergy
S
(5,1

|
=
(=

T

1

—1.5¢ i
0 100 200 300 400 500
samples

The solid black line connects the values of the local energy at each MC block (labeled “samples’). The average value
is marked with a horizontal, solid red line. One standard deviation above and below the average are marked with
horizontal, dashed red lines.

The trace of this run is largely centered on the average with no large-scale oscillations or major shifts, indicating a
good-quality MC run.

Try tracing the kinetic and potential energies, seeing that their behavior is comparable with the total local energy.

19.7. Evaluating MC simulation quality 233

QMCPACK Manual

Change to directory problematic and type gnca —gq e -t H.s000.scalar.dat to produce this graph:

Trace of LocalEnergy

1.0 1
s000

0.5+ 1
>
@)
I
e

| 0.0t :
[0}
o)
3

—0D.5} _

-1.0F 1

0 100 200 300 400 500

samples
Here, the local energy samples cluster around the expected -0.5 Ha for the first 150 samples or so and then begin to
oscillate more wildly and increase erratically toward 0, indicating a poor-quality MC run.

Again, trace the kinetic and potential energies in this run and see how their behavior compares with the total local
energy.

19.7.2 Blocking away autocorrelation

Autocorrelation occurs when a given MC step biases subsequent MC steps, leading to samples that are not statistically
independent. We must take this autocorrelation into account to obtain accurate statistics. gmca outputs autocorrelation

when given the —sac flag.

Change to directory autocorrelation and type gnca —g e —--sac H.s000.scalar.dat.

H series 0 LocalEnergy = —-0.454982 +/- 0.000430 1.0

The value after the error bar on the quantity is the autocorrelation (1.0 in this case).

Proposing too small a step in configuration space, the MC time step, can lead to autocorrelation since the new samples
will be in the neighborhood of previous samples. Type grep timestep H.xml to see the varying time step values
in this QMCPACK input file (H. xm1):

<parameter name="timestep">10</parameter>
<parameter name="timestep">5</parameter>
<parameter name="timestep">2</parameter>
<parameter name="timestep">1</parameter>
<parameter name="timestep">0.5</parameter>
<parameter name="timestep">0.2</parameter>
<parameter name="timestep">0.1l</parameter>

(continues on next page)

234 Chapter 19. Lab 1: MC Statistical Analysis

QMCPACK Manual

(continued from previous page)

<parameter name="timestep">0.05</parameter>
<parameter name="timestep">0.02</parameter>
<parameter name="timestep">0.01l</parameter>
<parameter name="timestep">0.005</parameter>
<parameter name="timestep">0.002</parameter>
<parameter name="timestep">0.001</parameter>
<parameter name="timestep">0.0005</parameter>
<parameter name="timestep">0.0002</parameter>
<parameter name="timestep">0.0001</parameter>

Generally, as the time step decreases, the autocorrelation will increase (caveat: very large time steps will also have
increasing autocorrelation). To see this, type qmca -g e —--sac *.scalar.dat to see the energies and auto-
correlation times, then plot with gnuplot by inputting gnuplot H.plt:

+
Eﬁ 13 -
- '
| '
@ Fr 7
2= 5 | T
0 + 7+ +
45"'--' I3r + + T
= 1 i L L T + + -!- + + -!_ + + 1]
-8.,44 | .
-8.,45 i
~ g _I_ T I+ 4+ +# + 4+ 4 3 1 T {-
¥ -8.46 1{ {- .
2t
1 m -H..q? B 7
wl =
~ -8.48 | -
-6.49 -
8.0001 8.801 8,01 8.1 1 18

Tine step {1/hartree}

The error bar also increases with the autocorrelation.
Press g [Enter] to quit gnuplot.

To get around the bias of autocorrelation, we group the MC steps into blocks, take the average of the data in the
steps of each block, and then finally average the averages in all the blocks. QMCPACK outputs the block averages as
each line in the scalar.dat file. (For DMC simulations, in addition to the scalar.dat, QMCPACK outputs the
quantities at each step to the dmc . dat file, which permits reblocking the data differently from the specification in the
input file.)

Change directories to blocking. Here we look at the time step of the last dataset in the autocorrelation
directory. Verify this by typing grep timestep H.xml to see that all values are set to 0.001. Now to see how
we will vary the blocking, type grep —-A1 blocks H.xml. The parameter “steps” indicates the number of steps
per block, and the parameter “blocks” gives the number of blocks. For this comparison, the total number of MC steps
(equal to the product of “steps” and “blocks”) is fixed at 50,000. Now check the effect of blocking on autocorrela-
tion—type qmca -g e —--sac =*scalar.dat to see the data and gnuplot H.plt to visualize the data:

19.7. Evaluating MC simulation quality 235

QMCPACK Manual

198 [T ' ' ']
g 178 |]
:;'E 158 | .
=@ 138 ¢ . 1
gS 118 + 1
L ™ 98 r N .
o 70 |]
20 58 | + 1
g 38 r + + + I
18 ¢ } ! 1 + 4 4T
_3‘33 - T T T T —
-8.4 |][.
~ 0.4 ! 7]
e =0,44 .
8% gl * F 1T 1[f][.

1@ + T
WS -8,48 | 1 -
-a.5 i
-8,52 £]

1 18 188 1888

S5teps per block

The greatest number of steps per block produces the smallest autocorrelation time. The larger number of blocks
over which to average at small step-per-block number masks the corresponding increase in error bar with increasing
autocorrelation.

Press g [Enter] to quit gnuplot.

19.7.3 Balancing autocorrelation and acceptance ratio

Adjusting the time step value also affects the ratio of accepted steps to proposed steps. Stepping nearby in configuration
space implies that the probability distribution is similar and thus more likely to result in an accepted move. Keeping
the acceptance ratio high means the algorithm is efficiently exploring configuration space and not sticking at particular
configurations. Return to the autocorrelation directory. Refresh your memory on the time steps in this set of
simulations by grep timestep H.xml. Then, type qnca —gq ar xscalar.dat to see the acceptance ratio
as it varies with decreasing time step:

H series 0 AcceptRatio 0.047646 +/— 0.000206
H series 1 AcceptRatio 0.125361 +/- 0.000308
H series 2 AcceptRatio 0.328590 +/- 0.000340
H series 3 AcceptRatio 0.535708 +/—- 0.000313
H series 4 AcceptRatio 0.732537 +/- 0.000234
H series 5 AcceptRatio 0.903498 +/- 0.000156
H series 6 AcceptRatio 0.961506 +/— 0.000083
H series 7 AcceptRatio 0.985499 +/- 0.000051
H series 8 AcceptRatio 0.996251 +/- 0.000025
H series 9 AcceptRatio 0.998638 +/— 0.000014
H series 10 AcceptRatio = 0.999515 +/- 0.000009
H series 11 AcceptRatio 0.999884 +/- 0.000004
H series 12 AcceptRatio 0.999958 +/- 0.000003
H series 13 AcceptRatio 0.999986 +/- 0.000002
(continues on next page)
236 Chapter 19. Lab 1: MC Statistical Analysis

QMCPACK Manual

(continued from previous page)

H series 14 AcceptRatio = 0.999995 +/- 0.000001
H series 15 AcceptRatio 0.999999 +/- 0.000000

By series 8 (time step = 0.02), the acceptance ratio is in excess of 99%.

Considering the increase in autocorrelation and subsequent increase in error bar as time step decreases, it is important
to choose a time step that trades off appropriately between acceptance ratio and autocorrelation. In this example, a
time step of 0.02 occupies a spot where the acceptance ratio is high (99.6%) and autocorrelation is not appreciably
larger than the minimum value (1.4 vs. 1.0).

19.7.4 Considering variance

Besides autocorrelation, the dominant contributor to the error bar is the variance in the local energy. The variance
measures the fluctuations around the average local energy, and, as the fluctuations go to zero, the wavefunction reaches
an exact eigenstate of the Hamiltonian. gmca calculates this from the local energy and local energy squared columns
of the scalar.dat.

Type amca -g v H.s009.scalar.dat to calculate the variance on the run with time step balancing autocorre-
lation and acceptance ratio:

H series 9 Variance = 0.513570 +/- 0.010589

Just as the total energy does not tell us much by itself, neither does the variance. However, comparing the ratio of the
variance with the energy indicates how the magnitude of the fluctuations compares with the energy itself. Type gmca
-q ev H.s009.scalar.dat to calculate the energy and variance on the run side by side with the ratio:

LocalEnergy Variance ratio
H series 0 -0.454460 +/- 0.000568 0.529496 +/- 0.018445 1.1651

The very high ration of 1.1651 indicates the square of the fluctuations is on average larger than the value itself. In the
next section, we will approach ways to improve the variance that subsequent labs will build on.

19.8 Reducing statistical error bars

19.8.1 Increasing MC sampling

Increasing the number of MC samples in a dataset reduces the error bar as the inverse of the square root of the number
of samples. There are two ways to increase the number of MC samples in a simulation: (1) running more samples in
parallel and (2) increasing the number of blocks (with fixed number of steps per block, this increases the total number
of MC steps).

To see the effect of running more samples in parallel, change to the directory nodes. The series here increases the
number of nodes by factors of four from 32 to 128 to 512. Type amca —-g ev =*scalar.dat and note the change
in the error bar on the local energy as the number of nodes. Visualize this with gnuplot H.plt:

19.8. Reducing statistical error bars 237

QMCPACK Manual

-8.446 | -
-8.,448 | -

-8,45 | -
-8,452 | -
-8.,454 | | { -

=B8.496 [.

E_total {Ha}

-8.458 | -
-8,46 | .
-8,462 | 1
-8.464 | -

148 108 1064

Nunber of nodes

Increasing the number of blocks, unlike running in parallel, increases the total CPU time of the simulation.
Press g [Enter] to quit gnuplot.

To see the effect of increasing the block number, change to the directory blocks. To see how we will vary the number
of blocks, type grep -Al blocks H.xml. The number of steps remains fixed, thus increasing the total number
of samples. Visualize the tradeoff by inputting gnuplot H.plt:

238 Chapter 19. Lab 1: MC Statistical Analysis

QMCPACK Manual

1088 [+ 3

188 3

t_CPU,total (s}

18 3

-8,448 | -
-8,45 | -
-8,452 | -
-8,454 | {- 1 +
-8,456 | -

E_total
{hartree)

=8.458 ! : !
1088 1866808 1088088

Munber of blocks

Press g [Enter] to quit gnuplot.

19.8.2 Improving the basis sets

In all of the previous examples, we are using the sum of two Gaussian functions (STO-2G) to approximate what
should be a simple decaying exponential for the wavefunction of the ground state of the hydrogen atom. The sum of
multiple copies of a function varying each copy’s width and amplitude with coefficients is called a basis set. As we
add Gaussians to the basis set, the approximation improves, the variance goes toward zero, and the energy goes to -0.5
Ha. In nearly every other case, the exact function is unknown, and we add basis functions until the total energy does
not change within some threshold.

Change to the directory basis and look at the total energy and variance as we change the wavefunction by typing
amca —gq ev H_:

LocalEnergy Variance ratio
-0.454460 +/- 0.000568 .529496 +/- 0.018445 1.1651
-0.465386 +/- 0.000502 .410491 +/- 0.010051 0.8820
-0.471332 +/- 0.000491 .213919 +/- 0.012954 0.4539
-0.500000 +/- 0.000000 .000000 +/- 0.000000 -0.0000

H_STO-2G series
H_STO-3G series
H_STO-6G series
H_ _exact series

o O O O
o O O O

gmca also puts out the ratio of the variance to the local energy in a column to the right of the variance error bar. A
typical high-quality value for this ratio is lower than 0.1 or so—none of these few-Gaussian wavefunctions satisfy that
rule of thumb.

Use gmca to plot the trace of the local energy, kinetic energy, and potential energy of H__exact. The total energy is
constantly -0.5 Ha even though the kinetic and potential energies fluctuate from configuration to configuration.

19.8. Reducing statistical error bars 239

QMCPACK Manual

19.8.3 Adding a Jastrow factor

Another route to reducing the variance is the introduction of a Jastrow factor to account for electron-electron correla-
tion (not the statistical autocorrelation of MC steps but the physical avoidance that electrons have of one another). To
do this, we will switch to the hydrogen dimer with the exact ground state wavefunction of the atom (STO basis)—this
will not be exact for the dimer. The ground state energy of the hydrogen dimer is -1.174 Ha.

Change directories to dimer and put in gmca —g ev xscalar.dat to see the result of adding a simple, one-
parameter Jastrow to the STO basis for the hydrogen dimer at experimental bond length:

LocalEnergy Variance
H2_STO no_jastrow series 0 -0.876548 +/- 0.005313 0.473526 +/- 0.014910
H2_STO_with_jastrow series 0 -0.912763 +/- 0.004470 0.279651 +/- 0.016405

The energy reduces by 0.044 +/- 0.006 HA and the variance by 0.19 +/- 0.02. This is still 20% above the ground state
energy, and subsequent labs will cover how to improve on this with improved forms of the wavefunction that capture
more of the physics.

19.9 Scaling to larger numbers of electrons

19.9.1 Calculating the efficiency

The inverse of the product of CPU time and the variance measures the efficiency of an MC calculation. Use gmca to
calculate efficiency by typing amca -g eff xscalar.dat to see the efficiency of these two H 5 calculations:

H2_STO no_jastrow series 0 Efficiency = 16698.725453 +/- 0.000000
H2_STO_with_jastrow series 0 Efficiency = 52912.365609 +/- 0.000000

The Jastrow factor increased the efficiency in these calculations by a factor of three, largely through the reduction in
variance (check the average block CPU time to verify this claim).

19.9.2 Scaling up

To see how MC scales with increasing particle number, change directories to size. Here are the data from runs of
increasing numbers of electrons for H, Ho, C, CHy, Cy, CoHy, (CHy)2, and (CoHy)s using the STO-6G basis set for
the orbitals of the Slater determinant. The file names begin with the number of electrons simulated for those data.

Use gmca —g bc xscalar.dat to see that the CPU time per block increases with the number of electrons in the
simulation; then plot the total CPU time of the simulation by gnuplot Nelectron_tCPU.plt:

240 Chapter 19. Lab 1: MC Statistical Analysis

QMCPACK Manual

H.._d T T T T T T

8,25 r

t_CPU {s/block}

H 1 1 1 1 1 1
a] 18 15 208 25 30 35

Hunber of electrons
The green pluses represent the CPU time per block at each electron number. The red line is a quadratic fit to those
data. For a fixed basis set size, we expect the time to scale quadratically up to 1,000s of electrons, at which point a

cubic scaling term may become dominant. Knowing the scaling allows you to roughly project the calculation time for
a larger number of electrons.

Press g [Enter] to quit gnuplot.

This is not the whole story, however. The variance of the energy also increases with a fixed basis set as the number of
particles increases at a faster rate than the energy decreases. To see this, type qmca —g ev xscalar.dat:

LocalEnergy Variance
01 H series 0 -0.471352 +/- 0.000493 0.213020 +/- 0.012950
02 H2 series 0 -0.898875 +/- 0.000998 0.545717 +/- 0.009980
06 C series 0 -37.608586 +/- 0.020453 184.322000 +/- 45.481193
10 CH4 series 0 -38.821513 +/- 0.022740 169.797871 +/- 24.765674
12 C2 series 0 -72.302390 +/- 0.037691 491.416711 +/- 106.090103
16 C2H4 series 0 -75.488701 +/- 0.042919 404.218115 +/- 60.196642
18__ CH4CH4 series 0 -58.459857 +/- 0.039309 498.579645 +/- 92.480126
32_C2H4C2H4 series 0 -91.567283 +/- 0.048392 632.114026 +/- 69.637760

The increase in variance is not uniform, but the general trend is upward with a fixed wavefunction form and basis set.
Subsequent labs will address how to improve the wavefunction to keep the variance manageable.

19.9. Scaling to larger numbers of electrons 241

QMCPACK Manual

242 Chapter 19. Lab 1: MC Statistical Analysis

CHAPTER
TWENTY

LAB 2: QMC BASICS

20.1 Topics covered in this lab

This lab focuses on the basics of performing quality QMC calculations. As an example, participants test an oxygen
pseudopotential within DMC by calculating atomic and dimer properties, a common step prior to production runs.
Topics covered include:

» Converting pseudopotentials into QMCPACK’s FSATOM format

* Generating orbitals with QE

» Converting orbitals into QMCPACK’s ESHDF format with pw2qmcpack
* Optimizing Jastrow factors with QMCPACK

¢ Removing DMC time step errors via extrapolation

* Automating QMC workflows with Nexus

* Testing pseudopotentials for accuracy

20.2 Lab outline

1. Download and conversion of oxygen atom pseudopotential
2. DMC time step study of the neutral oxygen atom
1. DFT orbital generation with QE
2. Orbital conversion with
3. Optimization of Jastrow correlation factor with QMCPACK
4. DMC run with multiple time steps
3. DMC time step study of the first ionization potential of oxygen
1. Repetition of a-d above for ionized oxygen atom

4. Automated DMC calculations of the oxygen dimer binding curve

243

QMCPACK Manual

20.3 Lab directories and files

s
5

labs/lab2_gmc_basics/

— oxygen_atom - oxygen atom calculations
— 0.g0.dft.in - Quantum ESPRESSO input for DFT run
— 0.90.p2g.in - pw2gmcpack.x input for orbital conversion run
F— 0.g0.opt.in.xml — QMCPACK input for Jastrow optimization run
— O0.g0.dmc.in.xml - QMCPACK input file for neutral O DMC
— ip_conv.py - tool to fit oxygen IP vs timestep
— reference - directory w/ completed runs
—— oxygen_dimer - oxygen dimer calculations
— dimer_fit.py - tool to fit dimer binding curve
— O_dimer.py - automation script for dimer calculations
— pseudopotentials - directory for pseudopotentials
— reference - directory w/ completed runs
— your_system - performing calculations for an arbitrary system (yours)
— example.py - example nexus file for periodic diamond
— pseudopotentials - directory containing C pseudopotentials
— reference - directory w/ completed runs

20.4 Obtaining and converting a pseudopotential for oxygen

First enter the oxygen_at om directory:

cd labs/lab2_gmc_basics/oxygen_atom/

Throughout the rest of the lab, locations are specified with respect to labs/lab2_gmc_basics (e.g.,
oxygen_atom).

We use a potential from the Burkatzki-Filippi-Dolg pseudopotential database. Although the full database is available
in QMCPACK distribution (t runk /pseudopotentials/BFD/), we use a BFD pseudopotential to illustrate the
process of converting and testing an external potential for use with QMCPACK. To obtain the pseudopotential, go
to http://www.burkatzki.com/pseudos/index.2.html and click on the “Select Pseudopotential” button. Next click on
oxygen in the periodic table. Click on the empty circle next to “V5Z” (a large Gaussian basis set) and click on “Next.”
Select the Gamess format and click on “Retrive Potential.” Helpful information about the pseudopotential will be
displayed. The desired portion is at the bottom (the last 7 lines). Copy this text into the editor of your choice (e.g.,
emacs or vi) and save it as O.BFD.gamess (be sure to include a new line at the end of the file). To transform the
pseudopotential into the FSATOM XML format used by QMCPACK, use the ppconvert tool:

ppconvert —-—-gamess_pot O.BFD.gamess —--s_ref "1s(2)2p(4)" \
——p_ref "ls(2)2p(4)" ——-d_ref "ls(2)2p(4)" ——xml O.BFD.xml

Observe the notation used to describe the reference valence configuration for this helium-core PP: 1s (2) 2p (4) . The
ppconvert tool uses the following convention for the valence states: the first s state is labeled 1s (1s, 2s, 3s,
...), the first p state is labeled 2p (2p, 3p, ...), and the first d state is labeled 3d (3d, 4d, ...). Copy the resulting
xml file into the oxygen_atom directory.

Note: The command to convert the PP into QE’s UPF format is similar (both formats are required):

244 Chapter 20. Lab 2: QMC Basics

http://www.burkatzki.com/pseudos/index.2.html

QMCPACK Manual

ppconvert -—-gamess_pot O.BFD.gamess --s_ref "1s(2)2p(4)" \
——p_ref "ls(2)2p(4)" —--d_ref "ls(2)2p(4)" --log_grid —-upf O.BEFD.upf

For reference, the text of 0. BFD . gamess should be:

O-QMC GEN 2 1

3

6.00000000 1 9.29793903
55.78763416 3 8.86492204
—-38.81978498 2 8.62925665
1

38.41914135 2 8.71924452

The full QMCPACK pseudopotential is also included in oxygen_atom/reference/0O.BFD. *.

20.5 DFT with QE to obtain the orbital part of the wavefunction

With the pseudopotential in hand, the next step toward a QMC calculation is to obtain the Fermionic part of the
wavefunction, in this case a single Slater determinant constructed from DFT-LDA orbitals for a neutral oxygen atom.
If you had trouble with the pseudopotential conversion step, preconverted pseudopotential files are located in the
oxygen_atom/reference directory.

QE input for the DFT-LDA ground state of the neutral oxygen atom can be found in O.g0.dft.in and also in
Listing 58. Setting wf_collect=.true. instructs QE to write the orbitals to disk at the end of the run. Option
wf_collect=.true. could be a potential problem in large simulations; therefore, we recommend avoiding it and
using the converter pw2qmcpack in parallel (see details in pw2gmcpack.x). Note that the plane-wave energy cutoff has
been set to a reasonable value of 300 Ry here (ecutwfc=300). This value depends on the pseudopotentials used,
and, in general, should be selected by running DFT — (orbital conversion) — VMC with increasing energy cutoffs
until the lowest VMC total energy and variance is reached.

Listing 20.1: QE input file for the neutral oxygen atom (O.g0.dft.

in)

&CONTROL
calculation = 'scf'
restart_mode = 'from_scratch'
prefix = '0.90"
outdir = '/
pseudo_dir = ',/
disk_io = 'low'
wf_collect = .true.

/

&SYSTEM
celldm (1) = 1.0
ibrav =0
nat =1
ntyp =1
nspin = 2
tot_charge =0
tot_magnetization = 2
input_dft = 'lda’
ecutwfc = 300
ecutrho = 1200
nosym = .true.

(continues on next page)

20.5. DFT with QE to obtain the orbital part of the wavefunction 245

QMCPACK Manual

(continued from previous page)

occupations = 'smearing'
smearing = 'fermi-dirac'
degauss = 0.0001

/

&ELECTRONS
diagonalization = 'david'
mixing_mode = 'plain'
mixing_beta = 0.7
conv_thr = le-08
electron_maxstep = 1000

/

ATOMIC_SPECIES
0 15.999 0.BFD.upf

ATOMIC_POSITIONS alat
] 9.44863067 9.44863161 9.44863255

K_POINTS automatic
111 000

CELL_PARAMETERS cubic

18.89726133 0.00000000 0.00000000
0.00000000 18.89726133 0.00000000
0.00000000 0.00000000 18.89726133

Run QE by typing

mpirun —np 4 pw.x —input 0.g0.dft.in >&0.g0.dft.outs

The DFT run should take a few minutes to complete. If desired, you can track the progress of the DFT run by typing
“tail —-f 0.g0.dft.out.” Once finished, you should check the LDA total energy in 0. g0 .dft . out by typing
“grep '! ' 0.g0.dft.out.” The result should be close to

! total energy = -31.57553905 Ry

The orbitals have been written in a format native to QE in the O. g0 . save directory. We will convert them into the
ESHDF format expected by QMCPACK by using the pw2gmcpack . x tool. The input for pw2gmcpack . x can be
found in the file 0. g0.p2qg. in and also in Listing 59.

Listing 20.2: pw2gmcpack . x input file for orbital conversion (0. g0 .

p29.1in)
&inputpp
prefix = '0.90"
outdir ="'/
write_psir = .false.
/

Perform the orbital conversion now by typing the following:

mpirun -np 1 pw2gmcpack.x<0.g0.p2g.in>&0.90.p2g.outés

Upon completion of the run, a new file should be present containing the orbitals for QMCPACK: 0. g0 .pwscf.hb.
Template XML files for particle (O.g0.ptcl.xml) and wavefunction (O.g0.wfs.xml) inputs to QMCPACK

246 Chapter 20. Lab 2: QMC Basics

QMCPACK Manual

should also be present.

20.6 Optimization with QMCPACK to obtain the correlated part of the
wavefunction

The wavefunction we have obtained to this point corresponds to a noninteracting Hamiltonian. Once the Coulomb pair
potential is switched on between particles, it is known analytically that the exact wavefunction has cusps whenever
two particles meet spatially and, in general, the electrons become correlated. This is represented in the wavefunction
by introducing a Jastrow factor containing at least pair correlations:

\I/Slater—.]astrow = e_J\I/SlatET' (201)
W WELTTIES o Y w0
oo’ i<j o il

Here o is a spin variable while ; and r represent electron and ion coordinates, respectively. The introduction of J
into the wavefunction is similar to F12 methods in quantum chemistry, though it has been present in essentially all
QMC studies since the first applications the method (circa 1965).

How are the functions ug"/ and u{ obtained? Generally, they are approximated by analytical functions with several
unknown parameters that are determined by minimizing the energy or variance directly within VMC. This is effective
because the energy and variance reach a global minimum only for the true ground state wavefunction (Energy = F =
(U|H|W), Variance = V = (U|(H — E)2|¥)). For this exercise, we will focus on minimizing the variance.

First, we need to update the template particle and wavefunction information in 0. g0 .ptcl.xml and O.g0.wfs.
xml. We want to simulate the O atom in open boundary conditions (the default is periodic). To do this, open ~0.q0.
ptcl.xml with your favorite text editor (e.g., emacs or vi) and replace

<parameter name="bconds">
P PP

</parameter>

<parameter name="LR_dim cutoff">
15

</parameter>

with

<parameter name="bconds">
nnn
</parameter>

Next we will select Jastrow factors appropriate for an atom. In open boundary conditions, the B-spline Jastrow
correlation functions should cut off to zero at some distance away from the atom. Open O. g0 .wfs.xml and add the
following cutoffs (rcut in Bohr radii) to the correlation factors:

<correlation speciesA="u" speciesB="u" size="8" rcut="10.0">
<correlation speciesA="u" speciesB="d" size="8" rcut="10.0">

<correlation elementType="0" size="8" rcut="5.0">

These terms correspond to ugT / uéi, ugi, and uIO / ufo, respectively. In each case, the correlation function (u.) is

represented by piecewise continuous cubic B-splines. Each correlation function has eight parameters, which are just
the values of © on a uniformly spaced grid up to rcut. Initially the parameters (coefficients) are set to zero:

20.6. Optimization with QMCPACK to obtain the correlated part of the wavefunction 247

QMCPACK Manual

<correlation speciesA="u" speciesB="u" size="8" rcut="10.0">
<coefficients id="uu" type="Array">
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
</coefficients>
</correlation>

Finally, we need to assemble particle, wavefunction, and pseudopotential information into the main QMCPACK input
file (0.90.opt .in.xml) and specify inputs for the Jastrow optimization process. Open O.g0.opt .in.xml and
write in the location of the particle, wavefunction, and pseudopotential files (“<!-- ... -—>" are comments):

<!-- include simulationcell and particle information from pw2gmcpgack —-->
<include href="0.gq0.ptcl.xml"/>

<!-- include wavefunction information from pw2gmcpgack -—>
<include href="0.90.wfs.xml"/>

<!-- O pseudopotential read from "O.BFD.xml" --—>
<pseudo elementType="O" href="O.BFD.xml"/>

The relevant portion of the input describing the linear optimization process is

<loop max="MAX">

<gmc method="linear" move="pbyp" checkpoint="-1">
<cost name="energy" > ECOST </cost>
<cost name="unreweightedvariance"> UVCOST </cost>
<cost name="reweightedvariance" > RVCOST </cost>
<parameter name="timestep" > TS </parameter>
<parameter name="samples" > SAMPLES </parameter>
<parameter name="warmupSteps" > 50 </parameter>
<parameter name="blocks" > 200 </parameter>
<parameter name="subSteps" > 1 </parameter>

</gmc>
</loop>

An explanation of each input variable follows. The remaining variables control specialized internal details of the linear
optimization algorithm. The meaning of these inputs is beyond the scope of this lab, and reasonable results are often
obtained keeping these values fixed.

energy Fraction of trial energy in the cost function.

unreweightedvariance Fraction of unreweighted trial variance in the cost function. Neglecting the weights can be
more robust.

reweightedvariance Fraction of trial variance (including the full weights) in the cost function.

timestep Time step of the VMC random walk, determines spatial distance moved by each electron during MC steps.
Should be chosen such that the acceptance ratio of MC moves is around 50% (30-70% is often acceptable).
Reasonable values are often between 0.2 and 0.6 Ha™'.

samples Total number of MC samples collected for optimization; determines statistical error bar of cost function. It
is often efficient to start with a modest number of samples (50k) and then increase as needed. More samples
may be required if the wavefunction contains a large number of variational parameters. MUST be be a multiple
of the number of threads/cores.

warmupSteps Number of MC steps discarded as a warmup or equilibration period of the random walk. If this is too
small, it will bias the optimization procedure.

248 Chapter 20. Lab 2: QMC Basics

QMCPACK Manual

blocks Number of average energy values written to output files. Should be greater than 200 for meaningful statistical
analysis of output data (e.g., via gmca).

subSteps Number of MC steps in between energy evaluations. Each energy evaluation is expensive, so taking a few
steps to decorrelate between measurements can be more efficient. Will be less efficient with many substeps.

loop max Number of times to repeat the optimization. Using the resulting wavefunction from the previous optimiza-
tion in the next one improves the results. Typical choices range between 8 and 16.

The cost function defines the quantity to be mi